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Abstract— Existing batch schedulers are incapable of ade- However the use of virtualization also necessitates an
quately addressing the need for immediate access to resourceseffective provisioning system. The provisioning framekvor
for interactive jobs. In this paper we describe our virtual = g6 1q cooperate with the scheduler in order to anticipatie j

machine-centric scheduler, UBIS, that facilitates both high . ts without dedicati ded M
priority interactive jobs and traditional batch jobs. UBIS is requirements without dedicating unneeded resources. Many

based on preemptable job scheduling which enables rapid Of today’s VM provisioning systems naively swap operating
resource provisioning for interactive jobs, and easy job restais  systems without considering the resource trends. Thislead

for preempted jobs. Using simulation we characterize the impact \wasteful VM swapping and lower cluster utilization. While
of interactivity on the data center and develop a novel set of the focus of this paper is on the scheduling, we note that

scheduling criteria that emphasizes near-immediate resource L il ial t of VM
allocation for interactive jobs. We show that our new scheduling provisioning will prove a crucial component ot any )

criteria not only improves resource allocation for interactive Pased preemptive scheduler.
jobs, but also improves resource utilization and response times ~ We focus this paper on the particular scheduling impli-
for batch jobs up to 500%. Our system will serve as a valuable cations of supporting interactive supercomputing. In doin
toollt'o enable interactive jobs to execute efficiently within a so, we introduce UBIS, the University at Buffalo Inter-
traditional batch scheduling environment. . . . .
active Scheduler. We describe our interactivity framework
and through a preliminary performance evaluation of the
. INTRODUCTION scheduler, demonstrate that interactivity can be achiextd

. . . minimal cost to traditional batch jobs.
With the current generation of supercomputers now achiev- : . . . )
The remainder of this abstract is organized as follows:

ing petaflop-level performance, applications are placiene . . : - L :
gp b P PP placven in Section Il we describe the existing work in interactive

greater demands on the underlying hardware. Interactiw% ) . ;
. . . stheduling, in Section Il we present the framework for
will play a key role in the next generation of supercom- L . . . :
- . c8mb|n|ng our interactive scheduler with VM swapping and
puters [1]. Where traditional supercomputing has focuse doemption. In Section IV we provide preliminary results
mainly on batch processing with offline visualization/inte gf thepeffe.ctiveness of our int?eractive pschedule)r/ through
activity, interactive computing seeks to provide us’erShWisimulation and in Section V we describe the future direnstiog
the resources to perform both the computation and intemracti L .
and preliminary conclusions that can be drawn from our

simultaneously. We argue that this will require a new styate

towards dealing with supercomputing resources. work.
Interactivity requires advances in scheduling, process-ma

agement, and data management. New scheduling policies Il. RELATED WORK

that are capable of allocating and reallocating |nteract|.v The scheduling of tasks on multiprocessor systems has

resources on-demand will be especially critical. This WI%een well-studied. Approximate algorithms and heuristics

necessitate a change in data center and cluster process Male been proposed that attempt to minimize the makespan

agement as batch jobs mUSF be pregmptable in order to ENt'the cluster, or completion of the last job. Most schedylin
adequate resources for the interactive jobs. Data manage es not consider preemption, or when it does, may neglect

will also be critical, as both preempted (checkpomted):batthe potential for job starvation in on-line systems. In &es-

jobs and the data generated by the interactive jobs will hayg,", e briefly discuss the major approximation algorithms

to be efficiently managed. hat have been proposed,.
Thus far interactive supercomputing has received onﬁy.l.o date. most sched,uling has focused on the non-

modest attention in the academic community, while existi eemptive variety where jobs are assigned to nodes (or

batch schedulers seemmgly treat interactive jobs ‘as m arallel machines) and allowed to run to completion. This
afterthoughts. A key to this work is the use of low overheaﬁl

i L . i .~ has resulted in humerous approximation algorithms. Ralett
virtualization strateg|es n or_der to provide j[he_ bUIIdIngémd Pietramala present a technique that combines partial
blocks of gomputatlon .m'gra“‘?T‘ and checkpomt!ng. Th?%heduling solutions into a single solution [12]. Genetic
feature; will _be espeually critical to en_ablmg Interaetl algorithms have been particularly well studied in recent
cc.)mputm.g.whne also allowing prgempted jobs to be resume heduling work [2], [3], [6], [11], [17]-[19]. Other strat
with a minimal loss of computation. gies including linear programming, insertion-based heuri

This research was supported in part by NSF IGERT grant 9%752;'057_5'mU|ated annea“ng’ and tabu search hf”‘ve also been
MEDC/Michigan Life Science Corridor, and NYSTAR. studied [4], [10]. Jin et al. presents a comparison of many



different scheduling approximation techniques and showsTo allow the virtualized guest to act as a traditional
that most existing techniques are better suited to offlifl@rque client, the MOM daemon is added to the guest. This
scheduling [9]. effectively creates an independent client from the virtual
Researchers have also considered preemtable schethdchine, and allows the scheduler to treat an individual VM
ing [7]. A common strategy is to convert the problem intas a full client. It also has the added impact of forcing the
a non-preemptive scheduling problem [13]. This typicallforque node registry to become dynamic due to changing
leads to an improved approximation factor, but is not diyectvirtual machines.
applicable to our work. By incorporating these attributes the cluster can be rep-
Sotomayor et al. study the issue of virtualization overesented as a pool of virtual resources. Thus, any job that
head [14]. In particular, they argue that when integratingquires a unique set of resources (e.g. an alternative &@8) ¢
virtualization into a grid scheduler, the overheads ofdnst be serviced from this pool. In this way, the cluster is lirdite
tiation, and deployment must be accounted for correctlgnly by its available hardware, not software. Any user may
Our preemptive scheduler accounts for such overhead, aeduest unique software which can be rapidly provisioned
includes the overhead of checkpointing and migrating jobsand made available for the duration of the job.
Further work by Sotomayor et al. has examined the use of
a lease-based architecture to negotiate advance reservatj The Scheduler
requests [15]. Rather than basing scheduling decisions on
specific jobs, decisions are based on leases that describ&he scheduler is responsible for the scheduling of jobs
both the hardware and software requirements of an dpat are placed into Torque’s job queue and allows for the
plications. The use of advance reservations has previouse of a cluster’s idle resources in order to satisfy a job’s
been studied by Foster et al. for grid scheduling [5]. Likeequirements. When a job is placed into the job queue an
the UBIS, Sotomayor et al. use virtualization in order tnitial priority is calculated from the job attributes anklet
provide the needed checkpoints/restore functionalityr Opriority is analyzed by the resource manager before being
preemption strategy, however, is not based on the ideapced into the scheduler queue. Our approach is shown in
advance reservations to support job interactivity. We makeguation 1. In this strategy it is expected that the lowest
no assumptions as to when an interactive job will enter thpsiority jobs will be preempted first.
gueue and require immediate resources.

P; = wy - (Target — Usage) + wa - Qtime+

ws - (Na'uailableOS - NrerS) + Wy - Pn + Ws -+ Pt+

We have incorporated the scheduhng algorithms into a . (Ntree — (Nreqos — Navaitabieos)) + wr - I
prototype system capable of evaluating our models and (1)
assumptions in a production-like environment. To do so , ,
we use a virtualized cluster which is interconnected via a Where Target is a user's expected usage (e.g. monthly,
network with a server that handles the node provisionin§€eKly); Usage is a user's actual usag€ime is the time
The implementation of this framework consists of a resouréel0P has spent in the queudlsuqiasicos i the number
manager, a scheduler, scalable OS distribution and a Vi nodes currently available with a given operating system;

invocation framework, and is based on the Torque batdfreq0s iS the number of nodes of a certain operating system
scheduler. needed by a jobP, is the number of times this job has been

preempted;P, is the total time the job has been preempted,;
Nyree is the total number of free nodes of any operating
A. Resource Manager system;] is 1 if the job is interactive, els®; wi, ws, ..., ws
The resource manager is responsible for providing coare weighting factors that are empirically determined; and
trol over batch jobs and distributed compute nodes. It alsdthe weighting factor to elevate interactive jobs.
maintains a registry of all cluster nodes and any attribtites By accounting for the operating systems in use as well as
impact the node provisioning decisions of the scheduleis Thhe free resources, we are able to improve on the scheduling
is done by the MOM (machine oriented miniserver) daemohy reducing the number of operating system swaps. The term
which periodically probes the cluster nodes and obtains(&arget — Usage) simply describes a user’s current usage.
node’s status from the daemons on the cluster nodes.  If the user has not been particularly active, then the gtanti
The resource manager typically represents a node by awél be higher than a user who has exceeded his target usage.
of attributes consisting of the IP, status (free, down),ebahe second quantity);;,.. simply accounts for the time
operating system, etc. The base operating system attribatgob has spent in the queue prior to being scheduled. As
indicates the operating system used by the physical sengrob waits in the queue, it€;,. will increase thereby
In our case, this is the operating system used by the hypigrereasing the priority. The quantitV,,aizasicos — Nreqos)
visor. We therefore introduced a new attribut&)/,, which allows us to account for the current distribution of opemati
indicates the guest virtual machine’s operating systenis Thsystems within the cluster. A negative value indicates that
node attribute is now a dynamic one and needs to be changee user is requesting nodes that will require provisioning
as the VMs are invoked. This decreases the job’s priority. In order to prevent jobs

Ill. SYSTEM DEVELOPMENT



from starving due to preemption, we increase the value pbs. In a data center with thousands of nodes and jobs,
P, as the number of preemptions increase, thereby raisimgking good preemption choices will be critical to imprayin
the priority of the more frequently preempted jobs. Sinijiar the response time of the cluster. Our current strategy is to
the value of P, increases with the total time that a jobpreempt the lowest priority jobs as determined by Equation 1
spends in the preempted state. We track both the numbefnce a preemptable job has been identified, a checkpoint
of preemptions and the time spent preempted in order i®taken in order to save the state of the preempted jobs such
account for jobs that may be preempted multiple times, biltat they can be restarted at a later time without a subatanti
for short durations. Intuitively, we expect that greafemwith loss of computation. Hypervisors and other virtualization
lower P, is preferrable. However, this assumption must beolutions typically provide a mechanism to save the memory
validated under varying workloads and job characteristicootprint of an individual VM. In addition to the memory
The termswy, ..., wg are weights that are empirically de-footprint, however, the file system must also be checkpdinte
termined with simulation. Their values will depend on th&inally, if a job is executing in a distributed manner, such
various scheduling policies that we are evaluating, antl wds via MPI, the distributed state must also be synchro-
differ between policies. Some valuesof lead to greedy or nized before checkpointing. In our previous work we have
best fit algorithms. The ternd is either0 or 1 to indicate demonstrated a novel VM-aware MPI implementation [16].
whether or not the job is interactive. Its weight; which will A similar approach is used in this case.
also be experimentally determined, could be much larger tha Finally, once the interactive job has completed, the pre-
the others to immediately elevate an interactive job’'snisio empted jobs should be restarted. In the simplest case, the
Backfill has often been used to allow for out-of-order joloriginal jobs are simply restarted on the machines from twhic
execution, and has been shown to improve utilization by #wey were preempted. This can be done with little overhead,
much as 20% [8]. The idea is to schedule jobs that can make all of the data is already present on the necessary nodes.
use of the currently available resources rather than afigwiHowever, if additional resources become available before
those resources go unused. The scheduler protects theshigtiee interactive job has completed, it may be advantageous
priority job’s start time by creating a job reservation tdo restart the preempted jobs on alternate nodes. This will
reserve the needed resources at the appropriate time. It dapend on the overhead of transferring the needed data to
then start any job that will not interfere with this reseiwat new nodes (as checkpoints, particularly file systems can be
Our approach uses the Torque backfill approach to improgeite large). Because the focus of this abstract is prigaril
batch job scheduling. our scheduler, we do not include this work within the scope
of the abstract.

C. VM Provisioning Framework )

Once the scheduler identifies the idle nodes that caEh The System Architecture ) .
be provisioned for new jobs, the required OS images arefT0M the users perspective, the system consists of three
provided to the VM invocation framework. A balanced binar{"0r components: (i) a scheduler/resource manager (i) a
tree is used to query, forward, and retrieve OS images. AfM repository/provisioning framework, and (iii) a check-
0S images are initially stored at the head node. In the evéftint/migration infrastructure.
of a request for a particular OS image, the image is sent/oPS are submitted to the resource manager where the
via the node’s children to the node requesting the resourggneduler determines their priorities and inserts the jotos
All nodes along the path including the final node maintaiﬁ1e job queue. Depending on the type of job it may be

information of the node which has been given that OS ima bno_lled_ in one of two ways. If the job is a standard batch
in a routing table. The information in the routing table igh 100: its job requirements are collected and the job is teate

reused when another request for the same OS image occfifs® tyPical batch job. A batch job will not ordinarily preemp

Once the idle node receives the OS images, configuratiof80ther batch job. Once the job is scheduled for execution, i
and swap files, the VM is instantiated and the MOM daemd}l €ither run directly within one or more existing VMs
is started on this VM. Once the VM is instantiated the Contrépreferred to reduce provisioning time), or the resource

is passed to the scheduler enabling the node to service jc%%”%ger_ will provision a set_ of VMS_ for its execution. The
allocated by the scheduler. job will either run to completion or will be preempted by an

interactive job during computation (described below).
) In the event that an interactive job is submitted, its ptyori

D. Job Preemption is elevated. If the needed resources are already idle, the

In the event that resources are unavailable for a highteractive job will immediately be scheduled onto the free
priority job, one or more jobs must be preempted in order tiodes. As in the case of the batch job, the nodes may need
enable interactivity. There are three major facets to jas prprovisioning if they are not already running the required
emption that must be addressed: scheduling, checkpointid. If the resources are not idle, one or more jobs may
and restarting jobs. We address the challenges of each in ieepreempted in order to make room for the interactive job.
paragraphs to follow. Preempting a job is a multi-step process. First, the running

The first and the most challenging aspect that must b (to be preempted) must be checkpointed. If the job is
considered is the scheduling and selection of preemptablesingle node (non-MPI) job, the checkpointing process is
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simple and can be handled within the virtual machine itseffl9- 2 20% job interactivity.

If the job is composed of multiple nodes communicating via

MPI, the nodes must first quiesce all messaging channels us-

ing a custom virtual machine-aware MPI library [16] beforef the cluster devoted to interactive jobs, with the traceada
checkpointing the VMs. After checkpointing the VMs, thérom CCR. The weights chosen from Equation 1 are=
provisioning framework will provision the VMs as-needed.07, w2 = 0.13,w3 = 0.1,wy = 0.1,ws = 0.16,ws =
and the interactive job will run. After the interactive job0.2,w; = 0.24. Again, these weights are preliminary. For

completes the preempted job will continue execution. Maui scheduling, a reservation system is used to gathersnode
for an interactive job as-needed. This is the standard ehav
IV. EXPERIMENTAL RESULTS for the Maui scheduler.

Here we present the preliminary results of our scheduling FOr @ll results, the operating system distribution is cedd
policy, obtained through simulation. In the Figures 1-3 wBetween two OSs with /50 distribution. We simulate our
demonstrate the impact of our interactive scheduling poli§cheduling policy to allow fos% and 15% of the cluster
compared against a modified Maui FCFS scheduling polipdes devoted to interactive jobs. Thus, when we indicate
(MMS in figures). Our modified Maui scheduler included?: 20, or 30% of the jobs are interactive with 5 or 15% of
only those changes necessary to support operating sysfé?\qes devpted to mteractlvejobs,' we mean thqt of all 1@0,00
swapping, but does not change in any way its scheduliﬁﬁ“m?‘ted jt_)bs, 10, 20, or 30% will be interactive. Furttzer,
decisions. any given time, only 5 or 15% of the cluster nodes may be

We use trace data gathered from the University at Buffalgf€voted to interactive jobs. Any remaining interactivesob
Center for Computational Research (CCR) and simulate !l Plock waiting for free resources.

100,000 jobs. Operating systems are assigned based on farom Figures 1, 2, and 3 we can see that the introduction of
random function. Our trace data is assumed to run on a clugtéeractivity generally results in an improvement on reseu

of 1056 nodes (the size of the CCR cluster). Interactive jobélization, response time, and throughput. We demorestrat
are randomly injected into the trace data with the size §Pnsistent improvement between the UBIS scheduler and
the interactive jobs governed by a Poisson distributionwithe Maui scheduler. This is to be expected as the Maui
means of 50, 100, and 150 nodes. The execution time f@servation system blocks for available nodes, preveratiyg
the injected interactive jobs is between 10 and 120 minutégWw jobs from executing until the high priority job receives
according to a uniform distribution. its resource requirements.

The figures show the results of our scheduling policy The only exception to this is Figure 3(c) with interactive
compared against the Maui scheduler with 10, 20, and 30&b sizes of mean 50 nodes and 5% node reservation. Even in
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this case, however, the overhead is only 2.8%. As one woltd!
expect, the response time increases with increasing aikeza
job sizes as well as with larger percentages of the cluster
allowed for interactivity. This is typical behavior of any[11
scheduler. Nevertheless, we consistently outperform taeiM
scheduler in all metrics, even when 30% of the simulatdiR]
jobs are interactive. Further, the performance incred&ging
improves relative to the modified Maui scheduler as the
number of interactive jobs increases from 10% to 309%.3]
resulting in as much a$00% improvement for resource
utilization, as we show in Figure 3(b). [14]

V. CONCLUSIONS ANDFUTURE WORK

This project presents the first step in enabling a neapl
paradigm in traditional supercomputers from being purely
batch job based to allowing interactive jobs. We have shown
that interactivity can be introduced into existing schedsi [16]
with minimal detrimental impact. Further, we have shown
that a performance of up t600% improvement has beenji7
shown in real trace data. This opens up doors to various
non-traditional applications that are limited by the timeem

that through extensive modeling more effective coeffidgent
can be found that will further reduce the impact of interac-
tivity on overall cluster resources. We will then continae t

integrate our results into a working system for deployment.
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