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Abstract— Existing batch schedulers are incapable of ade-
quately addressing the need for immediate access to resources
for interactive jobs. In this paper we describe our virtual
machine-centric scheduler, UBIS, that facilitates both high
priority interactive jobs and traditional batch jobs. UBIS is
based on preemptable job scheduling which enables rapid
resource provisioning for interactive jobs, and easy job restarts
for preempted jobs. Using simulation we characterize the impact
of interactivity on the data center and develop a novel set of
scheduling criteria that emphasizes near-immediate resource
allocation for interactive jobs. We show that our new scheduling
criteria not only improves resource allocation for interactive
jobs, but also improves resource utilization and response times
for batch jobs up to 500%. Our system will serve as a valuable
tool to enable interactive jobs to execute efficiently within a
traditional batch scheduling environment.

I. I NTRODUCTION

With the current generation of supercomputers now achiev-
ing petaflop-level performance, applications are placing even
greater demands on the underlying hardware. Interactivity
will play a key role in the next generation of supercom-
puters [1]. Where traditional supercomputing has focused
mainly on batch processing with offline visualization/inter-
activity, interactive computing seeks to provide users with
the resources to perform both the computation and interaction
simultaneously. We argue that this will require a new strategy
towards dealing with supercomputing resources.

Interactivity requires advances in scheduling, process man-
agement, and data management. New scheduling policies
that are capable of allocating and reallocating interactive
resources on-demand will be especially critical. This will
necessitate a change in data center and cluster process man-
agement as batch jobs must be preemptable in order to ensure
adequate resources for the interactive jobs. Data management
will also be critical, as both preempted (checkpointed) batch
jobs and the data generated by the interactive jobs will have
to be efficiently managed.

Thus far interactive supercomputing has received only
modest attention in the academic community, while existing
batch schedulers seemingly treat interactive jobs as mere
afterthoughts. A key to this work is the use of low overhead
virtualization strategies in order to provide the building
blocks of computation migration and checkpointing. These
features will be especially critical to enabling interactive
computing while also allowing preempted jobs to be resumed
with a minimal loss of computation.
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However the use of virtualization also necessitates an
effective provisioning system. The provisioning framework
should cooperate with the scheduler in order to anticipate job
requirements without dedicating unneeded resources. Many
of today’s VM provisioning systems naively swap operating
systems without considering the resource trends. This leads to
wasteful VM swapping and lower cluster utilization. While
the focus of this paper is on the scheduling, we note that
provisioning will prove a crucial component of any VM-
based preemptive scheduler.

We focus this paper on the particular scheduling impli-
cations of supporting interactive supercomputing. In doing
so, we introduce UBIS, the University at Buffalo Inter-
active Scheduler. We describe our interactivity framework,
and through a preliminary performance evaluation of the
scheduler, demonstrate that interactivity can be achievedwith
minimal cost to traditional batch jobs.

The remainder of this abstract is organized as follows:
in Section II we describe the existing work in interactive
scheduling, in Section III we present the framework for
combining our interactive scheduler with VM swapping and
preemption. In Section IV we provide preliminary results
of the effectiveness of our interactive scheduler through
simulation, and in Section V we describe the future directions
and preliminary conclusions that can be drawn from our
work.

II. RELATED WORK

The scheduling of tasks on multiprocessor systems has
been well-studied. Approximate algorithms and heuristics
have been proposed that attempt to minimize the makespan
of the cluster, or completion of the last job. Most scheduling
does not consider preemption, or when it does, may neglect
the potential for job starvation in on-line systems. In thissec-
tion we briefly discuss the major approximation algorithms
that have been proposed,.

To date, most scheduling has focused on the non-
preemptive variety where jobs are assigned to nodes (or
parallel machines) and allowed to run to completion. This
has resulted in numerous approximation algorithms. Paletta
and Pietramala present a technique that combines partial
scheduling solutions into a single solution [12]. Genetic
algorithms have been particularly well studied in recent
scheduling work [2], [3], [6], [11], [17]–[19]. Other strate-
gies including linear programming, insertion-based heuris-
tics, simulated annealing, and tabu search have also been
studied [4], [10]. Jin et al. presents a comparison of many



different scheduling approximation techniques and shows
that most existing techniques are better suited to offline
scheduling [9].

Researchers have also considered preemtable schedul-
ing [7]. A common strategy is to convert the problem into
a non-preemptive scheduling problem [13]. This typically
leads to an improved approximation factor, but is not directly
applicable to our work.

Sotomayor et al. study the issue of virtualization over-
head [14]. In particular, they argue that when integrating
virtualization into a grid scheduler, the overheads of instan-
tiation, and deployment must be accounted for correctly.
Our preemptive scheduler accounts for such overhead, and
includes the overhead of checkpointing and migrating jobs.

Further work by Sotomayor et al. has examined the use of
a lease-based architecture to negotiate advance reservation
requests [15]. Rather than basing scheduling decisions on
specific jobs, decisions are based on leases that describe
both the hardware and software requirements of an ap-
plications. The use of advance reservations has previously
been studied by Foster et al. for grid scheduling [5]. Like
the UBIS, Sotomayor et al. use virtualization in order to
provide the needed checkpoints/restore functionality. Our
preemption strategy, however, is not based on the idea of
advance reservations to support job interactivity. We make
no assumptions as to when an interactive job will enter the
queue and require immediate resources.

III. SYSTEM DEVELOPMENT

We have incorporated the scheduling algorithms into a
prototype system capable of evaluating our models and
assumptions in a production-like environment. To do so
we use a virtualized cluster which is interconnected via a
network with a server that handles the node provisioning.
The implementation of this framework consists of a resource
manager, a scheduler, scalable OS distribution and a VM
invocation framework, and is based on the Torque batch
scheduler.

A. Resource Manager

The resource manager is responsible for providing con-
trol over batch jobs and distributed compute nodes. It also
maintains a registry of all cluster nodes and any attributesthat
impact the node provisioning decisions of the scheduler. This
is done by the MOM (machine oriented miniserver) daemon,
which periodically probes the cluster nodes and obtains a
node’s status from the daemons on the cluster nodes.

The resource manager typically represents a node by a set
of attributes consisting of the IP, status (free, down), base
operating system, etc. The base operating system attribute
indicates the operating system used by the physical server.
In our case, this is the operating system used by the hyper-
visor. We therefore introduced a new attribute,V Mos which
indicates the guest virtual machine’s operating system. This
node attribute is now a dynamic one and needs to be changed
as the VMs are invoked.

To allow the virtualized guest to act as a traditional
Torque client, the MOM daemon is added to the guest. This
effectively creates an independent client from the virtual
machine, and allows the scheduler to treat an individual VM
as a full client. It also has the added impact of forcing the
Torque node registry to become dynamic due to changing
virtual machines.

By incorporating these attributes the cluster can be rep-
resented as a pool of virtual resources. Thus, any job that
requires a unique set of resources (e.g. an alternative OS) can
be serviced from this pool. In this way, the cluster is limited
only by its available hardware, not software. Any user may
request unique software which can be rapidly provisioned
and made available for the duration of the job.

B. The Scheduler

The scheduler is responsible for the scheduling of jobs
that are placed into Torque’s job queue and allows for the
use of a cluster’s idle resources in order to satisfy a job’s
requirements. When a job is placed into the job queue an
initial priority is calculated from the job attributes and the
priority is analyzed by the resource manager before being
placed into the scheduler queue. Our approach is shown in
Equation 1. In this strategy it is expected that the lowest
priority jobs will be preempted first.

Pj = w1 · (Target − Usage) + w2 · Qtime+

w3 · (NavailableOS − NreqOS) + w4 · Pn + w5 · Pt+

w6 · (Nfree − (NreqOS − NavailableOS)) + w7 · I
(1)

WhereTarget is a user’s expected usage (e.g. monthly,
weekly); Usage is a user’s actual usage;Qtime is the time
a job has spent in the queue;NavailableOS is the number
of nodes currently available with a given operating system;
NreqOS is the number of nodes of a certain operating system
needed by a job;Pn is the number of times this job has been
preempted;Pt is the total time the job has been preempted;
Nfree is the total number of free nodes of any operating
system;I is 1 if the job is interactive, else0; w1, w2, . . . , w6

are weighting factors that are empirically determined; andw7

is the weighting factor to elevate interactive jobs.
By accounting for the operating systems in use as well as

the free resources, we are able to improve on the scheduling
by reducing the number of operating system swaps. The term
(Target − Usage) simply describes a user’s current usage.
If the user has not been particularly active, then the quantity
will be higher than a user who has exceeded his target usage.
The second quantityQtime simply accounts for the time
a job has spent in the queue prior to being scheduled. As
a job waits in the queue, itsQtime will increase thereby
increasing the priority. The quantity(NavailableOS−NreqOS)
allows us to account for the current distribution of operating
systems within the cluster. A negative value indicates that
the user is requesting nodes that will require provisioning.
This decreases the job’s priority. In order to prevent jobs
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from starving due to preemption, we increase the value of
Pn as the number of preemptions increase, thereby raising
the priority of the more frequently preempted jobs. Similarly,
the value of Pt increases with the total time that a job
spends in the preempted state. We track both the number
of preemptions and the time spent preempted in order to
account for jobs that may be preempted multiple times, but
for short durations. Intuitively, we expect that greaterPt with
lower Pn is preferrable. However, this assumption must be
validated under varying workloads and job characteristics.
The termsw1, . . . , w6 are weights that are empirically de-
termined with simulation. Their values will depend on the
various scheduling policies that we are evaluating, and will
differ between policies. Some values ofwi lead to greedy or
best fit algorithms. The termI is either0 or 1 to indicate
whether or not the job is interactive. Its weight,w7 which will
also be experimentally determined, could be much larger than
the others to immediately elevate an interactive job’s priority.

Backfill has often been used to allow for out-of-order job
execution, and has been shown to improve utilization by as
much as 20% [8]. The idea is to schedule jobs that can make
use of the currently available resources rather than allowing
those resources go unused. The scheduler protects the highest
priority job’s start time by creating a job reservation to
reserve the needed resources at the appropriate time. It can
then start any job that will not interfere with this reservation.
Our approach uses the Torque backfill approach to improve
batch job scheduling.

C. VM Provisioning Framework

Once the scheduler identifies the idle nodes that can
be provisioned for new jobs, the required OS images are
provided to the VM invocation framework. A balanced binary
tree is used to query, forward, and retrieve OS images. All
OS images are initially stored at the head node. In the event
of a request for a particular OS image, the image is sent
via the node’s children to the node requesting the resource.
All nodes along the path including the final node maintain
information of the node which has been given that OS image,
in a routing table. The information in the routing table is then
reused when another request for the same OS image occurs.

Once the idle node receives the OS images, configurations,
and swap files, the VM is instantiated and the MOM daemon
is started on this VM. Once the VM is instantiated the control
is passed to the scheduler enabling the node to service jobs
allocated by the scheduler.

D. Job Preemption

In the event that resources are unavailable for a high
priority job, one or more jobs must be preempted in order to
enable interactivity. There are three major facets to job pre-
emption that must be addressed: scheduling, checkpointing,
and restarting jobs. We address the challenges of each in the
paragraphs to follow.

The first and the most challenging aspect that must be
considered is the scheduling and selection of preemptable

jobs. In a data center with thousands of nodes and jobs,
making good preemption choices will be critical to improving
the response time of the cluster. Our current strategy is to
preempt the lowest priority jobs as determined by Equation 1.

Once a preemptable job has been identified, a checkpoint
is taken in order to save the state of the preempted jobs such
that they can be restarted at a later time without a substantial
loss of computation. Hypervisors and other virtualization
solutions typically provide a mechanism to save the memory
footprint of an individual VM. In addition to the memory
footprint, however, the file system must also be checkpointed.
Finally, if a job is executing in a distributed manner, such
as via MPI, the distributed state must also be synchro-
nized before checkpointing. In our previous work we have
demonstrated a novel VM-aware MPI implementation [16].
A similar approach is used in this case.

Finally, once the interactive job has completed, the pre-
empted jobs should be restarted. In the simplest case, the
original jobs are simply restarted on the machines from which
they were preempted. This can be done with little overhead,
as all of the data is already present on the necessary nodes.
However, if additional resources become available before
the interactive job has completed, it may be advantageous
to restart the preempted jobs on alternate nodes. This will
depend on the overhead of transferring the needed data to
new nodes (as checkpoints, particularly file systems can be
quite large). Because the focus of this abstract is primarily on
our scheduler, we do not include this work within the scope
of the abstract.

E. The System Architecture

From the user’s perspective, the system consists of three
major components: (i) a scheduler/resource manager (ii) a
VM repository/provisioning framework, and (iii) a check-
point/migration infrastructure.

Jobs are submitted to the resource manager where the
scheduler determines their priorities and inserts the jobsinto
the job queue. Depending on the type of job it may be
handled in one of two ways. If the job is a standard batch
job, its job requirements are collected and the job is treated
as a typical batch job. A batch job will not ordinarily preempt
another batch job. Once the job is scheduled for execution, it
will either run directly within one or more existing VMs
(preferred to reduce provisioning time), or the resource
manager will provision a set of VMs for its execution. The
job will either run to completion or will be preempted by an
interactive job during computation (described below).

In the event that an interactive job is submitted, its priority
is elevated. If the needed resources are already idle, the
interactive job will immediately be scheduled onto the free
nodes. As in the case of the batch job, the nodes may need
provisioning if they are not already running the required
VM. If the resources are not idle, one or more jobs may
be preempted in order to make room for the interactive job.

Preempting a job is a multi-step process. First, the running
job (to be preempted) must be checkpointed. If the job is
a single node (non-MPI) job, the checkpointing process is
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(a) Throughput, 10% interactivity

(b) Resource utilization, 10% interactivity

(c) Response time, 10% interactive jobs

Fig. 1. 10% job interactivity.

simple and can be handled within the virtual machine itself.
If the job is composed of multiple nodes communicating via
MPI, the nodes must first quiesce all messaging channels us-
ing a custom virtual machine-aware MPI library [16] before
checkpointing the VMs. After checkpointing the VMs, the
provisioning framework will provision the VMs as-needed
and the interactive job will run. After the interactive job
completes the preempted job will continue execution.

IV. EXPERIMENTAL RESULTS

Here we present the preliminary results of our scheduling
policy, obtained through simulation. In the Figures 1-3 we
demonstrate the impact of our interactive scheduling policy
compared against a modified Maui FCFS scheduling policy
(MMS in figures). Our modified Maui scheduler includes
only those changes necessary to support operating system
swapping, but does not change in any way its scheduling
decisions.

We use trace data gathered from the University at Buffalo’s
Center for Computational Research (CCR) and simulate for
100,000 jobs. Operating systems are assigned based on a
random function. Our trace data is assumed to run on a cluster
of 1056 nodes (the size of the CCR cluster). Interactive jobs
are randomly injected into the trace data with the size of
the interactive jobs governed by a Poisson distribution with
means of 50, 100, and 150 nodes. The execution time of
the injected interactive jobs is between 10 and 120 minutes,
according to a uniform distribution.

The figures show the results of our scheduling policy
compared against the Maui scheduler with 10, 20, and 30%

(a) Throughput, 20% interactivity

(b) Resource utilization, 20% interactivity

(c) Response time, 20% interactive jobs

Fig. 2. 20% job interactivity.

of the cluster devoted to interactive jobs, with the trace data
from CCR. The weights chosen from Equation 1 arew1 =
0.07, w2 = 0.13, w3 = 0.1, w4 = 0.1, w5 = 0.16, w6 =
0.2, w7 = 0.24. Again, these weights are preliminary. For
Maui scheduling, a reservation system is used to gather nodes
for an interactive job as-needed. This is the standard behavior
for the Maui scheduler.

For all results, the operating system distribution is divided
between two OSs with a50/50 distribution. We simulate our
scheduling policy to allow for5% and 15% of the cluster
nodes devoted to interactive jobs. Thus, when we indicate
10, 20, or 30% of the jobs are interactive with 5 or 15% of
nodes devoted to interactive jobs, we mean that of all 100,000
simulated jobs, 10, 20, or 30% will be interactive. Further,at
any given time, only 5 or 15% of the cluster nodes may be
devoted to interactive jobs. Any remaining interactive jobs
will block waiting for free resources.

From Figures 1, 2, and 3 we can see that the introduction of
interactivity generally results in an improvement on resource
utilization, response time, and throughput. We demonstrate
consistent improvement between the UBIS scheduler and
the Maui scheduler. This is to be expected as the Maui
reservation system blocks for available nodes, preventingany
new jobs from executing until the high priority job receives
its resource requirements.

The only exception to this is Figure 3(c) with interactive
job sizes of mean 50 nodes and 5% node reservation. Even in
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(a) Throughput, 30% interactivity

(b) Resource utilization, 30% interactivity

(c) Response time, 30% interactive jobs

Fig. 3. 30% job interactivity.

this case, however, the overhead is only 2.8%. As one would
expect, the response time increases with increasing interactive
job sizes as well as with larger percentages of the cluster
allowed for interactivity. This is typical behavior of any
scheduler. Nevertheless, we consistently outperform the Maui
scheduler in all metrics, even when 30% of the simulated
jobs are interactive. Further, the performance increasingly
improves relative to the modified Maui scheduler as the
number of interactive jobs increases from 10% to 30%,
resulting in as much as500% improvement for resource
utilization, as we show in Figure 3(b).

V. CONCLUSIONS ANDFUTURE WORK

This project presents the first step in enabling a new
paradigm in traditional supercomputers from being purely
batch job based to allowing interactive jobs. We have shown
that interactivity can be introduced into existing schedulers
with minimal detrimental impact. Further, we have shown
that a performance of up to500% improvement has been
shown in real trace data. This opens up doors to various
non-traditional applications that are limited by the time when
the results are needed, e.g., most analytics. The outcomes
of this project will also enable data centers or providers to
efficiently utilize their infrastructure, thereby reducing cost
and increasing profit.

We will continue to work towards improving the weights
described in our priority equation (Equation 1). We believe

that through extensive modeling more effective coefficients
can be found that will further reduce the impact of interac-
tivity on overall cluster resources. We will then continue to
integrate our results into a working system for deployment.
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