
Brainprint: Assessing the uniqueness, collectability, and permanence
of a novel method for ERP biometrics

Blair C. Armstrong a,1, Maria V. Ruiz-Blondet b,n,2, Negin Khalifian b, Kenneth J. Kurtz b,
Zhanpeng Jin c,d, Sarah Laszlo b,e

a Basque Center on Brain, Cognition, and Language, Donostia, Spain
b Department of Psychology, Binghamton University Binghamton, NY, USA
c Department of Electrical and Computer Engineering, Binghamton University, Binghamton, NY, USA
d Department of Biomedical Engineering, Binghamton University, Binghamton, NY, USA
e Program in Linguistics, Binghamton University, Binghamton, NY, USA

a r t i c l e i n f o

Article history:
Received 30 October 2014
Received in revised form
6 April 2015
Accepted 11 April 2015
Communicated by: Wei Wu
Available online 6 May 2015

Keywords:
Biometrics
EEG
Event-Related Potentials (ERPs)
Pattern classification

a b s t r a c t

The human brain continually generates electrical potentials representing neural communication. These
potentials can be measured at the scalp, and constitute the electroencephalogram (EEG). When the EEG
is time-locked to stimulation – such as the presentation of a word – and averaged over many such
presentations, the Event-Related Potential (ERP) is obtained. The functional characteristics of compo-
nents of the ERP are well understood, and some components represent processing that may differ
uniquely from individual to individual—such as the N400 component, which represents access to the
semantic network. We applied several pattern classifiers to ERPs representing the response of
individuals to a stream of text designed to be idiosyncratically familiar to different individuals. Results
indicate that there are robustly identifiable features of the ERP that enable labeling of ERPs as belonging
to individuals with accuracy reliably above chance (in the range of 82–97%). Further, these features are
stable over time, as indicated by continued accurate identification of individuals from ERPs after a lag of
up to six months. Even better, the high degree of labeling accuracy achieved in all cases was achieved
with the use of only 3 electrodes on the scalp—the minimal possible number that can acquire clean data.

& 2015 Elsevier B.V. All rights reserved.

1. Introduction

The electroencephalogram (EEG) is a measure of post-synaptic
brain activity that has recently received substantial attention as a
potential biometric (e.g., [32,33]; review in [4]). Here, we will
extend this work by examining the feasibility of cognitive compo-
nents of the Event-Related Potential (ERP) as biometric measures.
Event-Related Potentials are obtained when the EEG is averaged
time-locked to some stimulation of interest (e.g., the presentation
of a word). Individual components of the ERP have well understood
functional characteristics (see [38]), that correspond to specific
cognitive events. When compared with the background EEG, this

has the advantage that it is possible to make an analysis of the
desired cognitive state of a user, and design a biometric challenge
protocol that can tap that cognitive state. Here, in particular, we
will investigate a protocol that taps access to semantic memory.

Semantic memory can be thought of as the network of concepts
and connections between them that all individuals possess. We argue
that semantic memory is a system that, although generally similar
across individuals, is likely to be highly individualized when examined
in detail, and therefore likely to be able to provide a distinctive
biometric. To see why this is the case, consider the concepts [bee] and
[anaphylaxis]. Evenwhen considering only these concepts, it is easy to
imagine a number of plausible semantic networks including them
across individuals. For example, some individuals might be allergic to
bees and therefore link these concepts strongly; some individuals
might realize that bee allergies can cause anaphylaxis and therefore
have a link between them – but aweaker link than that possessed by a
person with a bee allergy – and some individuals might not know
what anaphylaxis is and therefore not represent it in memory. Of
course, there are many more concepts represented in semantic
memory than just [bee] and [anaphylaxis], and the more concepts
that are represented, the more opportunities that arise for there to be
differences in how they are represented across people. For example, as
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the pool of concepts grows from even just [bees, anaphylaxis] to [bees,
anaphylaxis, clowns, cilantro, sharks, prawns, spiders], many more
plausible combinations of mappings between concepts become pos-
sible, and it effectively becomes impossible, from a statistical perspec-
tive, that any two individuals will have an identical network.

While there are likely many neuro-cognitive networks that might
differ between individuals besides the semantic network, semantic
memory is an especially viable target for ERP biometrics because
access to the semantic network is known to produce a robust
deflection in the ERP, known as the N400 component. The N400 is a
negative wave that peaks around 400 ms post stimulus onset and has
a centro-parietal maximum (see review in [15]). The N400 is known to
represent the language comprehension system’s automatic attempt to
access the semantic network [18-21,24]. One characteristic of the
N400 that is central here is that N400s elicited in response to items
that individuals are unfamiliar with differ from N400s elicited in
response to items that individuals are familiar with [18,21,24]. This is a
useful characteristic of a potential biometric, because it means that
when individuals are familiar with different subsets of items, those
individuals will elicit different profiles of N400s. Here, we will make
use of this feature by presenting participants with a stream of text that
includes a large number of acronyms. In previous work, we have
demonstrated that it is extremely unlikely for any two individuals to
be familiar with exactly the same subset of these items [40]. Conse-
quently, we expect the profile of N400s elicited by individuals exposed
to these items to be different.

In the preceding paragraphs, we introduced the concept of
semantic memory, described a theoretical account under which
semantic memory is likely to differ across individuals, and linked that
account with a biomarker—the N400 ERP component. This process
highlights the potential advantage of the use of ERPs as biometrics
over the background EEG. The background EEG is elicited regardless of
what a participant is doing, meaning that there is reduced (or no)
experimental control over the resultant data ERP biometrics, in
contrast, have the potential to begin with principled theories about
why a particular protocol should produce unique ERPs, and enable a
focused analysis centered only on the component or components most
likely to produce identifiable responses.

To guide the present work, we consider a theoretical framework for
biometrics that requires the demonstration of four characteristics:
universality, collectability, uniqueness, and permanence [11]. Univers-
ality refers to the necessity that, if a characteristic is to be used as a
biometric, every person must possess that characteristic. This is
already established for EEG, as the lack of EEG is a clinical indicator
of brain death [44]. As ERPs represent the averaged EEG, universality is
therefore established for ERPs as well. Collectability refers to the
requirement that a biometric measure must be possible (and, ideally,
easy and comfortable) to collect. One of the principal issues that
decreases the collectability of EEG (and, by extension ERP) biometrics
is that many studies of EEG biometrics have demonstrated a need for
data acquisition from a large array of electrodes in order to achieve
490% identification accuracy (see review in [33], see also [16]). To
address this, here wewill perform biometric identification on the basis
of only 3 electrodes: a reference, a ground for common mode
rejection, and a single active sensor. This is the minimum number of
electrodes with which clean EEG/ERP data can be required, and thus
maximizes the collectibility of this protocol on this metric.

Permanence refers to the requirement that a biometric must be
stable over time (see 3,4], for review of the issue of permanence in
EEG biometrics). Here, we will explore this issue by asking
participants to provide ERPs in three sessions with a gap of from
between one week and six months between the first and final
session (see also [37], under review).

Distinctiveness refers to the requirement that a biometric be
different in each individual, and is seemingly the most difficult of
the four requirements to assess. Distinctiveness is an unexplored

topic in terms of the ERPs associated with semantic memory
access, although it is widely accepted that there are quantifiable
individual differences in brain organization or activity in response
to tasks of this sort in general (e.g., 34,17; see also [13], in
revision). Here, we will assess distinctiveness by applying several
pattern classifiers (more details below) to individuals’ ERP data, to
determine whether ERPs are robustly identifiable via machine
learning.

1.1. Difference from past approaches

In utilizing the averaged ERP and the N400 component more
specifically as the biometric measure, our approach to electrophysio-
logical biometrics differs from prominent and successful biometric
protocols that utilize the EEG (e.g., [38,39]; [17,1,16]). As already
discussed, we have taken this approach primarily because of what is
known about the N400 component, but it is an approach that possibly
has other benefits as well. First, the ERP is less sensitive to background
noise than is the ongoing EEG, which is a critical characteristic for
applied use. This is because any applied use of EEG/ERP biometrics is
likely to occur in environments where there are many likely sources of
electrical noise, for instance, from other electronic devices or lights. In
the ERP, electrical noise that is not time-locked to the signal of interest
are likely to be at least partially reduced during averaging—a process
that does not occur for analysis of the EEG. While EEG can be digitally
filtered to remove background noise in some particular frequency
band, this is a process that uses the information of neighbor data
points instead of adding in new data. In contrast, the averaging
performed in ERP analysis removes the noise from all frequency bands
by adding new data where the meaningful information will be
enhanced while random noise will tend to zero. This means that the
ERP may be more robust to noise, relative to EEG.

Another issue with EEG is that to be stable enough for
biometric analysis, it is necessary to record it for a relatively long
duration to obtain sufficient data to first train and then test a
classifier. For example, [27] used data collected from 12:4-min
sessions, during which the task was altered every 15 s (for a
review of other related studies, see [4]). Even in the best work,
with respect to overall recording duration, La Rocca et al., [17]
report one of the shortest duration recordings for EEG data: a 10 s
recording as the critical test after 50 s of prior recording used for
training. Individual ERPs, in contrast, typically are only 1 s long,
and semantic memory effects in particular are detectable from as
early as 250 ms (e.g., [24]). Even when 50–100 trials are averaged,
this still means no more than approximately 1.5 min of data
recording. Here, for example, we will analyze averages of 50 trials
during training and testing, which corresponds to 50 s of data in
each case (i.e., the training and testing classification is based on
ERPs aggregated over several trials—we do not attempt single-trial
recognition, although future work will be needed to determine
how small a number of trials can still yield accurate recognition).
The data included for analysis, then, is therefore similar in quantity
to that collected by the field-leading work of La Rocca et al. [17]
and vastly less than that reported in Marcel and Millan [26]. This
difference in collectability and data set size is therefore a potential
advantage of ERPs over EEG for biometric use.3

3 For transparency, it should be noted that this description bears on the total
duration of the recordings only (i.e., information content as a function of recording
time). Of course, such vastly different approaches differ on other characteristics as
well, some of which may be for principled reasons and others not. For example, the
inter-trial interval in the present study, which was included for similarity to past
ERP work on ERP components related to isolated word reading—adds a small
amount of total time to the experiment itself, even if no data from this “filler”
period is included in the recording. The duration of this “filler” period in obtaining
clean classification results, however, has yet to be investigated to determine if it is
necessary or not for the present aims. Other methods, such as those employed by
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1.2. Pattern classification

As a benchmark classifier, we employed support vector
machines (SVMs; [41,29]). SVMs are known to be excellent pattern
classifiers in many respects; however, SVMs were originally
developed for the purpose of binary classification and suffer from
practical challenges when extended to multi-class problems, as in
the present case (for discussion, see [9]). Here, in order to extract
classifier performance from SVM, we transform the more difficult
biometric identification problem (of labeling a token as belonging
to one of a large number of users) to easier verification problem (of
deciding whether a token belongs to one particular user or not).

As a second benchmark, we will use a simple linear discrimi-
nant based on cross-correlation. Cross-correlation is a known
method for quantifying the similarity between pairs of electro-
physiological waveforms when classification is required (e.g., [5]).
When used as the basis function for a linear discriminant, it is also
a highly efficient algorithm when compared to either SVM or
neural network classifiers (such as those we will describe next),
because it does not require training in order to perform classifica-
tions and consequently requires little computational overhead.

Finally, we will use two neural network classifiers. The first is
the Divergent Autoencoder (DIVA; [14]). DIVA was originally
developed as a cognitive model of human category learning, but
has additional potential as a more general-purpose classifier for
machine learning. A Divergent Autoencoder is similar to a stan-
dard multi-layer autoencoder, except that there is a separate
output layer (“channel”) for each category in the classification
problem. The key design principle is training the autoencoder to
reconstruct the members of each category with the constraint that
each output channel shares a common hidden layer. Classification
outcomes are a function of reconstruction error on each output
channel: an item is a good member of a class to the extent it can be
recoded and decoded along the appropriate channel with minimal
distortion. The output channel that reconstructs an input with the
least error provides its label to that input.

The final method for classification we will implement is Naive
Discriminant Learning. NDL is also a learning neural network
approach, but for present purposes its primary advantage over
DIVA (or other neural network approaches) is that it does not use
back-propagation to learn its weights. Instead, it relies on the
Danks equilibrium equations [6] to discover optimal weights for
input classification in one step. This characteristic of NDL allows it
to retain the advantages of a learning classifier (e.g., the ability to
emphasize some portions of the data over others) without one
of the major pitfalls of large learning classifiers for applied
use—namely, lengthy training time due to iterative learning.

The prior literature would seem to favor SVM and cross-
correlation as the methods most likely to produce high accuracy
results, as these two are gold-standard methods for classification
(in the case of SVM) and comparison of electrical waveforms (in
the case of cross-correlation). However, the ability of the neural
networks to learn may provide some advantages over cross-
correlation, particularly if the relevant input–output structure is
nonlinear, and the ability of DIVA and NDL to natively handle
multi-way classification problems may provide them with an
advantage over SVM.

2. Methods

The general schematic for data collection was as follows.
Participants came to the lab and read text silently to themselves
while ERPs were collected. A subset of these returned to the lab
multiple times with intervening lags of one week to six months and
performed the same task, with the same stimuli, in order to address
permanence. After all data were collected, classifiers were applied
to quantify the distinctiveness of the resultant ERPs. For the three
non-SVM classifiers, the outputs of each classifier were transformed
to rankings where possible labels for an ERP token was ranked from
0 to N�1 (where N¼the number of participants). The label ranked
0 was each classifier’s best guess as to which participant each token
belonged to. This method was applied identically to NDL, DIVA, and
cross-correlation. For each token presented to each classifier, then,
we computed a identification accuracy, defined as (1�[rank of
correct label/number of participants]). This method of quantifying
accuracy reflects the idea that classifiers should be given more
credit for ranking the correct label highly, even if the correct label is
not given the top rank (e.g., [30]). For SVM we instead used a two-
class, verification scenario. Here, each ERP could be classified either
as authorized user or not. SVM’s output was considered “correct”
when it either (1) verified an authorized user’s token as a match or
(2) rejected an un-authorized user’s token as unauthorized.

2.1. Data acquisition (event-related potentials)

Data were acquired following the methods of past studies that
demonstrate differences on the N400 on the basis of individual
acronym knowledge [18,21,24,22]. ERPs were recorded from 45
adult participants (11 female, age range 18–25, mean age 19.12). Of
these 45, 30 participated only once, 15 (10 female, age range
18–23, mean age 20.71) returned to the lab for a second session
between 5 days and 40 days after the first session (mean 12.73
days), and 9 (5 females, age range 18–23, mean age 20.22)
returned for a third session, between 134 and 188 days after the
first session (mean 156 days). The EEG was digitized at 6 midline
electrode sites in addition to the reference, ground, and EOG
channels; these corresponded roughly to fPz, Cz, Pz, Oz, O1 and
O2 in the international 10–20 system. Only data from O2 was
analyzed, as pilot work indicated this was the most robust channel
[40]. Ag/AgCl active amplification electrodes were used; interelec-
trode impedance was maintained at o50 kohm [23]. Data were
acquired with a hardware high pass filter (.016 Hz) to reduce the
influence of DC shifts. Participants viewed 75 acronyms inter-
mixed with fillers from other lexical types. For more details about
the items and the task, see Laszlo and Federmeier [18,21,24].
Acronyms were repeated once at a lag of 0, 2 or 3 intervening
items. This repetition allows for relatively homogenous (though
not identical, due to repetition effects; [18,21,25]) but non-
overlapping segmentation of the data into train and test corpora
for machine learning: first responses to acronyms were used for
training, and second responses were used for testing. ERPs were
computed by averaging the data at each electrode, time-locked to
the onset of each acronym, on each of the two presentations. Data
were digitized at 500 Hz and contain a 100 ms pre-stimulus
baseline; thus each 1.1 s long ERP includes 550 samples. We did
not apply software filters or artifact rejection prior to pattern
classification because pilot work demonstrated that neither of
these measures positively impacted classifier accuracy and added
time to the overall procedure.

2.2. Pattern classifiers

During recording, a small number of trials were lost from some
participants (e.g., due to movement artifact), but all participants

(footnote continued)
La Rocca et al. [17] can record continuously, which offers efficiency over the present
method in that respect. However, those recordings also employed a 64 channel
montage, which, if factoring in setup time over our approach, which requires only a
single active electrode, would substantially increase the total duration of the
experiment. Additional work is clearly needed to equate “clock time” across these
and other approaches.
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retained at least 70 trials, so 70 random trials were selected from
all participants to keep the size of each participant’s data set
uniform. The neural networks require multiple examples from
each participant in order to learn input–output mappings rob-
ustly, so it was not sufficient to simply create 1 ERP from each
participant for network training. Instead, a bootstrapping proce-
dure was used, where 100 ERPs were generated for each partici-
pant with a random 50 of that participant’s 70 trials selected each
time. After bootstrapping, 100 ERPs were available from each
participant, for a total of 3000 (30 participants�100 random
averages). Bootstrapping was applied to both the train and test
data, meaning that 3000 averages were available for training, and
a completely non-overlapping 3000 averages were available for
testing.

2.2.1. Cross-correlation
To classify by cross-correlation, we first computed the max-

imum absolute value of the cross-correlation between pairs of
waveforms. Each of the 100 random averages for each participant
was cross-correlated with both (1) another average from that same
participant (a self-self pair) and a random average from every
other participant (a self-other pair), for a total of 30 pairs per
average. The cross-correlations between pairs were then normal-
ized to reduce variability caused by scalp thickness and other
cognitive-unrelated events. This operation was performed for each
of the 100 averages of each of the 30 participants (i.e. 3000 times).
Each time, the highest cross-correlation value received a rank of
zero and the lowest value received a rank of 29. Then, identifica-
tion accuracy for each of the 3000 test cases was 1�[rank of
correct pair/number of pairs (zero indexed)]. Thus, a “correct”
response on each case would be for the self-self pair to be given a
rank of 0, and all the self-other pairs be given a higher rank. The
mean identification accuracy was the mean accuracy across the
3000 trials. 95% confidence intervals on this mean were computed
on the basis of the t-distribution.

2.2.2. Divergent autoencoder (DIVA)
The DIVA network was a 550:200:550[30] feedforward auto-

encoder. The 550 input units correspond to the 550 samples in
each waveform. A 200 unit hidden layer was used based on pilot
simulations that determined that this was the smallest sized
hidden layer that enabled near perfect (99% accuracy) learning of
the training set. The [30] signifies that, instead of having only one
output layer, as in a standard autoencoder, there were 30 output
layers, one for each participant.

During learning, hidden to output weights were adjusted only
along the correct category channel as a function of the mean
squared error across that channel’s output. The network was

trained through 1000 iterations of the 3000 training examples;
this was determined to be a level that allowed excellent perfor-
mance (499% classification accuracy) on the training data with-
out overfitting. After these 1000 iterations, weights in the model
were fixed.

At test, the model was presented with each of the 3000 test
examples, and activation was allowed to propagate forward
through the network. Reconstruction error was measured on each
channel. The channels were then assigned ranks based on their
output error. Identification accuracy was computed as described
above, with the accuracy for each of the 3000 test cases being
1�[rank of correct channel]/[number of channels] (ranks and
number of channels zero indexed); mean identification accuracy
was given as the mean accuracy across the 3000 trials. 95%
confidence intervals on this mean were computed on the basis
of the t-distribution. Fig. 1 displays an example of an empirically
derived ERP along with its best and worst DIVA reconstructions.

2.2.3. Naive discriminant learning (NDL)
The NDL classifier was trained by providing the 3000 training

patterns as input across a 550 unit input layer, and requiring the
network to indicate its classification by activating one of 30 units
in an output layer. To speed classification, rather than rely on
online (trial-by-trial) or batch (groups of trials) iterative learning
methods, the Danks [6] equations were employed to estimate the
end-state of iterative learning using the classic Rescorla and
Wagner [35] discriminative learning algorithm, but in a single
iteration. Estimated weights at equilibrium were obtained using
the implementation of NDL provided by Arppe et al. [2]. After
training, NDL correctly classified all of the participants on the basis
of the input ERPs using a winner-take-all evaluation method.

To test the classification performance of NDL, the trained NDL
network's parameters were fixed and the 3000 patterns of testing
data were presented. Network output was then normalized and
transformed into a ranked classification. Identification accuracy
and confidence intervals were computed identically as for DIVA.

2.2.4. Support vector machines (SVM)
Separate training and testing data sets were specifically

designed for SVM. Here, a verification scenario was used (instead
of the identification scenario above). For this, 87 tokens were
selected from a participant (the authorized user), and compared
with 3 tokens from each of the other 29 participants (87 total, the
intruders). The SVM was implemented with an RBF kernel and
σ¼1000 as indicated by pilot work. Across the 87 tokens, the
SVM’s output was considered correct if it verified an author-
ized user as being authorized (placed it in the authorized class),
or indicated an intruder was unauthorized (placed it in the

0 1 sec.

8µV

Participant 0:  True ERP Participant 0:  DIVA 
best reconstruction 
[Rank 1]

Participant 0:  DIVA 
worst reconstruction 
[Rank 32]

Emphasized Signal

Fig. 1. Sample data and DIVA reconstructions. Left: A true ERP elicited by Participant 0. Center: The best DIVA reconstruction of that ERP. Right: The worst DIVA
reconstruction of that ERP. The best DIVA reconstruction appears as a slightly filtered version of the true ERP, with early component activity emphasized (grey box).
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unauthorized class). Mean accuracy was given as the number of
correct classifications divided by the total number of classifica-
tions. 95% confidence intervals on the meanwere computed on the
t-distribution.

3. Results

3.1. First session

Fig. 2 presents mean identification accuracies for cross-correla-
tion, DIVA, and NDL, along with verification accuracy for SVM. As
visualized in the figure, mean identification accuracy for cross-
correlation was .92 (95% confidence interval: 0.92–0.93). Mean
identification accuracy for DIVA was .89 (95% confidence interval:
0.89–0.90). Mean identification accuracy for NDL was .82 (95%
confidence interval: 0.81–0.83). Finally, SVM’s mean verification
accuracy was .83 (95% confidence interval: 0.77–0.88). The con-
fidence intervals indicate that, with 95% confidence, cross-
correlation was reliably the most accurate classifier, followed by
DIVA, followed by NDL, with SVM’s accuracy overlapping that
of NDL.

The null hypothesis for identification accuracy for the identifi-
cation scenario is that the classifiers are assigning ranks to the
correct class by chance, consequently the expected random accu-
racy is 50%. In the case of SVM, the null hypothesis for verification
accuracy is also 50%, since each trial can be randomly classified as
either authorized user or impostor. Clearly, all classifiers per-
formed substantially better than chance. To quantify this statisti-
cally in the 30 class classifiers, we computed the distribution of
accuracies across 50 000 random permutations of the ranking
matrix. We then assigned p-values to each observed accuracy by
determining the proportion of random accuracies that were higher
than the observed accuracy for each classifier (an approximate
randomization test). The null hypothesis was rejected for all
classifiers with po .0001. To quantify SVM’s verification accuracy,
we compared the observed mean accuracy (.83) against a binomial
distribution with a success probability of .5, which indicated that
the observed mean would be observed by chance with po .0001.

3.2. Improving performance with a combination of models

The separate examination of each of the models indicates that
accurate classifications can be obtained by each one. Perfect
classification is, however, the ultimate aim for applied use of an
ERP biometric. To this end, we examined whether a combination

of models could be used to improve overall classification perfor-
mance. Assuming that each model accounts for a random subset of
the total variability in the signal, and knowing that all of the
models are at approximately 90% accuracy, the likelihood of two
models failing on a given trial is only 1%. Combining three models
could further reduce the failure rate to 0.1%. However, it is also
possible that all of the models make errors on some same subset of
difficult to classify data (i.e., that errors are distributed non-
randomly). If this is the case, examination of those difficult to
classify data may reveal characteristics in the signal, and/or
common aspects of the individual models, that can guide
future work.

To gain initial insight into these issues, we examined the mean
identification accuracy for DIVA, NDL, and cross-correlation on the
testing data at the trial level (SVM was excluded for the reasons
outlined above). In the first analysis, we calculated the maximum
possible identification accuracy across all three models for each
individual trial—the accuracy that is achieved if each trial is
identified only by the model that provides the best classification
of any of the models for that trial. This establishes the upper bound
for classification accuracy that could be established, in principle, by
combining the different models (although this does not mean that a
classifier could actually learn this optimal classification, an issue we
visit next). The results showed that mean maximum accuracy
increased to 97.6%—a substantial increase over the performance of
the best single model (cross correlation, at 92%), but still below the
99.9% expected if the three models were each tapping a random
portion of the overall variability.

To provide a more realistic assessment of how the results from the
different models could be combined, we developed a simple meta-
classifier that integrated the results of the NDL, DIVA, and cross-
correlation classifiers. Given that cross-correlation performed the best
of the three overall during testing, the meta-classifier’s default
response when the first-ranked classification was not the same across
the three algorithms was that of the cross-correlation classifier.
However, the cross-correlation classifier could be overridden if the
two other classifiers both agreed on a different response. This voting
scheme aimed to capitalize on the fact that the errors committed by
each algorithm were partially independent from one another. Per this
meta-classifier, identification accuracy increased to 93.7% (95% con-
fidence interval: 93.6–93.7).

3.3. Participant level classification—Insights for future work

One possibility as to why the meta-classifier did not perform to
the theoretical ceiling limit is that there is a subset of trials or a
subset of participants that are particularly difficult to classify,
across all models. A plot of maximum accuracy across the models
for each participant clearly shows that this is the case (Fig. 3).
Whereas for most participants, maximum accuracy was at ceiling,
for a small number of participants � and participant 21, in
particular � classification accuracy was, noticeably lower, mean-
ing that no model could correctly classify this participant with
100% accuracy. Inspection of the data for that participant indicates
a possible explanation for this failure (see Fig. 4). It appears that
participant 21 produced an ocular artifact in response to first
presentations of items that was not re-produced in response to
second presentations, which would make the second presentation
waveforms difficult to match to this participant’s first presentation
waveforms for all classifiers. Fortunately, such ocular artifacts also
have a clear neural signature that is distinct from N400 activity,
and which can be automatically detected and removed with a
variety of algorithms (e.g., [8,12]). Consequently, one avenue of
future work would be to include a provision in the classification
algorithm to attempt ocular artifact correction for individuals
classified poorly.

Fig. 2. Accuracy values for the four different classifiers, the meta-classifier and the
permanence data for 2nd and 3rd sessions. Error bars denote 95% confidence
intervals on the means.
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3.4. Initial assessment of permanence

Cross-correlation was shown to be the most accurate method
for identification in the analysis above and is the least computa-
tionally expensive of the methods. For these reasons, cross-
correlation was the only method used to provide some initial
insights into the permanence of our biometric. Note that because
of the smaller sample size of these assessments of repeatability,
these data serve primarily to provide some basic validity that
permanence may be achievable with this approach; additional
more extensive work targeting this issue is clearly needed. Never-
theless, these initial insights do provide reason to be optimistic in
this respect: The mean identification accuracy when test tokens

from a participant's second ERP session were compared to training
tokens from a participants' first ERP session was 89% (95%
confidence interval: 0.88 to 0.90). These results are better than
chance at po .0001 (the null hypothesis here being the same as for
the analogous analyses in the single-session data). The mean
identification accuracy when test tokens from a participant’s 3rd
ERP session were compared to training tokens from the first ERP
session was 93% without one outlier classified with 7% accuracy.
(95% confidence interval: 0.87 to 0.99). Again, these results are
better than chance at po .0001. Further, the mean accuracy for the
third session is within the confidence interval of accuracy for the
first session, indicating that classification accuracy did not decline
significantly over time. Fig. 5 displays cross correlation identifica-
tion accuracy over time; Fig. 2 places these results side-by-side
with the results of the single-session analysis. Inspection of the
data from the individual participants who participated in a third
session also showed that several (4 out of 9) are still being
classified with perfect accuracy after this extended period of time.

4. Discussion

We set out to address the collectibility, permanence, and
uniqueness of a novel method for biometrics that makes use of
the averaged event-related potential. We were motivated in this
exploration by an interest in making use of a vast literature from
cognitive neuroscience that provides understanding of the cogni-
tive events that elicit the ERP � in particular, access to semantic
memory � to inform biometric design. We reasoned that semantic
memory was a cognitive system likely to vary uniquely across
individuals, and that designing a challenge protocol to tap seman-
tic memory directly could result in a highly accurate biometric.

To address uniqueness, we applied several classifiers to the ERP
biometrics. All were able to classify the data with accuracy far above
chance. The cross-correlation classifier was numerically the strongest,
with an identification accuracy of 92%, and the meta-classifier was
able to reach an accuracy of 97%. Worthy of particular emphasis, this
high accuracy was achieved in a relatively collectable protocol, that is,
one where data from only 50 s of recording from only one active
sensor was used for training and testing of the classifiers. This is at
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Fig. 3. Maximum classification accuracy across classifiers, by participant. Error bars
denote the standard error of the mean. The participant with the lowest classifica-
tion accuracy is colored in black. Note that many participants are classified with
100% accuracy across models.

+15 µV

1 sec. 

Correctly Classified Participant (4)
Training Dataset

Correctly Classified Participant (4)
Test Dataset

Poorly Classified Participant (21)
Training Dataset

Poorly Classified Participant (21)
Test Dataset

Fig. 4. Sample train and test data for a well classified participant (participant 4, left) and the most poorly classified participant in the study (participant 21, right). It is clear
that Participant 21 is difficult to classify due to the presence of an ocular artifact (dashed box) present in only the train data. Participant 4 is classified with 100% accuracy
across trials.
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least comparable and in a number of cases substantially higher
accuracy than has been achieved with a single sensor in many past
EEG biometric applications. For instance, [39] report only 13% accuracy
when using only one electrode. More recently, Abdullah et al. [1]
reported classification accuracies in the 70–87% range with only one
channel and needed data from four channels to obtain comparable
accuracy to that reported here. Similarly, [36] see also [43]) achieved
comparable accuracy to ours (error rates of 3.4%) with EEG recordings
lasting 2–4min (see [4], for a review of 16 other recent articles, of
which only those with more electrodes show considerably better
performance, even ignoring the brevity of our recording time). Thus,
the ERP biometric explored here seems to be at least on par with field-
leading work in EEG biometrics in terms of both uniqueness and
collectability.

To address permanence, we asked a subset of participants to
return to the lab between a week and six months after their first
session. Fig. 5 displays classification accuracy over time; in fact,
classification accuracy for some participants remained as high as
100% even after 178 days. These results are consistent with
predictions from the semantic memory literature, which suggest
that this particular type of memory should be relatively stable over
time, not sensitive to strong interference from new knowledge on
old knowledge, and degrade gracefully when memories are lost
[28,31,39].

4.1. Future work

Of course, even the 97% accuracy attained by the meta-classifier
is below the optimally 100% accuracy that would be desirable for
applied biometric use. Additionally, the one active sensor we
analyzed data from, at O2, is located over the back of the head,
and therefore sits atop hair on most people; this requires the
application of electrolytic gel for adequate signal quality. Both the
collectability and the uniqueness of the ERP biometric could
therefore still bear improvement.

Regarding collectability, it would be beneficial to be able to
record the ERP biometric from a site that does not typically have
hair on it (e.g., above the eyes, see Riera et al. [36]; Su et al. [43]),
so that there is no need for electrolytic gel. To this end, we are
currently conducting an investigation of ERP biometrics using a
higher density electrode montage than that used here, in order to
see how ERP biometric accuracy varies across different sites on
the scalp.

Regarding uniqueness, the use of acronyms as challenge stimuli
here was largely motivated by our own prior work, and, as is

necessarily the case for a first step in any investigation, may not
constitute the optimal set of stimuli for eliciting individuating
brain responses. Consequently, our ongoing work examines
whether other categories of stimuli may be able to elicit more
unique responses than those elicited by acronyms. Relatedly: here
items were presented multiple times to each participant. This was
done partly to ensure compatibility with past work, and partly to
create similar, but non-overlapping, train and test data sets.
However, the repetition of stimuli raises two important questions
related to long-term uniqueness of challenge protocols of this
type: will participants’ neural responses be experience dependent,
and actually be changed over time by repeated exposure in this
protocol and others like it? And, how robust will the response to
any particular item be over a time frame longer than the 6 months
tested here, given that each participant’s experience outside the
lab is unpredictable?

As pertains to the first question, the neural mechanism of N400
repetition effects is well enough understood to be instantiated in
an explicit computational model [25], and seems to be the result of
short-term resource depletion, rather than substantive changes to
long term memory. This suggests that N400 responses to repeti-
tions of items over multiple sessions should not change dramati-
cally (as is also suggested by the permanence data reported here).
In agreement with this analysis, N400 repetition effects for
2 repetitions are not typically shown to be different than N400
repetition effects for 3 or more repetitions (e.g., [45]) even within
a session, let alone across recording sessions when cellular
resources are able to replenish. Thus, there are good theoretical
and some empirical reasons to believe that multiple presentations
of challenge items will not be deleterious to ERP biometric
accuracy, but this is ultimately still an empirical question which
we plan to address in future work through examination of ERP
biometric identification accuracy at even more remote time points
and with even more repetitions of items.

The question of whether an individual’s experience outside the
lab might deleteriously affect N400 biometric accuracy is also an
important one. As already discussed, numerous investigations in
the field of formal semantics suggest that the semantic network is:
relatively stable over time, not sensitive to strong interference
from new knowledge on old knowledge, and degrades gracefully
when memories are lost [28,31,39]. However, we nonetheless aim
in future work to investigate the use of ERP biometrics based on
components of the ERP that are likely to be even less sensitive to
experience, such as early visual components representing the
encoding of line segments (which are known to be very stable
over time, Hubel and Weisel [10]). These components are known
to be sourced in the early visual cortices, and it is established that
there are substantial individual differences in the cortical folding
of these areas (e.g., [7,42]). This anatomical variability should be
expected to increase the uniqueness of ERP biometrics based on
early visual components, while being entirely unrelated to experi-
ence. Once again, the process of selection of early visual compo-
nents as possible ERP biometrics highlights an advantage of ERPs
over EEG biometrics: where it was desirable to identify a measure
that would be relatively stable over time regardless of experience,
visual processing was a strong candidate and, knowing the
correlates of early visual processing in the ERP, it is possible to
select both stimuli and spatial and temporal regions of interest for
analysis in a principled manner.

5. Conclusions

Here, we investigated, for the first time in the literature, the use
of an ERP biometric based on the uniqueness of individual’s
semantic networks and resultant N400 effects. We demonstrated

Fig. 5. Cross-correlation identification accuracy over time. Each dot represents a
single participant. The majority of participants are still very accurately classified
with a delay between first and last session of as much as 178 days.
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identification accuracy that was robustly above chance even when
only 1 active sensor and 50 s of data were used for classification,
and we further demonstrated that some individuals could still be
identified with perfect accuracy even after as long as six months.
This work thus constitutes an encouraging proof-of-concept for
the use of ERP biometrics and has yielded a number of targeted
directions for further refinement.
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