
66	 Copublished by the IEEE CS and the AIP	 1521-9615/10/$26.00 © 2010 IEEE� Computing in Science & Engineering

N o v e l A r c h i t ec t u r es

Editors: Volodymyr Kindratenko, kindr@ncsa.uiuc.edu

Pedro Trancoso, pedro@cs.ucy.ac.cy

XtremeData dbX: An FPGA-Based
Data Warehouse Appliance
By Todd C. Scofield, Jeffrey A. Delmerico, Vipin Chaudhary, and Geno Valente

G reen computing— low power,
“eco-friendly”—is a hot topic
these days and will influence

server design for the coming years.
Green computing’s importance was
firmly recognized by the research
community with the first semiannual
publication of the Green500 List
(www.green500.org) in November
2007. The Green500 identifies the
most energy-efficient supercomput-
ers in the world by measuring the
performance per watt of the TOP500
Supercomputers list (www.top500.org).
The current top 10 in the November
2009 Green500 list all use low-power
accelerators or processors—such as a
Cell Processor, a graphical process-
ing unit (GPU), a greatly reduced ar-
ray of processor elements (GRAPE)1
or a PowerPC—to achieve their high
performance-per-watt results.

Traditional Linux clusters are
great for scaling problems and
leveraging commodity components
to solve large computing problems.
Nevertheless, they’re not power ef-
ficient. Linux clusters are built from
general-purpose CPUs that typically
contain more features and hardware
than developers need to solve certain
problems. This underutilization re-
sults in unnecessary power consump-
tion. In addition, clusters are usually
configured with large memory and
mechanical storage, thus wastefully
burning even more power. Finally, the

software leveraged on these platforms
typically can’t take full advantage of
multicore CPUs (let alone tomorrow’s
many-core versions). Overall, the sys-
tem’s general-purpose nature results
in large inefficiency in terms of power
consumption. A power-efficient solu-
tion is to design systems that are more
specialized to the applications they’re
running.

As with embedded computing, for
high-performance computing (HPC),
we should be looking at architectures
that are built for a specific purpose as
opposed to generic architectures—
such as Linux clusters—that can
handle different applications. If the
cost, power, and size of these specific
machines are substantially less than
the generic solution, then it’s likely
that the market will shift back to such
application-specific architectures.

Rather than design a new system
for each application, however, it’s
possible to customize a system with
dedicated accelerators to better match
the application’s requirements, thus
resulting in better efficiency. Ac-
celerators, if abstracted from the IT
user, can be successfully used in data-
intensive supercomputers (DISC). IT
users can benefit tremendously from
an appliance that transparently pro-
vides performance, lower power, and
ease of scalability along with a proper
mix of storage, CPU, software, and
acceleration.

Products based on field-programma-
ble gate arrays have focused on solving
some of the industry’s toughest digital
problems. Over the past decade, very
large FPGAs have been implemented
in applications such as radar, cryptog-
raphy, WiMax/Long Term Evolution
(LTE), and software-defined radio
(SDR). Factors including cost pressure
and stringent size, weight, and power
(SWaP) requirements have created
constrained environments that require
high-performance and high-efficiency
architectures. FPGA-based systems
can satisfy these requirements. We
believe that the best computing con-
figuration currently available consists
of x86 CPUs coupled to FPGA-based
accelerators.

FPGAs have several attractive key
features:

•	 They’re highly power efficient, outper-
forming CPUs on the performance/
watt metric by two to three orders
of magnitude.2

•	 They closely follow the CPU’s
semiconductor process technology,
typically lagging by no more than
six to 12 months (and thus FPGAs
accrue all of the Moore’s law
benefits).

•	 They’re in-system reconfigurable.
Unlike fixed architecture accel-
erators, FPGAs can be instantly
reloaded to optimally match appli-
cation requirements.

FPGA-based architectures are known for their applicability to embedded systems. Nevertheless, recent
developments make it possible to exploit this technology’s benefits for large-scale systems targeting compute-
and data-intensive applications.

CISE-12-4-Novel.indd 66 03/06/10 12:24 PM

July/August 2010� 67

Today, it’s generally accepted that
developers can achieve scale-up on a
large scale only through the loosely
coupled massively parallel processing
(MPP) approach. We believe that this
scale-up philosophy, complemented
with accelerators (such as FPGAs),
will be leveraged in next-generation
data warehouse architectures. Us-
ing FPGAs as HPC accelerators has
been widely explored in the literature.
Keith D. Underwood and his col-
leagues cover the current state well3
and forward a case for the simplicity
of a computing appliance model. An im-
portant element of this model is plac-
ing a known and simplified software
development environment (C, C++,
SQL) between the user/developer and
the complexities of traditional FPGA
development environments.

The research accelerator for mul-
tiple processors (RAMP) project de-
veloped an FPGA-based hardware
and software environment that sim-
plifies the design and development of
next-generation supercomputers (see
http://ramp.eecs.berkeley.edu). The
developers are effectively applying the
RAMP system to the design of next-
generation petascale supercomputers.4
The benefits of performance/price,
performance/power, “under the hood”
acceleration, and ease of use are the
key factors that will drive the design
of future database and data appliance
systems.

FPGA-based Data Intensive
Supercomputer Architecture
We based the XtremeData DISC
system architecture on a commod-
ity Linux cluster augmented with
direct-attached distributed storage,
high-speed interconnect network
(InfiniBand), and a re-engineered open-
source database engine (PostgreSQL).
The latter supports a shared-nothing,

parallel query execution model and
uses FPGA hardware to accelerate
common database operations (“SQL
in Silicon”).

Our system has the following
characteristics:

•	 scalable, shared-nothing MPP
architecture;

•	 hardware-accelerated parallel SQL
processing;

•	 efficient, zero-copy, data exchange
on high-bandwidth network; and

•	 dynamic load balancing at runtime.

At XtremeData, we implemented
FPGA-based accelerators in the in-
socket accelerator (ISA) module (www.
xtremedata.com/products/accelerators/
in-socket-accelerator), which is pin
compatible with the CPU socket.
The ISA lets developers easily inte-
grate FPGAs with servers from many
vendors and can generate an order of
magnitude performance improvement
over the replaced CPU at a fraction of
its power consumption. FPGAs are
reprogrammable in-system and offer
a versatile platform for implementing
processing engines. Key SQL opera-
tions are accelerated under the hood
inside the FPGA. These operations
include large data movement and
time-consuming functions such as
Joins, Sorts, GroupBy, OrderBy,
and Aggregations.

The XtremeData database analysis
appliance (dbX) that realizes the DISC
system architecture consists of a Head
Node coupled to N Data Nodes. Each
Data Node is a self-contained slice of
the database appliance encapsulating
local storage, local computing (CPU +
FPGA), and the database query execu-
tion engine. The appliance is easily
scalable by adding Data Nodes (up to
a maximum of 1,024 nodes) within a
single tower or across multiple towers.

An appliance that spans multiple tow-
ers will have the Head Node on the
first tower and a Coordinator Node
on each of the remaining towers. Each
Coordinator Node will offload some
Head Node functions, such as stag-
ing during data load/unload and the
computation of interim aggregates up
to the tower level. As a true appliance,
its deployment is simple: the user sim-
ply powers up the system, connects to
the network, loads data, and begins to
explore the data using SQL.

Figure 1 shows a block diagram of
the dbX system. Each system node
(Head and N Data) runs a standard
distribution of the Linux OS, clustered
via an InfiniBand network. The Head
Node performs traditional database
engine front-end functions, including
management of external connections,
user sessions, metadata, query pars-
ing, and query execution-plan genera-
tion. Each Data Node performs the
database’s back-end functions, includ-
ing table storage and access manage-
ment, indexes, query execution, and
data exchange among nodes. The dbX
system is largely data-model agnostic,
and users aren’t burdened with us-
ing data partitioning and colocation
schemes to address load-balancing
considerations. We designed the dbX
engine to automatically analyze data
streams at query runtime and dy-
namically guarantee load balancing.
Multiple parallel high-bandwidth
pathways facilitate high-speed loading
and unloading of data into and out of
the database. The dbX environment
also efficiently accomplishes data pro-
filing for quality or audit purposes,
eliminating the need for external sys-
tems and third-party tools.

Case Study
Our investigation was motivated
by biostatisticians’ need to perform

CISE-12-4-Novel.indd 67 03/06/10 12:25 PM

N o v e l A r c h i t ec t u r es

68� Computing in Science & Engineering

correlation analysis on data produced
from array comparative genomic
hybridization (aCGH, also known
as chromosomal microarray analy-
sis). In this technique, DNA genes
from a cancer cell and a healthy cell
are tagged with different fluorescent
markers, and the ratio of their fluores-
cent intensities is calculated for each
gene. The data produced represents
the ratio of the gene copy number
of the cancer cell to the control cell,
a good indicator of the level of that
gene’s expression in the individual.

Newer microarray machines can
measure 244,000 or even 1,000,000
different locations within the ge-
nome. The initial data set is large, but
not unwieldy. However, an important

analysis of that data set is to measure
the correlation of each gene’s score
with the scores of all the others. This
method is applied to investigate the
genetic causes of many types of can-
cer, for example.5,6 For a microarray
with N probes, this requires the cal-
culation of an N entry by N entry
correlation matrix. At double preci-
sion, such arrays can reach hundreds
of gigabytes or more—prohibitively
large sizes, even on some shared high-
performance computing resources.

To enable this analysis even for
newer higher-resolution microarray
hardware, we developed software for
computing the row-wise correlation
and for performing queries against
the correlation data for the retrieval

of significant values. This applica-
tion has been implemented on both
a Linux cluster architecture and the
specialized XtremeData dbX hard-
ware. Although an end user’s ability to
perform this analysis on a traditional
cluster is limited only by the available
hardware resources, the performance
comparison indicates the need for a
paradigm shift in the implementation
of such data-intensive applications.

We present methods and perfor-
mance analyses of several imple-
mentations of this application on
individual clusters (of up to 128 cores/
nodes) with

•	 a storage area network (SAN),
•	 an IBRIX parallel file system, and
•	 with Hadoop,

and using a 16-node/64 core Xtreme-
Data dbX model 1016 FPGA-enabled
data warehouse appliance. Each dbX
node has a dual-FPGA accelerator
(with a total of 32 FPGAs). Our re-
sults offer benchmarks for the perfor-
mance of data-intensive applications
within these distributed computing
paradigms.

The Pearson product-moment cor-
relation coefficient (the correlation) for
two random variables represents the
degree to which they’re linearly related.
We can express a pair of random vari-
ables (g1, g2), each with a mean μ and
standard deviation σ, as

 ρ
σ σ

g g
g g

1 2
1 2

1 2

=
cov()

,

where

 cov(,) (()()).g g E g gg g1 2 1 21 2
= − −μ μ

We consider the copy number
ratio for each gene location in a data

Figure 1. XtremeData’s dbX system. Each system node (Head and N Data) runs
a standard distribution of the Linux OS, clustered via an InfiniBand network. The
Head Node performs database front-end functions, while each Data Node
performs database back-end functions, including table storage and access
management, indexes, query execution, and node-to-node data exchange.

Users

Applications

Head node

LI
BP

Q

JD
BC

O
D

BC

M
em

or
y CPU

CPU

M
em

or
y CPU

ISA M
em

or
y CPU

ISA M
em

or
y CPU

ISA

Data node 1 Data node 2 Data node n

Coordinator node
M

em
or

y CPU

CPU

Data sources

Load

CISE-12-4-Novel.indd 68 03/06/10 12:25 PM

July/August 2010� 69

set as a random variable. Data con-
sist of multiple measurements for
each location, resulting in a 2D data
set of N rows of measurements (one
for each gene location) of m samples
each. For all of our implementations
of this application, we calculated the
correlation for every pair of gene
locations in a data set using the fol-
lowing steps:

•	 Compute the mean (μ) and stan-
dard deviation (σ) for each row in
the data set.

•	 For each measurement, calculate its
deviation from its row mean.

•	 Multiply the corresponding devia-
tions for the two rows of data.

•	 Find the mean of those products
and divide by the product of the two
rows’ standard deviations.

Because we’re considering pair-wise
correlation among N different genes,
this results in an N × N correlation
matrix if we compute all possible
pairs. However, because

ρ ρg g g g1 2 1 2
= ,

only the matrix’s upper triangle con-
tains distinct values. For all imple-
mentations, the correlation degree
doesn’t affect the performance of
either generating or querying the cor-
relation matrix. We must perform
the same number of computations to
calculate each entry in the resulting
correlation matrix and perform a full
scan of that matrix, regardless of the
values’ correlation.

To parallelize this computation
for a cluster, we leveraged a set of
routines developed by one of the
authors (Delmerico) for working
with large data sets.5 This software
consists of several standalone appli-
cations as well as bindings for the

R Statistical Computing Package,
which allow for the manipulation
and analysis of large data sets that
exceed the user’s memory resources.
The standalone applications accept
a text-based data set—in this case,
a microarray experiment’s output—
generate the correlation matrix, and
then decompose it into smaller sub-
matrices to “stripe” the data out over
a storage array. Finally, a query rou-
tine scans the decomposed data and
returns the values with the largest
correlation.

All of these steps are performed in
parallel, with the work being divided
into blocks of rows for each processor.
So, for an N × N correlation matrix,
each of the P processes computes the
correlation of NP gene locations with
all of the others, producing an NP × N
submatrix, the union of which con-
tains all of the row-wise correlation
values. Then, each process decom-
poses its correlation submatrix into
smaller submatrices and writes them
out to disk.

For a 2D data array, we use a block-
cyclic decomposition. Users can
specify the tile size to optimize per-
formance for the system on which
it’s running. The decomposition pro-
gram’s output is a group of files—each
storing an individual tile from the
decomposition—that are archived on
disk for subsequent analysis. Dur-
ing decomposition, each individual
tile’s dimensions and coordinates are
calculated and output to users and a
machine-readable metadata file. This
file is later used during stored-data
retrieval. By decomposing this corre-
lation matrix into many smaller, more
tractable submatrices and storing the
decomposition’s metadata, users can
load subsets of the entire matrix into
memory for individual analysis and
scanning. Finally, each process scans

the submatrix files from its portion
of the matrix for the largest values,
identifying the most correlated gene
locations.

XtremeData dbX Approach
to the Problem
Given that dbX is a database system,
we were able to convert the micro-
array gene correlation problem’s
solution to a set of SQL statements
(queries) and load the data into the
database. This approach is enabled
by dbX’s MPP infrastructure. A data
set of 19,116 × 43 of actual micro
array output had been provided. For
other input sizes, we created a simple
C program that generated three col-
umns of data consisting of two inte-
gers and a random double-precision
floating-point number. The integers
represented the gene and sample
numbers. We converted the real data
set to the same three-column format
for standardization sake. For exam-
ple, if there were 19,000 genes and
43 samples, the data file would have
19,000 × 43 records.

The basic process is to first load
the data into the dbX 1016 system—
a 16-node MPP version of the dbX
data warehouse appliance. We ac-
complished this with a simple da-
tabase COPY command. Once the
data is in the database, the system
performs three steps, all leveraging
dbX’s built-in SQL command line
interface:

1.	 Convert the three-column table
into a table with the number of
samples, plus one column.

2.	 Compute each row’s standard
deviation and mean and, in the
same step, calculate the differ-
ence from mean for each column
and store the results in a tempo-
rary table.

CISE-12-4-Novel.indd 69 03/06/10 12:25 PM

N o v e l A r c h i t ec t u r es

70� Computing in Science & Engineering

The SQL code (truncated for clarity)
for steps 1 and 2 is

select A.o_row as c_row,

 ((A.val_0 - A.avg_o) /

 (A.std_o * sqrt((43)-1)))

as nv_0,

 ...,

 ((A.val_[n] - A.avg_[n]) /

 (A.std_[n] * sqrt((43)-1)))

as nv_[n]

into adjustments

from

 (select o_row,

	 avg(o_value) as avg_o,

	 stddev(o_value) as std_o,

	 min(o_value) as min_o,

	 max(o_value) as max_o,

	 max(case when

 o_sample=0 then o_value

else null end) as val_0,

	 ...,

max(case when o_sample=[n]

then o_value else null end)

as val_[n]

from observations

	 group by o_row

) as A

;

3.	 Compute the temporary table’s
Cartesian product, with the re-
striction that the first reference’s
gene either isn’t equal to that of
the second reference or is less
than that of the second. The
truncated SQL Code for Step 3 is

select LROW as l_row,

	 RROW as r_row,

	 prod_0 + ... + prod_[n]

as cor

into correlations

from

(select A.c_row as LROW,

	 B.c_row as RROW,

A.nv_0*B.nv_0 as prod_0,

	

	 A.nv_[n]*B.nv_[n]

as prod_[n],

from adjustments A,

	 adjustments B

where A.c_row < B.c_row

) as C;

The process output is another
database table with three columns:
gene A, gene B, and the correla-
tion. The largest result set was the
1,000,000 × 43 generated with the
“not equal” approach. This created a
999,999,000,000 record table that was
18 Tbytes in size.

The final step in the testing process
was to run an “interrogation” query
against the result sets. The query we
chose returned the 200 most corre-
lated genes from the result sets.

The entire procedure occurs in
seven steps:

•	 Create a raw data table with three
columns: gene id, sample id, value.

•	 Convert data into a loadable format or
generate simulation data (ASCII text
that matches raw data table structure).

•	 Load data using dbX Copy.
•	 Create a wide table with one row per

gene and one column per sample.
•	 Create a worktable that stores the

standard deviation, mean, and vari-
ance from mean over each column,
for each row.

•	 Compute the correlation of every
row to every other row in the work-
table using a cross product: the SQL
join of the worktable with itself. The
cross product is restricted with one
of two conditions; the first ensures
that we don’t calculate the correla-
tion of X to X, and the second that
we don’t compute the correlation of
both X and Y and Y and X. The que-
ries ordered the results and stored
the top correlations within the sys-
tem for subsequent querying.

•	 Query the 200 most correlated
gene–gene sets from the result set
as an example of result interroga-
tion performance.

Two engineers from XtremeData
implemented the dbX approach in
less than a week. We could perform
any subsequent querying of the result
set on an ad hoc basis using SQL; the
longest running query tested against
the 18 Tbytes result set took 16 min-
utes and 22 seconds.

Because dbX is a share-nothing
MPP database engine, the system’s
user interface is simply SQL or
the supported Java Database API
(JDBC) and Open Database Con-
nectivity (ODBC) drivers. The dbX
system’s FPGAs were abstracted
from the user and are coprocessors
to the CPU’s execution engine run-
ning on every data node. Tradition-
ally, long FPGA development times
and a lack of high-level language
support have limited FPGA uptake
in the HPC marketplace. To address
this, we preprogrammed the FPGA
by accelerating key SQL operators,
data movement capabilities, and sta-
tistics gathering. Ultimately, this
created a high-performance FPGA-
accelerated DISC without users hav-
ing to know how to program FPGAs
or deal with data partitioning. By
removing the FPGA programming
barrier, dbX gives scientists and
statisticians the benefits of FPGA
technology without their needing
to know how to program in a hard-
ware descriptions language such as
VHDL or Verilog.

Case Study Results
We performed the following tests on
the University at Buffalo’s Center for
Computational Research U2 cluster
(www.ccr.buffalo.edu/display/WEB/U2)

CISE-12-4-Novel.indd 70 03/06/10 12:25 PM

July/August 2010� 71

and on a dbX 1016 appliance. For
each data set, we computed the cor-
relation matrix and then performed
a query to return the 200 most cor-
related results. In addition to the
real-world data set of 19,116 × 43, we
synthetically produced data sets of
various sizes for both the cluster and
dbX (see Table 1). We chose these
sizes partially to provide scalability
estimates, but also to approximate the
data set sizes that actual microarray
experiments might produce.

In addition to the above experi-
ments, we attempted to run further
tests using larger data set sizes on the
Hadoop cluster and dbX. Neverthe-
less (and without loss of generality),
we can’t present those results here as
we couldn’t execute the experiments
on the cluster due to limited shared
resources.

Although the cluster performance
scaled adequately for the applica-
tion’s compute-bound generation
portion, the I/O portions performed
poorly, being restricted to single-digit
speedups on any sizeable data set. In
contrast, the dbX machine achieved
large speedups over the 128 node
cluster—up to 65 times for the gen-
eration step (see Figure 2) and up to
165 times (with the use of a C-code
user defined function, UDF, to aug-
ment the SQL) for the query step (see
Figure 3). The speedup that occurs
with the dbX with increasing data set
sizes is particularly noteworthy.

We’ve explored two implementa-
tions of an application intended to
enable correlation analysis of micro-
array data, the volume of which is
rendering it intractable on all but high-
performance clusters and specialized
hardware. Although the cluster ver-
sion demonstrates that this application
can be implemented on more conven-
tional hardware, the performance is

lacking precisely because a cluster is de-
signed for general-purpose computing.
Not only is a specialized machine such
as the XtremeData dbX able to tackle
these problems and scale them up be-
yond a cluster’s capabilities, the per-
formance is significantly better, even
for smaller problems.

Finally, dbX has distinct power
advantages. The ISA that houses the
SQL In Silicon technology is based
largely on FPGA. XtremeData’s
measurements on the ISA’s peak
power consumption have shown it

to be less than 40 watts during real
query operation. Given that the ISA
replaces a quad-CPU with a peak
power consumption of 120 watts, a
node of dbX has an 80-watt advan-
tage against its Hadoop 2-socket-
per-node CPU-only counterpart.
Thus, the DISC technology is not
only faster and denser for such com-
putational problems, but also has
distinct performance-per-watt and
power-per-square-foot advantages.
Table 2 compares a U2 cluster rack
and dbX appliance.

Table 1. Data sets used for performance evaluation.

Data set name Number of genes Number of samples

19K 19,116 43, 80, 120

40K 40,000 43, 80, 120

80K 80,000 43, 80, 120

120K 120,000 43, 80, 120

Figure 2. The generation step speedup over a storage area network for 128 cluster
nodes and 16-node-64-core dbX. The sample size was 43. As the chart shows,
dbX achieved a speedup of up to 65 times.

70

60

50

40

30

20

10

0
19,000 40,000 80,000

Data set

Sp
ee

du
p

 fa
ct

or

120,000

IBRIX
Hadoop
dbX

Figure 3. The query step speedup over a storage area network for 128 cluster
nodes and 16-node-64-core dbX. The sample size was 43. As the chart shows,
dbX achieved a speedup of up to 165 times.

180

160

140

120

100

80

60

40

20

0

Sp
ee

du
p

 fa
ct

or

19,000 40,000 80,000

Data set

120,000

IBRIX
Hadoop
dbX

CISE-12-4-Novel.indd 71 03/06/10 12:25 PM

N o v e l A r c h i t ec t u r es

72� Computing in Science & Engineering

D ata-centric applications such as
this can potentially drive devel-

opment of this new computing para-
digm forward, as well as benefit from
improved performance and extended
capabilities. The major challenges
analysts face today are large and
growing data sets and legacy systems
that work well for predictable queries
(operational reporting), but poorly
for ad hoc querying. This isn’t sur-
prising given that historic spending
has been directed toward optimizing
traditional business intelligence. As a
consequence, an entire industry now
exists to provide workarounds, such
as implementing query-aware data
models; carefully constraining query
workloads, complexity, and schedules;
colocating data partitions sympatheti-
cally with the “most important” joins;
and segregating ad-hoc querying into
a separate environment. Ultimately,
these are still patches or workarounds
rather than real solutions, which
should address the spectrum of re-
quirements for ad hoc exploration,
including

•	 unpredictable data access patterns;
•	 data sets that can be very large due

to long time series, archived data,
and subtransactional data;

•	 large data sets that have low infor-
mation density, and therefore can’t
justify the ROI of a major system
implementation; and

•	 large data sets that must be quickly
loaded and unloaded from the ana-
lytics system.

The ideal solution for data explora-
tion must satisfy these requirements,
as well as

•	 provide access via industry standard
SQL,

•	 execute queries extremely fast,
•	 be scalable to petabytes,
•	 provide predictable performance,

and
•	 have a low total cost of ownership

(TCO).

A solution that satisfies these re-
quirements will naturally tend toward
a fully integrated “appliance” that
incorporates all the components of
analytics systems: storage, comput-
ing, interconnect network, and data-
base engine. An integrated appliance
from a single vendor obviates the need
for system configuration, integration,
performance tuning, and the numer-
ous workarounds mentioned earlier.
This eliminates a significant labor
cost component from the system and
results in two immediately realizable
benefits: fast deployment and a low
operational TCO.

As enterprise customers and re-
search organizations continue grow-
ing their data requirements, these
requirements will demand four es-
sential benefits: usability, scalability,
cost-efficiency, and eco-friendliness.
Obviously, a system that can store
all data, perform all queries in sec-
onds, cost no money, and take up no
power or space would be ideal, but
isn’t possible. Still, the desire is there.

The sweet spot in the ad hoc analytic
market is for systems that allow cost-
effective ways to scale beyond a peta
byte, are simple and fast to use, allow
unrestricted ad hoc access, and are
green. No small feat, but by correctly
applying the proper mix of commod-
ity, open-source, and acceleration
technology, XtremeData’s novel ar-
chitecture has created a data-intensive
supercomputer that has achieved a
previously unattainable level of per-
formance.�

Acknowledgments
We thank Andrew E. Bruno, Matthew
D. Jones, and Steven M. Gallo of the
Center for Computational Research,
University at Buffalo, and Ali Sajanlal,
director of analytic applications at
XtremeData, for contributing to the
benchmarking effort.

References
1.	 J. Makino, “Specialized Hardware for

Supercomputing,” SciDAC Rev., no. 12,

Spring 2009; www.scidacreview.org/

0902/html/hardware.html.

2.	 J. Williams et al., “Computational

Density of Fixed and Reconfigurable

Multi-Core Devices for Application

Acceleration,” Proc. 4th Reconfigurable

Systems Summer Inst., Nat’l Center for

Supercomputing Applications, 2008;

www.rssi2008.org/proceedings/papers/

presentations/10_Williams.pdf.

3.	 K.D. Underwood, K.S. Hemmert, and

C.D. Ulmer, “From Silicon to Science:

The Long Road to Production Recon-

figurable Supercomputing,” Reconfigu-

rable Computing: Architectures, Tools

and Applications Technology, LNCS

4943, Springer Verlag, 2008, p. 2,

doi:10.1007/978-3-540-78610-8.

4.	 D. Donofrio et al, “Energy-Efficient

Computing for Extreme Scale Science,”

Computer, vol. 42, no. 11, 2009,

pp. 62–71.

Table 2: Rack-by-rack comparison of U2 Hadoop cluster and the XtremeData
dbX appliance.

U2 cluster dbX 1016**

Size 1 rack (42U 19") 1 rack (42U 19")

Number of nodes/rack 32* 16

Node type Dell SC1425
Dual socket—2 core

Data node
4 core + ISA-FPGA

Number of CPU cores/rack 64 64

Number of FPGAs/rack 0 16

Power/rack 14.4 kilowatt (est. peak) 8.6 kWatt (est. peak)

*128 nodes or 4 × U2 racks were used in the actual test results in Figures 2 and 3

**A single-rack dbX 1016 was used in the actual test results in Figures 2 and 3

CISE-12-4-Novel.indd 72 03/06/10 12:25 PM

July/August 2010� 73

5.	 M. Bredel et al., “High-Resolution

Genome-Wide Mapping of Genetic

Alterations in Human Glial Brain

Tumors,” Cancer Research, vol. 65,

no. 10, 2005, pp. 4088–4096.

6.	 H. Lee, S.W. Kong, and P.J. Park,

“Integrative Analysis Reveals the

Direct and Indirect Interactions

between DNA Copy Number Aberra-

tions and Gene Expression Changes,”

Bioinformatics, vol. 24, no. 7, 2008,

pp. 889–896.

Todd C. Scofield is managing director of Big

Data Fast and founder and codirector of the

University at Buffalo, SUNY, Data Intensive

Discovery Initiative, an academic, govern-

ment, and industry consortium focused on

data-intensive science and engineering. His

research interests include the application of

novel technologies and methods to solving

complex problems, and the psychology and

dynamics of successful project, virtual, and

interorganization team building. Scofield has

a BS in marketing from the University of

Connecticut. Contact him at todd.scofield@

bigdatafast.com.

Jeffrey A. Delmerico is a PhD student in the

Department of Computer Science and Engi-

neering at the University at Buffalo, SUNY.

His research interests include computational

science, data-intensive computing, and

computer vision. Delmerico has an MS in

mathematics from the University at Buffalo,

SUNY. Contact him at jad12@buffalo.edu.

Vipin Chaudhary is the CEO of Computa-

tional Research Laboratories Ltd., a wholly

owned subsidiary of Tata Sons, Ltd. He

also directs the Data Intensive Discovery

Initiative and is an associate professor of

computer science and engineering at the Uni-

versity at Buffalo, SUNY. His research inter-

ests are in cloud, grid, and high-performance

computing and their applications to sci-

ence, engineering, and medicine, as well as

in data-intensive computing and computer-

assisted diagnosis and interventions. Chaud-

hary has a PhD in electrical and computer

engineering from the University of Texas at

Austin. Contact him at vipin@buffalo.edu.

Geno Valente is vice president of worldwide

sales and marketing at XtremeData. His re-

search interests include field-programmable

gate array acceleration, high-performance

computing, business intelligence/data ware-

housing, and low-latency algorithmic trading.

Valente has a BS in electrical and computer

engineering from the University of Illinois

at Urban Champaign. Contact him at geno.

valente@xtremedata.com.

Selected articles and columns from
IEEE Computer Society publica-

tions are also available for free at http://
ComputingNow.computer.org.

CISE-12-4-Novel.indd 73 03/06/10 12:25 PM

