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G reen computing— low power, 
“eco-friendly”—is a hot topic 
these days and will influence 

server design for the coming years. 
Green computing’s importance was 
firmly recognized by the research 
community with the first semiannual 
publication of the Green500 List 
(www.green500.org) in November 
2007. The Green500 identifies the 
most energy-efficient supercomput-
ers in the world by measuring the 
performance per watt of the TOP500  
Supercomputers list (www.top500.org). 
The current top 10 in the November 
2009 Green500 list all use low-power 
accelerators or processors—such as a 
Cell Processor, a graphical process-
ing unit (GPU), a greatly reduced ar-
ray of processor elements (GRAPE)1 
or a PowerPC—to achieve their high 
performance-per-watt results.

Traditional Linux clusters are 
great for scaling problems and  
leveraging commodity components 
to solve large computing problems. 
Nevertheless, they’re not power ef-
ficient. Linux clusters are built from 
general-purpose CPUs that typically 
contain more features and hardware 
than developers need to solve certain 
problems. This underutilization re-
sults in unnecessary power consump-
tion. In addition, clusters are usually 
configured with large memory and 
mechanical storage, thus wastefully 
burning even more power. Finally, the 

software leveraged on these platforms 
typically can’t take full advantage of 
multicore CPUs (let alone tomorrow’s 
many-core versions). Overall, the sys-
tem’s general-purpose nature results 
in large inefficiency in terms of power 
consumption. A power-efficient solu-
tion is to design systems that are more 
specialized to the applications they’re 
running.

As with embedded computing, for 
high-performance computing (HPC), 
we should be looking at architectures 
that are built for a specific purpose as 
opposed to generic architectures—
such as Linux clusters—that can 
handle different applications. If the 
cost, power, and size of these specific 
machines are substantially less than 
the generic solution, then it’s likely 
that the market will shift back to such  
application-specific architectures.

Rather than design a new system 
for each application, however, it’s 
possible to customize a system with 
dedicated accelerators to better match 
the application’s requirements, thus 
resulting in better efficiency. Ac-
celerators, if abstracted from the IT 
user, can be successfully used in data-
intensive supercomputers (DISC). IT 
users can benefit tremendously from 
an appliance that transparently pro-
vides performance, lower power, and 
ease of scalability along with a proper 
mix of storage, CPU, software, and 
acceleration.

Products based on field-programma-
ble gate arrays have focused on solving 
some of the industry’s toughest digital 
problems. Over the past decade, very 
large FPGAs have been implemented 
in applications such as radar, cryptog-
raphy, WiMax/Long Term Evolution 
(LTE), and software-defined radio 
(SDR). Factors including cost pressure 
and stringent size, weight, and power 
(SWaP) requirements have created 
constrained environments that require 
high-performance and high-efficiency 
architectures. FPGA-based systems 
can satisfy these requirements. We 
believe that the best computing con-
figuration currently available consists 
of x86 CPUs coupled to FPGA-based 
accelerators. 

FPGAs have several attractive key 
features:

•	 They’re highly power efficient, outper-
forming CPUs on the performance/
watt metric by two to three orders 
of magnitude.2

•	 They closely follow the CPU’s 
semiconductor process technology, 
typically lagging by no more than 
six to 12 months (and thus FPGAs  
accrue all of the Moore’s law 
benefits).

•	 They’re in-system reconfigurable. 
Unlike fixed architecture accel-
erators, FPGAs can be instantly 
reloaded to optimally match appli-
cation requirements.

FPGA-based architectures are known for their applicability to embedded systems. Nevertheless, recent 
developments make it possible to exploit this technology’s benefits for large-scale systems targeting compute- 
and data-intensive applications.
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Today, it’s generally accepted that 
developers can achieve scale-up on a 
large scale only through the loosely 
coupled massively parallel processing 
(MPP) approach. We believe that this 
scale-up philosophy, complemented 
with accelerators (such as FPGAs), 
will be leveraged in next-generation 
data warehouse architectures. Us-
ing FPGAs as HPC accelerators has 
been widely explored in the literature. 
Keith D. Underwood and his col-
leagues cover the current state well3 
and forward a case for the simplicity 
of a computing appliance model. An im-
portant element of this model is plac-
ing a known and simplified software 
development environment (C, C++, 
SQL) between the user/developer and 
the complexities of traditional FPGA 
development environments.

The research accelerator for mul-
tiple processors (RAMP) project de-
veloped an FPGA-based hardware 
and software environment that sim-
plifies the design and development of 
next-generation supercomputers (see 
http://ramp.eecs.berkeley.edu). The 
developers are effectively applying the 
RAMP system to the design of next-
generation petascale supercomputers.4 
The benefits of performance/price, 
performance/power, “under the hood” 
acceleration, and ease of use are the 
key factors that will drive the design 
of future database and data appliance 
systems.

FPGA-based Data Intensive 
Supercomputer Architecture
We based the XtremeData DISC 
system architecture on a commod-
ity Linux cluster augmented with 
direct-attached distributed storage, 
high-speed interconnect network  
(InfiniBand), and a re-engineered open-
source database engine (PostgreSQL). 
The latter supports a shared-nothing, 

parallel query execution model and 
uses FPGA hardware to accelerate 
common database operations (“SQL 
in Silicon”). 

Our system has the following 
characteristics:

•	 scalable, shared-nothing MPP 
architecture;

•	 hardware-accelerated parallel SQL 
processing;

•	 efficient, zero-copy, data exchange 
on high-bandwidth network; and

•	 dynamic load balancing at runtime.

At XtremeData, we implemented  
FPGA-based accelerators in the in-
socket accelerator (ISA) module (www.
xtremedata.com/products/accelerators/ 
in-socket-accelerator), which is pin 
compatible with the CPU socket. 
The ISA lets developers easily inte-
grate FPGAs with servers from many 
vendors and can generate an order of 
magnitude performance improvement 
over the replaced CPU at a fraction of 
its power consumption. FPGAs are 
reprogrammable in-system and offer 
a versatile platform for implementing 
processing engines. Key SQL opera-
tions are accelerated under the hood 
inside the FPGA. These operations 
include large data movement and 
time-consuming functions such as 
Joins, Sorts, GroupBy, OrderBy, 
and Aggregations.

The XtremeData database analysis 
appliance (dbX) that realizes the DISC 
system architecture consists of a Head 
Node coupled to N Data Nodes. Each 
Data Node is a self-contained slice of 
the database appliance encapsulating 
local storage, local computing (CPU + 
FPGA), and the database query execu-
tion engine. The appliance is easily 
scalable by adding Data Nodes (up to 
a maximum of 1,024 nodes) within a 
single tower or across multiple towers. 

An appliance that spans multiple tow-
ers will have the Head Node on the 
first tower and a Coordinator Node 
on each of the remaining towers. Each 
Coordinator Node will offload some 
Head Node functions, such as stag-
ing during data load/unload and the 
computation of interim aggregates up 
to the tower level. As a true appliance, 
its deployment is simple: the user sim-
ply powers up the system, connects to 
the network, loads data, and begins to 
explore the data using SQL.

Figure 1 shows a block diagram of 
the dbX system. Each system node 
(Head and N Data) runs a standard 
distribution of the Linux OS, clustered 
via an InfiniBand network. The Head 
Node performs traditional database 
engine front-end functions, including 
management of external connections, 
user sessions, metadata, query pars-
ing, and query execution-plan genera-
tion. Each Data Node performs the 
database’s back-end functions, includ-
ing table storage and access manage-
ment, indexes, query execution, and 
data exchange among nodes. The dbX 
system is largely data-model agnostic, 
and users aren’t burdened with us-
ing data partitioning and colocation 
schemes to address load-balancing 
considerations. We designed the dbX 
engine to automatically analyze data 
streams at query runtime and dy-
namically guarantee load balancing. 
Multiple parallel high-bandwidth 
pathways facilitate high-speed loading 
and unloading of data into and out of 
the database. The dbX environment 
also efficiently accomplishes data pro-
filing for quality or audit purposes, 
eliminating the need for external sys-
tems and third-party tools.

Case Study
Our investigation was motivated 
by biostatisticians’ need to perform  
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correlation analysis on data produced 
from array comparative genomic 
hybridization (aCGH, also known 
as chromosomal microarray analy-
sis). In this technique, DNA genes 
from a cancer cell and a healthy cell 
are tagged with different fluorescent 
markers, and the ratio of their fluores-
cent intensities is calculated for each 
gene. The data produced represents 
the ratio of the gene copy number 
of the cancer cell to the control cell, 
a good indicator of the level of that 
gene’s expression in the individual.

Newer microarray machines can 
measure 244,000 or even 1,000,000 
different locations within the ge-
nome. The initial data set is large, but 
not unwieldy. However, an important  

analysis of that data set is to measure 
the correlation of each gene’s score 
with the scores of all the others. This 
method is applied to investigate the 
genetic causes of many types of can-
cer, for example.5,6 For a microarray 
with N probes, this requires the cal-
culation of an N entry by N entry 
correlation matrix. At double preci-
sion, such arrays can reach hundreds 
of gigabytes or more—prohibitively 
large sizes, even on some shared high-
performance computing resources.

To enable this analysis even for 
newer higher-resolution microarray 
hardware, we developed software for 
computing the row-wise correlation 
and for performing queries against 
the correlation data for the retrieval 

of significant values. This applica-
tion has been implemented on both 
a Linux cluster architecture and the 
specialized XtremeData dbX hard-
ware. Although an end user’s ability to 
perform this analysis on a traditional 
cluster is limited only by the available 
hardware resources, the performance 
comparison indicates the need for a 
paradigm shift in the implementation 
of such data-intensive applications.

We present methods and perfor-
mance analyses of several imple-
mentations of this application on 
individual clusters (of up to 128 cores/
nodes) with

•	 a storage area network (SAN), 
•	 an IBRIX parallel file system, and
•	 with Hadoop,

and using a 16-node/64 core Xtreme-
Data dbX model 1016 FPGA-enabled 
data warehouse appliance. Each dbX 
node has a dual-FPGA accelerator 
(with a total of 32 FPGAs). Our re-
sults offer benchmarks for the perfor-
mance of data-intensive applications 
within these distributed computing 
paradigms.

The Pearson product-moment cor-
relation coefficient (the correlation) for 
two random variables represents the 
degree to which they’re linearly related. 
We can express a pair of random vari-
ables (g1, g2), each with a mean μ and 
standard deviation σ, as

 ρ
σ σ

g g
g g

1 2
1 2

1 2

=
cov( )

,

where

 cov( , ) (( )( )).g g E g gg g1 2 1 21 2
= − −μ μ

We consider the copy number  
ratio for each gene location in a data 

Figure 1. XtremeData’s dbX system. Each system node (Head and N Data) runs 
a standard distribution of the Linux OS, clustered via an InfiniBand network. The 
Head Node performs database front-end functions, while each Data Node 
performs database back-end functions, including table storage and access 
management, indexes, query execution, and node-to-node data exchange.
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set as a random variable. Data con-
sist of multiple measurements for 
each location, resulting in a 2D data 
set of N rows of measurements (one 
for each gene location) of m samples 
each. For all of our implementations 
of this application, we calculated the 
correlation for every pair of gene  
locations in a data set using the fol-
lowing steps:

•	 Compute the mean (μ) and stan-
dard deviation (σ) for each row in 
the data set.

•	 For each measurement, calculate its 
deviation from its row mean.

•	 Multiply the corresponding devia-
tions for the two rows of data.

•	 Find the mean of those products 
and divide by the product of the two 
rows’ standard deviations.

Because we’re considering pair-wise 
correlation among N different genes, 
this results in an N × N correlation 
matrix if we compute all possible 
pairs. However, because

ρ ρg g g g1 2 1 2
= ,

only the matrix’s upper triangle con-
tains distinct values. For all imple-
mentations, the correlation degree 
doesn’t affect the performance of  
either generating or querying the cor-
relation matrix. We must perform 
the same number of computations to 
calculate each entry in the resulting 
correlation matrix and perform a full 
scan of that matrix, regardless of the 
values’ correlation.

To parallelize this computation 
for a cluster, we leveraged a set of 
routines developed by one of the 
authors (Delmerico) for working 
with large data sets.5 This software 
consists of several standalone appli-
cations as well as bindings for the 

R Statistical Computing Package, 
which allow for the manipulation 
and analysis of large data sets that 
exceed the user’s memory resources. 
The standalone applications accept 
a text-based data set—in this case, 
a microarray experiment’s output—
generate the correlation matrix, and 
then decompose it into smaller sub-
matrices to “stripe” the data out over 
a storage array. Finally, a query rou-
tine scans the decomposed data and 
returns the values with the largest 
correlation. 

All of these steps are performed in 
parallel, with the work being divided 
into blocks of rows for each processor. 
So, for an N × N correlation matrix, 
each of the P processes computes the 
correlation of NP gene locations with 
all of the others, producing an NP × N 
submatrix, the union of which con-
tains all of the row-wise correlation 
values. Then, each process decom-
poses its correlation submatrix into 
smaller submatrices and writes them 
out to disk.

For a 2D data array, we use a block-
cyclic decomposition. Users can 
specify the tile size to optimize per-
formance for the system on which 
it’s running. The decomposition pro-
gram’s output is a group of files—each 
storing an individual tile from the 
decomposition—that are archived on 
disk for subsequent analysis. Dur-
ing decomposition, each individual 
tile’s dimensions and coordinates are 
calculated and output to users and a 
machine-readable metadata file. This 
file is later used during stored-data  
retrieval. By decomposing this corre-
lation matrix into many smaller, more 
tractable submatrices and storing the 
decomposition’s metadata, users can 
load subsets of the entire matrix into 
memory for individual analysis and 
scanning. Finally, each process scans 

the submatrix files from its portion 
of the matrix for the largest values, 
identifying the most correlated gene 
locations.

XtremeData dbX Approach  
to the Problem
Given that dbX is a database system, 
we were able to convert the micro-
array gene correlation problem’s 
solution to a set of SQL statements 
(queries) and load the data into the 
database. This approach is enabled 
by dbX’s MPP infrastructure. A data 
set of 19,116 × 43 of actual micro
array output had been provided. For 
other input sizes, we created a simple 
C program that generated three col-
umns of data consisting of two inte-
gers and a random double-precision 
floating-point number. The integers 
represented the gene and sample 
numbers. We converted the real data 
set to the same three-column format 
for standardization sake. For exam-
ple, if there were 19,000 genes and 
43 samples, the data file would have 
19,000 × 43 records.

The basic process is to first load 
the data into the dbX 1016 system—
a 16-node MPP version of the dbX 
data warehouse appliance. We ac-
complished this with a simple da-
tabase COPY command. Once the 
data is in the database, the system 
performs three steps, all leveraging 
dbX’s built-in SQL command line 
interface:

1.	 Convert the three-column table 
into a table with the number of 
samples, plus one column.

2.	 Compute each row’s standard 
deviation and mean and, in the 
same step, calculate the differ-
ence from mean for each column 
and store the results in a tempo-
rary table.
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The SQL code (truncated for clarity) 
for steps 1 and 2 is

select A.o_row as c_row, 

 ((A.val_0 - A.avg_o) /

 (A.std_o * sqrt((43)-1))) 

as nv_0,

 ...,

 ((A.val_[n] - A.avg_[n]) /

 (A.std_[n] * sqrt((43)-1))) 

as nv_[n]

into adjustments

from

 (	  select o_row, 

	 avg(o_value) as avg_o,

	 stddev(o_value) as std_o,

	 min(o_value) as min_o,

	 max(o_value) as max_o,

	 max(case when 

   o_sample=0 then o_value 

else null end) as val_0,

	 ...,

max(case when o_sample=[n] 

then o_value else null end) 

as val_[n]

from observations 

	 group by o_row 

) as A

;

3.	 Compute the temporary table’s 
Cartesian product, with the re-
striction that the first reference’s 
gene either isn’t equal to that of 
the second reference or is less 
than that of the second. The 
truncated SQL Code for Step 3 is

select       LROW as l_row,

	 RROW as r_row,

	 prod_0 + ... + prod_[n] 

as cor

into  correlations

from

( select A.c_row as LROW,

	  B.c_row as RROW,

A.nv_0*B.nv_0 as prod_0,

	 ....

	 A.nv_[n]*B.nv_[n]  

as prod_[n],

from  adjustments A, 

	 adjustments B 

where A.c_row < B.c_row

) as C;

The process output is another  
database table with three columns: 
gene A, gene B, and the correla-
tion. The largest result set was the 
1,000,000 × 43 generated with the 
“not equal” approach. This created a 
999,999,000,000 record table that was 
18 Tbytes in size.

The final step in the testing process 
was to run an “interrogation” query 
against the result sets. The query we 
chose returned the 200 most corre-
lated genes from the result sets.

The entire procedure occurs in 
seven steps:

•	 Create a raw data table with three 
columns: gene id, sample id, value.

•	 Convert data into a loadable format or 
generate simulation data (ASCII text 
that matches raw data table structure). 

•	 Load data using dbX Copy.
•	 Create a wide table with one row per 

gene and one column per sample.
•	 Create a worktable that stores the 

standard deviation, mean, and vari-
ance from mean over each column, 
for each row.

•	 Compute the correlation of every 
row to every other row in the work-
table using a cross product: the SQL 
join of the worktable with itself. The 
cross product is restricted with one 
of two conditions; the first ensures 
that we don’t calculate the correla-
tion of X to X, and the second that 
we don’t compute the correlation of 
both X and Y and Y and X. The que-
ries ordered the results and stored 
the top correlations within the sys-
tem for subsequent querying.

•	 Query the 200 most correlated 
gene–gene sets from the result set 
as an example of result interroga-
tion performance. 

Two engineers from XtremeData 
implemented the dbX approach in 
less than a week. We could perform 
any subsequent querying of the result  
set on an ad hoc basis using SQL; the 
longest running query tested against 
the 18 Tbytes result set took 16 min-
utes and 22 seconds. 

Because dbX is a share-nothing 
MPP database engine, the system’s 
user interface is simply SQL or 
the supported Java Database API 
(JDBC) and Open Database Con-
nectivity (ODBC) drivers. The dbX 
system’s FPGAs were abstracted 
from the user and are coprocessors 
to the CPU’s execution engine run-
ning on every data node. Tradition-
ally, long FPGA development times 
and a lack of high-level language 
support have limited FPGA uptake 
in the HPC marketplace. To address 
this, we preprogrammed the FPGA 
by accelerating key SQL operators, 
data movement capabilities, and sta-
tistics gathering. Ultimately, this 
created a high-performance FPGA-
accelerated DISC without users hav-
ing to know how to program FPGAs 
or deal with data partitioning. By 
removing the FPGA programming 
barrier, dbX gives scientists and 
statisticians the benefits of FPGA 
technology without their needing 
to know how to program in a hard-
ware descriptions language such as 
VHDL or Verilog.

Case Study Results
We performed the following tests on 
the University at Buffalo’s Center for 
Computational Research U2 cluster 
(www.ccr.buffalo.edu/display/WEB/U2)  
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and on a dbX 1016 appliance. For  
each data set, we computed the cor-
relation matrix and then performed 
a query to return the 200 most cor-
related results. In addition to the 
real-world data set of 19,116 × 43, we 
synthetically produced data sets of 
various sizes for both the cluster and 
dbX (see Table 1). We chose these 
sizes partially to provide scalability 
estimates, but also to approximate the 
data set sizes that actual microarray 
experiments might produce.

In addition to the above experi-
ments, we attempted to run further 
tests using larger data set sizes on the 
Hadoop cluster and dbX. Neverthe-
less (and without loss of generality), 
we can’t present those results here as 
we couldn’t execute the experiments 
on the cluster due to limited shared 
resources.

Although the cluster performance 
scaled adequately for the applica-
tion’s compute-bound generation 
portion, the I/O portions performed 
poorly, being restricted to single-digit 
speedups on any sizeable data set. In 
contrast, the dbX machine achieved 
large speedups over the 128 node  
cluster—up to 65 times for the gen-
eration step (see Figure 2) and up to 
165 times (with the use of a C-code 
user defined function, UDF, to aug-
ment the SQL) for the query step (see  
Figure 3). The speedup that occurs 
with the dbX with increasing data set 
sizes is particularly noteworthy.

We’ve explored two implementa-
tions of an application intended to 
enable correlation analysis of micro-
array data, the volume of which is 
rendering it intractable on all but high- 
performance clusters and specialized 
hardware. Although the cluster ver-
sion demonstrates that this application 
can be implemented on more conven-
tional hardware, the performance is 

lacking precisely because a cluster is de-
signed for general-purpose computing. 
Not only is a specialized machine such 
as the XtremeData dbX able to tackle 
these problems and scale them up be-
yond a cluster’s capabilities, the per-
formance is significantly better, even 
for smaller problems.

Finally, dbX has distinct power 
advantages. The ISA that houses the 
SQL In Silicon technology is based 
largely on FPGA. XtremeData’s 
measurements on the ISA’s peak 
power consumption have shown it 

to be less than 40 watts during real 
query operation. Given that the ISA 
replaces a quad-CPU with a peak 
power consumption of 120 watts, a 
node of dbX has an 80-watt advan-
tage against its Hadoop 2-socket-
per-node CPU-only counterpart. 
Thus, the DISC technology is not 
only faster and denser for such com-
putational problems, but also has 
distinct performance-per-watt and 
power-per-square-foot advantages. 
Table 2 compares a U2 cluster rack 
and dbX appliance.

Table 1. Data sets used for performance evaluation.

Data set name Number of genes Number of samples

19K 19,116 43, 80, 120

40K 40,000 43, 80, 120

80K 80,000 43, 80, 120

120K 120,000 43, 80, 120

Figure 2. The generation step speedup over a storage area network for 128 cluster 
nodes and 16-node-64-core dbX. The sample size was 43. As the chart shows, 
dbX achieved a speedup of up to 65 times.
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D ata-centric applications such as 
this can potentially drive devel-

opment of this new computing para-
digm forward, as well as benefit from 
improved performance and extended 
capabilities. The major challenges 
analysts face today are large and 
growing data sets and legacy systems 
that work well for predictable queries 
(operational reporting), but poorly 
for ad hoc querying. This isn’t sur-
prising given that historic spending 
has been directed toward optimizing 
traditional business intelligence. As a 
consequence, an entire industry now 
exists to provide workarounds, such 
as implementing query-aware data 
models; carefully constraining query 
workloads, complexity, and schedules; 
colocating data partitions sympatheti-
cally with the “most important” joins; 
and segregating ad-hoc querying into 
a separate environment. Ultimately, 
these are still patches or workarounds 
rather than real solutions, which 
should address the spectrum of re-
quirements for ad hoc exploration, 
including

•	 unpredictable data access patterns;
•	 data sets that can be very large due 

to long time series, archived data, 
and subtransactional data;

•	 large data sets that have low infor-
mation density, and therefore can’t 
justify the ROI of a major system 
implementation; and

•	 large data sets that must be quickly 
loaded and unloaded from the ana-
lytics system.

The ideal solution for data explora-
tion must satisfy these requirements, 
as well as

•	 provide access via industry standard 
SQL,

•	 execute queries extremely fast,
•	 be scalable to petabytes,
•	 provide predictable performance, 

and
•	 have a low total cost of ownership 

(TCO).

A solution that satisfies these re-
quirements will naturally tend toward 
a fully integrated “appliance” that 
incorporates all the components of 
analytics systems: storage, comput-
ing, interconnect network, and data-
base engine. An integrated appliance 
from a single vendor obviates the need 
for system configuration, integration, 
performance tuning, and the numer-
ous workarounds mentioned earlier. 
This eliminates a significant labor 
cost component from the system and 
results in two immediately realizable 
benefits: fast deployment and a low 
operational TCO.

As enterprise customers and re-
search organizations continue grow-
ing their data requirements, these 
requirements will demand four es-
sential benefits: usability, scalability, 
cost-efficiency, and eco-friendliness. 
Obviously, a system that can store 
all data, perform all queries in sec-
onds, cost no money, and take up no 
power or space would be ideal, but 
isn’t possible. Still, the desire is there. 

The sweet spot in the ad hoc analytic 
market is for systems that allow cost-
effective ways to scale beyond a peta
byte, are simple and fast to use, allow 
unrestricted ad hoc access, and are 
green. No small feat, but by correctly 
applying the proper mix of commod-
ity, open-source, and acceleration 
technology, XtremeData’s novel ar-
chitecture has created a data-intensive 
supercomputer that has achieved a 
previously unattainable level of per-
formance.�
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