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Abstract— Lower back pain is widely prevalent in the world
today, and the situation is aggravated due to a shortage
of radiologists. Intervertebral disc disorders like desiccation,
degeneration and herniation are some of the major causes of
lower back pain. In this paper, we propose a robust computer-
aided herniation diagnosis system for lumbar MRI by first
extracting an approximate Region Of Interest (ROI) for each
disc and then using a combination of viable features to produce
a highly accurate classifier. We describe the extraction of
raw, LBP (Local Binary Patterns), Gabor, GLCM (Gray-Level
Co-occurrence Matrix), shape, and intensity features from
lumbar SPIR T2-weighted MRI and also present a thorough
performance comparison of individual and combined features.
We perform 5-fold cross validation experiments on35 cases and
report a very high accuracy of 98.29% using a combination of
features. Also, combining the desired features and reducing the
dimensionality using LDA, we achieve a high sensitivity (true
positive rate) of 98.11%.

I. INTRODUCTION

According to the American Academy of Orthopedic Sur-
geons (AAOS), four out of five adults experience lower back
pain at some point during their lives and many of them have
common intervertebral disc disorders.

Fig. 1. This figure shows a labeled portion of spine on the leftand a
magnified view of intervertebral disc herniation on the right.

Intervertebral discs are soft, rubbery pads found between
the vertebrae of the spinal column that provide body flexi-
bility. Discs in the lumbar spine (lower-back) are composed
of a thick outer ring of cartilage (annulus) and an inner
gel-like substance (nucleus) as shown in Fig. 1. A disc
herniates when part of the nucleus pushes through the outer
edge of the disc and back toward the spinal canal due to
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severe trauma, strain or intervertebral joint degeneration.
This puts pressure on the nerves leading to pain and change
of posture. Statistics show that one-third of adults over the
age of 20 show evidence of herniated discs [1] and90%
of herniation occurs in the lumbar and lumbosacral regions
of the spine [2]; hence we are motivated to develop a robust
and highly accurate system for automatic diagnosis of lumbar
disc herniation from lumbar MRI which can not only provide
quick screening for patients, but might also detect cases that
a radiologist missed due to lack of time [3].

II. PREVIOUS WORK

Automatic detection of abnormalities from MRI or CT
scans has been an active research area over this last decade.
The challenges are manifold - ranging from variations in
scanner specifications, parameter settings, modalities, differ-
ences in body structure and composition, and last but not
the least the task of segmentation which is a big challenge in
computer vision. Chwialkowski et al. [4] presented a method
to detect lumbar pathologies in MR images by first localizing
candidate vertebrae with an estimated vertebrae model and
then studying the change in gray level intensities in healthy
and damaged discs. Tsai et al. [5] detects herniation from
3D MRI and CT volumes of the discs by using geometric
features like shape, size and location. Michopoulou et al. [6]
achieved86-88% accuracy for normal vs. degenerated disc
classification. The used fuzzy-c means to perform semi-
automatic atlas-based disc segmentation and then used a
Bayesian clssifier. They also reported94% accuracy us-
ing texture features [7] for50 manually segmented discs.
Alomari et al. [8] presented a fully automated herniation
detection system using GVF snake for an initial disc con-
tour and then trained a Bayesian classifier on the resulting
shape features. They achieve92.5% accuracy on65 clinical
MRI cases but a low sensitivity of86.4%. In our previous
work [9], we have used heterogeneous classifiers to achieve
an accuracy of94.85% and sensitivity of92.45% on35 cases
in a fully automated scheme.

III. OUR APPROACH

A. MRI Dataset Used

T2-SPIR Sagittal images from lumbar MRI scans are used
for our experiments. They are acquired using a 3 Tesla
Philips scanner in clinical settings. Thirty-five anonymized
cases are selected such that each case has one or more
herniated lumbar disc. Otherwise, they are random with
respect to age, sex, symptoms and other lumbar disorders.
Radiologist’s reports are treated as the ground truth. We use



80% of the dataset (i.e.140 discs) for training and the rest
for testing in5-fold cross-validation experiments.

B. Automatic disc ROI extraction

We use a probabilistic model for automatic localization
and labeling of the discs [10] from each mid-sagittal slice
which results in a point inside each disc. We use the label
point inside each disc as the initial starting point for our
Active Shape Model [11] based segmentation as shown in
Fig. 2. Using the ASM boundary we construct an approx-
imate ROI for each disc by adding a few pixels in height
and width to the tight bounding box of the disc. This takes
care of the cases where ASM does not provide a satisfactory
segmentation.

Fig. 2. This figure shows the process of disc ROI extraction starting from
labeling each disc in the sagittal MRI, using the label pointas the starting
point of ASM and finally extracting a bounding box of the disc.

C. Feature extraction

Literature survey shows that there has not been compre-
hensive work done on the comparison of feature performance
for automatic herniation detection in lumbar MRI scans.
Hence we focus on the extraction of various discriminative
features like raw, LBP(Local Binary Patterns), Gabor, GLCM
(gray-level co-occurrence matrix), intensity and shape fea-
tures to study their individual and combined performances.
The first three features (Raw, LBP and Gabor) gives us values
at each pixel of the disc ROI, hence we resize the each
disc image into a 20x50 block to maintain a constant feature
vector length.

1) Raw Features:Raw features are the original pixel
intensity information in the disc ROI, vectorized to create
the raw feature vector of length1000.

2) Local Binary Patterns:LBP or Local Binary Patterns
are a type of feature commonly used for texture classifica-
tion. For an imageI the pixel-wise LBP is defined as:

LBP (x, y) =
7
∑

i=0

s (Ii(x, y) − I(x, y)) .2i (1)
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1, if x ≥ 0
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(2)

HereI(x, y) is the center pixel andIi(x, y) denotes each of
the eight neighboring pixels.

3) Gabor Features:Gabor features are extracted by con-
volving Gabor filters with the sample images. In the spatial
domain, a 2D Gabor filter is a Gaussian kernel function
modulated by a sinusoidal plane wave as:
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where
x

′

= xcosθ + ysinθ (4)

y
′

= −xsinθ + ycosθ (5)

Here,λ represents the wavelength of the sinusoidal factor,θ
represents the orientation of the normal to the parallel stripes
of a Gabor function,ψ is the phase offset,σ is the variance
of the Gaussian envelope, andγ is the spatial aspect ratio.
γ also specifies the ellipticity of the support of the Gabor
function.

Fig. 3. Gabor filter bank used for Normalized Gabor feature.

For our experiments, we create a filter bank of eight Gabor
filters with a constant scale ofλ = 3 and eight orientations
(θ = [0 : pi/8 : 7 ∗ pi/8]) as shown in Fig. 3. For each disc,
we calculate the L2-norm of the superimposed responses
which are vectorized to give the Gabor feature vector of
length1000.

4) GLCM features:We create the GLCM feature vector
exactly as discussed in our previous work [9].

5) Intensity and Shape features:We calculate the intensity
and shape features as discussed in [9] and concatenate them
to form the final feature vector.

D. Dimensionality Reduction and Classification

We use two popular dimensionality reduction techniques:
Principal Components Analysis (PCA) and Linear Discrimi-
nant Analysis (LDA) in our experiments. On one hand, PCA
preserves as much of the variance in the high dimensional
space as possible. On the other hand, LDA preserves as much
of the class discriminatory information as possible. In our
experiments, the within class scatter matrix is often singular
and not full rank, so, we first reduce the dimensionality
by PCA and then apply LDA. Also, LDA reduces the
dimensionality tok dimensions, such thatk = n− 1, where
n is the number of classes. For our problem, we deal with2
classes: herniated (positive class) and non-herniated (negative
class) disc and hencek = 1.

We use three popular classifiers for herniation detection:
k-Nearest Neighbor (kNN), linear Support Vector Machine
(SVM) [12] and Naive Bayes Classifier. For kNN we empir-
ically fix k as5.

IV. EXPERIMENTS AND RESULTS

We divide our35 cases into5 non-overlapping folds, each
consisting of5 casesi.e. 7 ∗ 5 = 35 lumbar discs to perform
5-fold cross validation experiments. Thus, we ensure that
the testing and training datasets are always distinct. Tables I
and II show the performance results of the individual features
(Section III-C). For each row entry in the tables, the classifier



TABLE I

PERFORMANCE OFRAW, LBP AND GABOR FEATURES(5-FOLD CROSS VALIDATION)

Classifier Raw Features LBP Features Gabor Features
Accuracy Specificity Sensitivity Accuracy Specificity Sensitivity Accuracy Specificity Sensitivity

PCA64+5NN 94.29 97.54 86.79 69.71 100 0 86.29 92.62 71.70
PCA64+SVM 79.43 86.07 64.15 84 86.89 77.36 90.28 90.98 88.68
PCA64+Bayes 95.43 95.90 94.34 91.43 91.80 90.57 91.43 90.98 92.45

PCA64+LDA+5NN 96.0 96.72 94.34 93.14 92.62 94.62 83.43 79.51 92.45
PCA64+LDA+SVM 88.57 85.25 96.23 85.71 80.33 98.11 92 94.26 86.79
PCA64+LDA+Bayes 97.71 99.18 94.34 94.86 95.90 92.45 91.43 93.44 86.79

TABLE II

PERFORMANCE OFGLCM AND SHAPE+INTENSITY FEATURES IN PERCENTAGE(5-FOLD CROSS VALIDATION)

GLCM Features Shape+Intensity Features
Classifier Accuracy Specificity Sensitivity Classifier Accuracy Specificity Sensitivity

PCA8+5NN 74.86 87.70 45.28 PCA32+5NN 75.43 92.62 35.85
PCA8+SVM 81.14 88.58 64.15 PCA32+SVM 90.28 92.62 84.91
PCA8+Bayes 84.0 81.15 90.57 PCA32+Bayes 94.29 95.08 92.45

PCA8+LDA+5NN 84 86.89 77.36 PCA32+LDA+5NN 93.14 94.26 90.57
PCA8+LDA+SVM 69.71 100 0 PCA32+LDA+SVM 88.0 98.36 64.15
PCA8+LDA+Bayes 85.71 85.25 86.79 PCA32+LDA+Bayes 94.86 96.72 90.57

column can be explained as the dimensionality reduction
method followed by the reduced dimension and then the type
of classifier used. For example, PCA64+Bayes means that
PCA has been used to reduce dimensionality to64, then a
Naive Bayes classifier is used.

We report results for composite features in Table III.
We combine the features in two ways: for the first set of
experiments (named Concatenated Features), we concatenate
all the features in their original form, then perform dimen-
sionality reduction and classification. In the second set of
experiments (named Concatenated PCA-reduced Features),
we concatenate all the PCA reduced features, then perform
dimensionality reduction and classification.

We use both specificity and sensitivity as performance
metrics:

Specificity=
TNs

TNs + FPs
(6)

Sensitivity=
TPs

TPs + FNs
(7)

where TNs is the Number of True Negatives, FNs is the
Number of False Negatives, TPs is the Number of True
Positives, and FPs is the Number of False Positives. The x-
and y-axis of the ROC curves in Fig. 4, are the False Positive
Rate (FPR) and the True Positive Rate (TPR), respectively,
defined as: FPR= 1 − Specificity and TPR= Sensitivity.

V. DISCUSSION

We find that raw features (Table I) perform very
well, specially for LDA+Bayes closely followed by the
shape+intensity features (Table II). The Gabor and GLCM
features do not perform poorly on their own. We also observe
that SVM shows lower accuracies than the other classifiers,
probably because we did not have a separate validation set

and used default parameters. The 5NN classifier performs
well specially when LDA is used for dimensionality re-
duction. In general, LDA+Bayes seems to show the best
performance amongst all the classifiers.

Combining the features by concatenating them boosts the
overall performance of the classifiers as shown in Table III.
Moreover, we also see that composite features substantially
boosts the sensitivity of the classifiers. A robust diagnostic
system should not only show a high accuracy, but also a high
sensitivity. This is because, while False Positive instances
can be quickly rectified by the radiologist, False Negatives
might lead to a herniated disc not being diagnosed at all,
hence posing a greater penalty. LDA+Bayes and LDA+5NN
shows the best performance, with accuracy up to98.29% and
sensitivity upto98.11%.

We perform a thorough feature comparison through ROC
curves in Fig. 4. To plot ROC for kNN, we vary the
threshhold from1 to k (instead of using the majority rule)
and obtain the curves in Fig. 4. Each curve consists of five
points in our case. We find that combined features show
better ROC compared to individual ones in all the four
curves. Comparing Fig. 4(a) with Fig. 4(b), we can clearly
see that LDA as a dimensionality reduction works better than
PCA.

VI. CONCLUSIONS AND FUTURE WORK

We proposed a fully automated robust system to detect
herniated discs from sagittal lumbar MRI by first extracting
an approximate ROI (Region Of Interest) for each disc and
then using a combination of features to produce a highly
accurate classifier. We also performed a thorough analysis
of of five kinds of featuresi.e. raw, LBP, Normalized Gabor,
GLCM, shape, and intensity features; both individually and
combined. This leads to the conclusion that concatenating



TABLE III

PERFORMANCE OF COMPOSITE FEATURES

Classifier Concatenated Features Concatenated PCA-reduced Features
Accuracy Specificity Sensitivity Accuracy Specificity Sensitivity

PCA64+5NN 92.57 99.18 77.36 93.71 99.18 81.13
PCA64+SVM 82.28 86.07 73.58 84.0 85.25 81.13
PCA64+Bayes 94.29 94.26 94.34 94.29 94.26 94.34

PCA32+LDA+5NN 96.57 95.90 98.11 96.0 95.08 98.11
PCA32+LDA+SVM 92.0 88.52 100 91.43 87.7 100
PCA32+LDA+Bayes 98.29 99.18 96.23 98.29 99.18 96.23
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(a) Using PCA for dimensionality reduction
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(b) Using LDA for dimensionality reduction

Fig. 4. ROC curves for individual and combined features using PCA and LDA for dimensionality reduction respectively and5NN as classifier.

and combining features gives a better accuracy and simul-
taneously pulls up the sensitivity. By avoiding an accurate
segmentation of the discs, we circumvent a complex problem
in computer vision and by extracting desirable and robust
features, we present an automatic diagnostic system showing
up to 98.29% accuracy and98.11% sensitivity. We are
currently working on associating information from axial MRI
slices to detect and localize disc herniation. In addition,we
propose to verify our composite features on larger datasets
of lumbar MRI to prove its utility in clinical settings.
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