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ABSTRACT

We explore how well the intersection between our own
everyday memories and those captured by our smartphones
can be wused for what we call autobiographical
authentication—a challenge-response authentication system
that queries users about day-to-day experiences. Through
three studies—two on MTurk and one field study—we
found that users are good, but make systematic errors at
answering autobiographical questions. Using Bayesian
modeling to account for these systematic response errors,
we derived a formula for computing a confidence rating
that the attempting authenticator is the user from a sequence
of question-answer responses. We tested our formula
against five simulated adversaries based on plausible real-
life counterparts. Our simulations indicate that our model of
autobiographical authentication generally performs well in
assigning high confidence estimates to the user and low
confidence estimates to impersonating adversaries.
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INTRODUCTION

In this paper, we examine a new kind of authentication
leveraging something you know: one’s own everyday
autobiographical data. It is motivated by the observation
that smartphones know a lot about their users, such as their
call logs, location traces, and browser history. In turn, users
might accurately remember only some of the details stored
in these logs. We call this intersection of what smartphones
can capture and what humans can remember capturable
everyday memory, and explored how well it can be used for
autobiographical authentication challenges.

There are several potential advantages to this approach.
Unlike most other forms of authentication, autobiographical
authentication can be scaled by context. For example, users
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might have to answer one challenge if authenticating in
their homes, but five if in a city they have never visited
before. This scaling property also allows for non-binary
authentication. Rather than pivot access to all of a
smartphone’s data and permissions through one or two
passwords, access can be granted in tiers. In other words, a
user who wants to access banking information may have to
answer several questions, while a user who wants to check
the weather may have to answer one easy question.
Furthermore, authentication challenges are automatically
adjusted as a person goes about his daily life, making many
attacks harder to successfully execute—for example,
shoulder surfing, replay attacks and phishing.

This paper makes two contributions. First, we report on
three studies—two on MTurk and one field study—to
construct an empirical model of capturable everyday
memory. In our two MTurk studies, we narrowed down the
broad search space of candidate autobiographical questions.
In our field study, we deployed an Android app that asks
users to answer questions constructed from ground-truth
data. We analyzed 2167 question-answer responses
collected from 24 users over 2 weeks, and found that users
answered approximately 64% of questions correctly,
overall. Furthermore, the type of question mattered:
questions about phone usage—about facts such as app
usage and website visits—were answered correctly less
often than questions about communications and location.
Also, performance was stable over time: users performed as
well at the end of two weeks as they did at the beginning.

Second, we offer a framework for autobiographical
authentication that accounts for users’ systematic response
error to compute a confidence estimate that an attempting
authenticator is the user. We evaluated our framework
against five simulated adversaries based on different threat
models. We found that while choice of adversary to
optimize against mattered, our framework shows promise:
generally, users obtained high confidence ratings while
impersonators obtained low confidence ratings.

RELATED WORK

Textual Passwords and Alternatives

The core strengths of textual passwords are speed,
convenience and challenge [8]. However, many studies
have documented their weaknesses, as well. For example,
Adams and Sasse [1] discuss the burdens that textual
passwords impose on users, and how people tended to
circumvent it and undermine security to get their work
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done. Allan [2] states that the increase in computational
power predicted by Moore’s law continually increases the
lower bound of acceptable password complexity. Equally,
studies of password policy (e.g. [8,12,18]) have concluded
that while users can be encouraged to select safer secrets,
new attacks such as phishing and keylogging make high
password strength a dubiously effective security measure.

Graphical passwords [19], such as Android’s 9-dot
password, is one alternative form of authentication that has
been gaining popularity. However, while generally easy and
quick to use, graphical passwords can be insecure as they
are vulnerable to shoulder-surfing attacks and have small
search spaces [19]. Challenge questions [11] are the most
related alternative authentication technique. Challenge
questions authenticate users by matching their answer to a
preset query to one previously supplied. Questions typically
focus on persistent facts relating to a user's life, such as
"what is your mother's maiden name?" or "what is your
birthday?" Studying these question systems, Rabkin [14]
identified the increasing amount of personal information
available online as a weakness: using online sources,
attackers can retrieve basic information about a user to
answer a wide range of the most commonly used questions.
Furthermore, Schechter et al. [17] pointed out that
challenge questions are easily guessed by acquaintances,
that some answers are relatively predictable, and that many
users forget their responses over time.

On the other hand, the increasing online presence of many
users is providing new approaches to question systems. For
example, in Love and Authentication [10] questions were
derived from responses to surveys on online matchmaking
and dating services. The authors found that responses to
these questions were highly memorable, stable over time,
and hard for others to guess. Similarly, Gupta et al. [6]
investigated how well users could answer patterns of
cellphone usage they style “memory fingerprints,” finding
that users can answer these questions well but not perfectly.
This approach provides advantages over traditional
challenge question systems in that it requires minimal
enrolment costs (questions are generated automatically
from data stored on Facebook) and has low challenge
reoccurrence—any photo from any friend can be used.

Autobiographical authentication can offer improvements
over traditional passwords and challenge question schemes.
By relying on automatically captured data it hopes to ensure
a high diversity of presented challenges, while limiting how
easily correct responses may be guessed. It also avoids
explicit user enrollment costs; data is generated by users
through their day-to-day activities and captured
automatically via sensor-equipped smartphones.

Autobiographical Memory

Conway & Pleydell-Pearce [3] provide an informative
perspective on autobiographical memory, suggesting that
our "self-memory system" is divided by granularity:
lifetime periods, general events, and event-specific
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knowledge. Most relevant to our cause is the latter: Event-
specific knowledge (ESK) relates to vivid memories about
specific event details, for example the act of text messaging
a friend. In that regard, Conway and Pleydell-Pearce's [3]
notion of ESK is highly salient for autobiographical
authentication, as it refers to highly specific memories of
events that have a short shelf life—they fade from memory
in a matter of days or weeks. These memories are ideal for
autobiographical authentication, as they likely correspond
to memories that users find easy to recall, but are ephemeral
and consequently relatively hard for either strangers or
friends to guess, discover or deduce.

However, encoding autobiographical memories is a
complex process. Conway and Pleydell-Pearce argue it
depends on a range of unobservable factors such as
emotion, affect and age [3]; others suggest that gender and
vocabulary also exert an effect [20]. In a recent update to
this literature, Kristo et al. [13] conducted an Internet-based
diary study. They found that different aspects of everyday
memories have different retention rates. For example, the
content and time of a memory were better remembered than
the details; less regularly occurring events were more likely
to be remembered; and, pleasant events were better
remembered than unpleasant events.

While these findings offer us guidance, there is little
presently in the literature about the intersection between
human memory and smartphone logs—capturable everyday
memory. To better conceptualize the bounds of capturable
everyday memory, we ran a series of studies: two moderate-
scale MTurk mini-studies and one two-week long field
study. From this data, we construct an empirical model of
capturable everyday memory and derive a Bayesian
framework for computing confidence estimates that an
attempting authenticator is the user.

USER STUDIES

Mechanical Turk Questionnaires

Study 1: What comprises capturable everyday memory?

We first wanted a qualitative categorization of capturable
everyday memory and to formulate candidate questions. We
constructed a questionnaire utilizing the Galton-Crovitz
cueing technique [4,5], a method frequently employed by
cognitive psychologists who study autobiographical
memories [13]. Participants were asked to recall the first
memory that comes to mind associated with a keyword.
Careful selection of keywords allowed us to nudge
participants’ memories to those capturable by smartphones.
Thus, 28 keywords were selected by considering the broad
categories of information a smartphone might know about
its users. Example keywords include “alarm clock”, “SMS”,
and “phone call.” We omit the full list for brevity.

Participants had to answer the questionnaire for five
keywords. For each keyword, participants had to describe,
in at least 100 characters, a specific, recent memory
associated with the keyword in relation to digital
technology. If they were unable to think of such a memory,
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Memory Category N Examples
Communication 53 | SMS, SNS usage, phone calls
Content Consumption 30 | Viewing photos, reading articles
Tech Failures 27 | Battery failures, connectivity failures
Scheduling / Events 22 | Scheduling & attending events
Travel / Transportation | 28 | Driving, public transit, GPS navigation
Internet Activity 24 | General internet usage (browsing)
Technology Usage 64 | Using apps / software, or hardware
Content Search 13 | Searching on the net
Weather 10 | Memories about weather

Table 1. Concept mapping response categorizations, along with
representative examples.

they could enter any other recent memory associated with

digital technology.

Results

We obtained 272 valid keyword questionnaires from 70
participants. Thirty-five of the participants were female,
and the average age was 36 years (s.d. 12.9).

We constructed a data-driven categorization of user
responses, given that the keywords we selected did not
necessarily elicit different types of memories (e.g., phone
call and SMS). We applied concept mapping [9], a mixed-
methods analysis technique, with six coders as a means of
generating our categorizations. From the responses, we
identified 9 distinct categorizations of everyday memory
that were also capturable (see Table 1). The categories are
neither mutually exclusive nor exhaustive, but they are the
more salient types of capturable everyday memories.

We also formulated a set of 50 questions distributed across
these categories based on the questionnaire responses,
which we used in our next study.

Study 2: Can people answer autobiographical questions?
Next, we wanted to gauge how well people believed they
could answer the autobiographical questions that we
formulated from the first study. We asked these questions
on MTurk before running a field study for three reasons: (1)
to ask a relatively large sample of users a large set of
questions to narrow down the list of possible questions to
ask in the final application; (2) to ask questions that are not
presently feasible to ask on smartphones, but might be
asked given more complete data stores (e.g., “what did you
eat for lunch yesterday?”); and, (3) to establish hypotheses
to guide our analysis of the field study data. Example
questions we asked include: Which wireless network did
you connect to yesterday?, Name an article you read
recently, and Who did you last SMS message? We omit the
full list of 50 questions here for brevity.

Participants had to answer five autobiographical questions.
For each question, they were also asked how strongly they
agreed with a set of prompts on a Likert-scale of 1
(Strongly Disagree) to 7 (Strongly Agree). These prompts
are listed in Table 2. The first three prompts are from
previous work [13,16]. Rubin et al. [16] found that
respondents’ answers to a set of Likert-scale questions were
indicators of the accuracy of a memory. Consequently, we
use a subset of these same questions as a rough surrogate
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Likert-scale prompts in Study 2.

I can mentally relive the event in my answer.

I actually remember the event in my answer, rather than just knowing
they happened.

I am confident in my answer.

The event in my answer is a unique event in my life.

Table 2. List of all Likert-scale prompts participants were
asked to respond to with each question answered.

for ground truth. The last prompt was of our own inclusion,

presented to control for answer uniqueness on
memorability.
Results

We gathered 632 question-answer responses from 145
participants, ranging in age from 18 to 64 (mean: 33.7, s.d.:
10.1). Eighty-three were female and 62 were male.

We modeled the memorability of responses using a
generalized linear mixed effects model [15] with the user as
a random effect because we collect multiple responses from
each user. Specifically, we utilize a random-intercepts
model to allow different users to have different base
memorability scores. The memorability score we model is
the sum of the responses to the Likert-scale questions
associated with each response that we borrowed from
[13,16]. As there were three supplementary 7-point Likert-
scale questions, the range of the response varied from 3 to
21, with a higher score indicating greater memorability.

Table 3 shows the model coefficients. For numeric
variables (i.e., age, time elapsed, uniqueness), the
coefficient is the effect on memorability from a 1-unit
increase in the variable, holding all other numeric variables
at their mean and all other categorical variables at their
baseline.

The intercept in the model was high at 15.3 out of 21,
suggesting that users generally believed they could answer
these questions confidently. Furthermore, controlling for
uniqueness, age, ethnicity, gender and time-elapsed since
the event of the answer, users report relatively high scores
for questions about the technology wusage and
scheduling/attending events memory categories, and low
scores for questions about the technology failures, weather
information, and content search categories. Note that the
significance indicator for categorical variables in Table 5 is
relative only to the baseline level. Thus, for categorical
variables with more than two levels, like the MemCat
(memory category) variable, the significance indicators in
Table 5 are not too important. Overall, different memory
categories did elicit statistically different scores, confirmed
by a repeated measures ANOVA: F(8,106)=2.5, p=0.01.
The coefficients in Table 5 estimate their relative effects.

These findings tell us that users believe they can generally
answer recent autobiographical questions confidently, but
that the type of question matters. Questions about content
search, for example, should be harder to answer. However,
it is unclear how well these perceptions reflect reality. To
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Feature Coefficient Baseline
Intercept 15.31 *
Age 0.04 *
Ethnicity: Asian 0.58 White
Ethnicity: Black 0.77 White
Ethnicity: Other -0.82 White
Ethnicity: Pacific Islander -2.55 White
Gender: Male -0.48 Female
Uniqueness 0.47 *
Time Elapsed (hours) -0.006 *
MemCat: Content Consumption 0.13 Communication
MemCat: Content Search -1.25 Communication
MemCat: Internet Activity 0.06 Communication
MemCat: Scheduling Events 0.52 Communication
MemCat: Technology Failures -1.52 * Communication
MemCat: Technology Usage 0.28 Communication
MemCat: Travel / Transportation | 0.16 Communication
MemCat: Weather -0.65 Communication

Table 3. Coefficients for the HLM for Study 2. Significance
is at p < 0.05, designated by a * next to the coefficient.

answer that question, we built an Android application to ask
users questions for which we had ground-truth data.

Field Study of Capturable Everyday Memory Questions
We built myAuth, an application that asked users questions
constructed from ground-truth data, on Android 2.3 (see
Figure 1). While we wanted to ask as many questions from
the second MTurk study as was feasible, technical barriers
limited what data we could access. For example, there was
no way to access calendar information natively on the
phone in Android 2.3. Other questions were not possible to
ask given incomplete data stores—for example, what the
user ate for lunch yesterday.

We indexed ground truth data about users’ phone usage,
communications, and location traces. Location data was
collected with every location update; communication data
was updated twice daily; and, phone usage (e.g., which
application was being used) data was collected every 30
minutes, when possible. From these data, we were able to
ask 13 questions, listed in Table 4. For quick identification,
each question was also given an abbreviated “question
type” value. The first eight questions listed were questions
with one specific answer about a particular fact—fact-based
questions. For example, “What application did you use on
Thursday, March 14™ at 2:53pm?” We also kept track of
potential “near miss” answers to these questions—for
example, if the user answered the app he or she used at
3:30pm, instead.

The last five questions—name-a questions—did not ask
about any specific fact; rather, these questions asked the
user to recall any fact in the past 24 hours of the sort
queried by the question. Thus, these questions could have
multiple correct answers. For example, for the question
“Name an applicaion you used in the past 24 hours.”, if the
user used the “Email” and “What’s App” apps in the past
24 hours, both answers should be correct.

We also varied the input method of the answer. For non-
location fact-based question, we presented the user with a
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QType Question text
FBApp ‘What application did you use on <time>?
FBLoc Where were you on <time>?
FBOCall Who did you call on <time>?
FBInCall Who called you on <time>?
FBOSMS | Who did you SMS message on <time>?
FBInSMS | Who SMS messaged you on <time>?
FBIntSrc What did you search the internet for on <time>?
FBIntVis What website did you visit on <time>?
NAOSMS | Name someone you SMS messaged in the last 24 hours.
NAInSMS | Name someone who SMS messaged you in the last 24
NAOCall | Name someone you called in the last 24 hours.
NAlInCall | Name someone who called you in the last 24 hours.
NAApp Name an application you used in the past 24 hours.

Table 4. List of all questions asked by the myAuth app
along with their corresponding question type (QType).
QTypes starting with “FB” represent fact-based questions;
those starting with “NA” represent name-a questions.

set of 10 options to choose from (recognition) or an empty
text-box (recall). We chose 10 options for the recognition
question to make it sufficiently hard to guess randomly. The
answer options comprised of the correct answer and up to
three other “near-miss” answers, depending on how many
near-miss answers were available. The remainder were
drawn randomly from a list of plausible answers, which
varied by question type. For example, for questions where
the answer was a person, other “plausible” anwers included
anyone in the user’s contact list. For recall questions, users
had to enter an answer into a textbox. However, even the
recall questions had an “auto-complete” option—included
primarily because we wanted to avoid misspellings or non-
recorded aliases. For location questions, users were
presented with a map and asked to pin their best-guess
estimate of their location.

When asking wusers questions, myAuth attempted to
maximize the entropy of the questions asked and answer
methods presented. In other words, myAuth would try and
ensure users were asked the greatest variety of questions
and answer methods in a single session, data permitting.

Users were also provided with an option to skip any
question they felt uncomfortable answering. Finally, with
every question answered, users were asked to rate their
agreement with three Likert-scale prompts on a scale from
1 (Strongly Diasgree) to 5 (Strongly Agree). The prompts
were: “I am confident in my answer.”, “It was easy for me
to remember the answer to this question.”, and “No one else
would know the answer to this question.”

Study Design

We recruited users who owned a phone running Android
2.3 or higher to participate in a two-week long field study.
Users were instructed to install myAuth and answer at least
five questions every day for 14 days. Skipped questions
were counted towards their daily totals. The app would
remind users to complete this task every day at 8pm. We
offered users a reward of $1.00 per day for every day they
answered at least five questions. We offered users an
additional $0.20 for every question answered correctly, up
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Submit Answer I

Figure 1. myAuth Android Application Screenshots showing
a recall question, recognition question and location entry
question. Screenshots are blurred to preserve anonymity.
to a total of an additional $6.00. Users were not made aware
of whether their answer was correct till the end of the study,
however. Finally, at the end of the 14 days, users were
asked to complete an exit survey for an additional $5.00.

Results

We collected 2167 valid question-answer responses from
24 users over 14 days. Users had an average age of 25 (s.d.
6.25, range 18-43). Fourteen of the 24 were male (58%).

Overall, 1381 out of the 2167 (~64%) questions were
answered correctly. An additional 168 (~8%) responses
were near misses. Users tended to be over-confident in their
performance. Both the median and mode values of the
responses to the prompts “I am confident in my answer”
and “It was easy for me to remember the answer to this
question” were the maximum agreement values of 5.

We used a mixed-effects logistic regression [15] to model
response correctness with features describing both users
and responses. Once again, our model incorporated random
intercepts: Each user had his or her own baseline likelihood
to correctly answer a question. Table 5 lists the fixed-effect
model coefficients.

. . 2 P
Coefficients represent a change in “log-odds”, or In s

where P represents the probability that a question is
answered correctly. A positive coefficient implies that the
log-odds ratio increases, or that the probability that the
answer is answered correctly, P, increases. A negative
coefficient implies the opposite, that 1 — P increases. As
with the model for Study 2, coefficients for numeric
features represent the change that would occur with a one
unit increase in the feature, holding all other features at
their mean. A categorical variable coefficient represents
change relative to the baseline level of the variable.

The Intercept suggests that, holding all numeric variables at

their mean and categorical variables at their baseline, there
60‘71

1+e071
standard deviation of the random effects intercept across all

users was also fairly high at 0.47. Thus, there was a lot of
variability between users.

is a = 67% chance that a response is correct. The
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Feature Coefficient Baseline
Intercept 0.71 *
Answer Type: Recog 0.68 * Recall
Age -0.04 *
Gender: Male 0.01 Female
Time to Answer (seconds) -0.004
Time since Correct Answer -0.007
Day of Study 0.01
Correct Answer Entropy 0.15
Answer Uniqueness -0.32 *
Confidence 0.13
Ease of Remembering Answer 031 *
Difficulty of Others Guessing -0.04
QType: FBApp -1.70 * FBOCall
QType: FBLoc 0.66 * FBOCall
QType: FBInCall 0.58 FBOCall
QType: FBOSMS 0.55 * FBOCall
QType: FBInSMS 0.52 FBOCall
QType: FBIntSrc -1.75 * FBOCall
QType: FBIntVis -1.32 % FBOCall
QType: NAOSMS 0.02 FBOCall
QType: NAInSMS 0.35 FBOCall
QType: NAOCall 0.11 FBOCall
QType: NAInCall -0.17 FBOCall
QType: NAApp -1.60 * FBOCall

Table 5. Coefficients for the mixed-effects model for the

field study. Significance is at p < 0.05, designated by a *

next to the coefficient. Features are described as they as
discussed.

Unsurprisingly, recognition questions are answered
correctly more often than recall questions. Also expectedly,
the negative coefficient for age suggests that older users
were less likely to answer questions correctly. This finding
runs counter to the model from Study 2, however,
suggesting that while older users do not perform as well,
they are more confident in their responses. Gender had no
significant effect in predicting response correctness.

Many response specific attributes had no significant effect
on the model’s outcome. Neither the amount of time a user
took to answer the question, nor the time elapsed since the
event of the correct answer appeared to affect response
correctness. Part of the reason for the latter may be because
we only asked questions of events within the past 24 hours.

Performance was stable over time. Indeed, the insignificant
“Day of Study” feature coefficient suggests that questions
answered towards the end of the study were answered
correctly at the same rate as those answered in the
beginning. This finding was confirmed by comparing the
relative rates of correctness for the first 20% and last 20%
of responses for each user (60.3% vs. 61.7%, chi. sq. =
0.13, df =1, p=0.72). In other words, users do not improve
at answering questions over time. Similarly, the effect of
response entropy—the Shannon entropy of the correct
answers for a particular question type for a user—was also
insignificant, though it was close (p=.07). The direction of
the estimated effect was surprising nonetheless: Questions
with more response entropy were answered more correctly.
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The strong, significant effect of answer uniqueness is more
puzzling. We quantified answer uniqueness as the inverse
of the ratio of times a specific question’s correct answer
was the correct answer to all questions of the same type for
the responding user, in general. For example, if a user was
asked a question 10 times and the correct answer was
“Gmail” twice, the answer uniqueness of the response
would be 1/(2/10)=10/2=5. Surprisingly, questions with
more unique answers were more likely to be answered
incorrectly. One explanation is that users did not remember
answers rather, they just knew or could guess the answer.
For example, a user may not remember text messaging a
friend at 4:53pm, but may deduce that the answer is likely
John. For more unique answers, these alternative pathways
to an answer may be unavailable or misleading.

Finally, question type does effect how likely a user is to
answer a question correctly (chi. sq. = 384.78, df = 12, p =
2.2e-16). Keep in mind that the significance values marked
in Table 5 for QType, or “question type”, are in relation to
the baseline—i.e., they denote if the coefficient for one
question type significantly differs from the baseline, not
from all other questions. The baseline was the question type
with the median rate of correctness: the fact-based question
about outgoing phonecalls. Recall that questions are listed
in Table 4.

Questions about phone usage, such as what apps a user used
or which website a user visited, were far less likely to be
answered correctly. On the other hand, questions about
communication—phonecalls and sms messages—and
location were far more likely to be answered correctly.
Surprisingly, questions with a single answer at a specific
time were answered correctly at the same rate as questions
with several answers spanning the previous 24 hours.
Indeed, there was no difference between the rates of success
for fact-based and name-a questions (59% vs. 63%, chi.
$q.=2.25, df=1, p=0.13).

In summary, users are decent at answering questions about
capturable everyday memories. They are equally good at
answering questions about specific events as they are about
questions spanning the entire past 24 hours. Questions
about social interactions and location are answered
correctly more often than questions about smartphone
usage, but questions with unique answers are more likely to
be answered incorrectly. Also, users’ performances are
stable over the short term, but older users, are less likely to
answer questions correctly.

MODELS FOR AUTOBIOGRAPHICAL AUTHENTICATION
Given that only 64% of questions were answered correctly,
it seems that the straightforward model of autobiographical
authentication—relying on users to answer all challenges
correctly—is insufficient. But there is another viable model:
One that accounts for systematic response error.

With the response error model, users need not answer all
questions correctly, but consistently. For example, a user

216

UbiComp’13, September 8-12, 2013, Zurich, Switzerland

who answered application usage questions correctly and
communication questions incorrectly in the past would be
expected to repeat this pattern in future attempts. In other
words, the intuition behind the response error model is to
allow users to answer questions naturally, while forcing
adversaries to both guess answers and replicate their
intended victim’s error patterns.

In fact, we did find evidence that users answer relatively
consistently over time. As we saw from our empirical
model, users’ overall rate of answering questions correctly
was stable. Furthermore, users’ performance over time was
roughly stable even within question types: For all users,
comparing the first half of responses to a question type to
the second half, the mean absolute change in response
correctness was only around 15%. Consequently, we
pursued the response error model for our evaluation.

Autobiographical Response Error Model

Let’s assume we have sufficient training data for a user to
construct an empirical probability distribution that the user
gets a question correct or incorrect given m response
features: P, (corr(r)|fy, ..., fim). Example response features
include the question type, the answer type (recog vs. recall)
and the amount of time it takes the user to answer the
question. Let’s also assume that we have a sequence of n
question-answer  responses from an attempted
authentication session, (71,...,r,,), where each response, r;,
can be represented by the list of response features
(fiis---ofmi) along with whether or not the question in the
response was answered correctly, corr(r;). From these data,
we are trying to compute a confidence rating that the
responses came from the user.

It is simple to calculate P(r,,...r, | u)—the probability that
we would observe this response sequence from the user. It
is the cumulative product of the empirical probabilities that
a response is correct or incorrect, given its features:

(1) PGy, rh) = | [ Buleorr@Dlfus o find)

However, we want the opposite: P(u | ry,...r,). Assuming
independence between responses, apart from their common
origin from the user, Bayes theorem tells us that:

P(ry, o, 1 [W)P(u)
P(ry, ..., 1)

In the above equation above, P(u) represents the prior
probability that the authenticator is the user. For personal
devices like smartphones, we can treat this as a high
constant—close, but not quite equal to 1. The denominator
is tricky, representing the probability that we observe a
given sequence of responses. We can break this value down
into two components:

(3) P(ry, ..

(2) P(ulry, oo, 1) =

1) = P(ry, .o, mp|u) + P(ry, ..., 1| 10)
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In other words, the probability that we observe a given
sequence of responses is the sum of the probability that we
observe the responses from the user and the probability that
we observe the responses from a non-user—our modeled
adversary. For simplicity, we consider this second term to
be a specific adversary, though it should theoretically be all
possible non-users. However, it is infeasible to enumerate
and model all possible non-users. There are many possible
adversary models we can adopt, which we will cover in the
following section. Substituting (3) into the denominator of
(2) and treating P(u) as a constant, k, we get:

kP(ry, .., 1y |u)
P(ry, .., Tpu) + P(ry, o, 1| T0)

(4) P(ulry, ., 1y, 1) =
However, we are not yet done. As the equation stands,
P(u|ry, ..., 1, 1), the probability that the authenticator is the
user given the sequence of responses and an adversary
model, is inversely proportional to P(ry,..,7,|U), the
probability that we observe this sequence of responses from
our modeled adversary. This property can be exploited by a
cunning impersonator who knows the adversary model
being used. In that case, as long as the impersonator
answers to minimize P(ry, ..., 7, |@), even if P(ry, ..., 1, |u),
the probability that we observe a sequence of responses
from the user, is low, P(u|ry, ..., 7, u) will be high. In other
words, using just equation (4) an impersonator need only
act unlike the modeled adversary to achieve a high
confidence rating, even if he acts nothing like the user.

To avoid this exploit, we add an additional term to the
model: the bit-string similarity of the actual answer
correctness vector and the expected answer correctness:

n—|E(ry, .., |u) — corr(ry, ..., 1) |

(5) S(ry, v, 1y u) =

n

The expected answer correctness vector is generated by
thresholding the empirical probability distribution for the
user for each response at 0.5. In other words, if the user is at
least 50% likely to get a response with the given features
correct, we expect the user to answer correctly. Otherwise,
we expect the user to answer incorrectly. The bit-string
similarity term, S(r,...r, | u), will equal 1 if there is no
difference between the expected correctness vector and the
actual vector, and will equal O if there is no agreement
between the two vectors (i.e., the actual response is
incorrect whenever we expect it to be correct and vice
versa). Multiplying (4) and (5), our final equation to

calculate the confidence rating of an attempted
authentication becomes:
(6) C(ulry, ..., 1y, 1) = P(ulry, ooy 1, @) * S(ry, oo, 1y | W)

In summary, equation (6) takes in a set of responses and an
adversary model as input, and yields a high confidence
rating only if the responses are unlikely to be observed
given our adversary model and likely to be observed given
our user model. The theoretical range of this rating spans 0
to 100, but in practice a “high” confidence rating should be
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much lower than 100. Indeed, a rating of 100 requires that
there should be a 0% chance that the response sequence
comes from the adversary and a 100% similarity between
the expected and actual correctness vectors—both possible,
but unlikely in practice.

Adversaries
We simulated five different adversaries, each based on
plausible real-life counterparts.

Simple Adversaries

The naive adversary guesses an answer at random from a
set of 10 answers, one of which is correct. This adversary
represents "chance" in a 10-answer recognition question.
For recall questions, this adversary is an overestimate in the
likely case where there are more than 10 possible answers.

The observing adversary guesses an answer selected
uniformly at random from all answers that were correct for
the same question type in the past. In other words, the
adversary has compiled a list of plausible answers to every
question type, based on the target user’s previous responses.
This adversary represents a close friend or family member
who might know, for example, that the user only text
messages one of a small set of people (e.g., her mother, her
brother, and the friend himself), but not the exact answer to
a specific question.

As the name implies, the always-correct adversary always
answers a challenge question correctly. This adversary
could represent malware logging software that chronicles
everything that the phone records. It could also model an
adversary who steals the phone and can retrieve the
knowledge base directly.

Empirical Adversaries

The empirical-observing adversary theorizes that user
response patterns are more alike than different. She has
collected question-answer responses for all question types
from a separate population of users, from which she
constructed an empirical probability distribution—the
population mean—that captures the likelihood that the
average user might get a response correct. Like the
observing adversary, the empirical-observing adversary also
has pre-compiled a list of plausible answers to every
question for the victim user with one additional detail: she
has the probability distributions of the answers, as well.
Thus, she knows which of the plausible answers are more
likely. To put this into context, consider the fact that a user
might text his mother, girlfriend and brother, but that the
rates at which he texts these contacts are likely different.

The empirical-observing adversary might represent a
technically proficient friend or stalker who knows the user's
habits well enough to narrow down plausible answers and
also tries to model the user's errors by generalizing from
other users. However, emulating the population mean given
a set of plausible answers can get complex: The adversary
must be careful not to get the answer correct too often as to
over-perform, and thus answers with their best guess
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selectively if their best guess might outperform the
population mean.

The empirical-knows-correct adversary is the strongest
we consider, a combination of the empirical-observing and
always-correct adversaries. The adversary has not only has
access to an population mean, but also knows the correct
answer to every question asked. The empirical-knows-
correct adversary might represent a strong cracker who not
only has malware logging software on the user’s system,
but also an empirical probability distribution modeling
response error. This adversary intentionally answers
questions correctly or incorrectly to best emulate the
population mean.

Evaluation

We ran simulations using data we collected from our field
study to observe how confidence ratings varied with the
attempting authenticator and the modeled adversary. We
simulated 6 attempting authenticators—the actual users and
each of the five adversaries trying to impersonate the users.
We calculated confidence estimates for responses within
sessions—sequences of questions answered within a few
minutes of each other. As a result of our study design, most
sessions comprised of 5 questions answered, though some
went as far as 13.

We used two features in constructing the empirical
probability that a user, Py, or a population, P, would
answer a question correctly: the question type and the
answer method. For example, the empirical probability that
a user will get a fact-based recall question about app usage
correct is the rate she got other fact-based recall questions
about app usage correct in the training data.

The training data used to construct the empirical probability
for the user, P, included all of a user’s data excluding the
data from the questions in the session being evaluated. For
example, consider a user who recorded 24 question-answer
response sessions over the course of the study. If we are
calculating the confidence rating for session 1, we construct
P, from sessions 2-24 of the user’s data. Likewise, we use
all of the user’s data but data from the present session to
construct the list of plausible answers used by the observing
and empirical-observing adversaries. The training data used
to calculate the population mean, P, that is used by the
empirical-observing and empirical-knows-correct adversary
is all of the data for every user but the victim.

In Figure 2, we show how confidence rating varies with the
number of questions answered when the attempting
authenticator is the actual user. For example, if we modeled
againt a naive adversary, Figure 2 suggests that a user
should generally obtain a confidence rating between 71 and
75 after answering 5 questions.

There are several encouraging points to glean from Figure
2. No matter the adversary, the confidence rating increases
with the number of questions answered. In other words,
when the attempting authenticator is the user, himself, our
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Actual User Confidence Across Sessions
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Figure 2. Confidence score estimates for users, aggregated
across all sessions. Each line represents an adversary
modeled against, and the translucent shades around the lines
represent the 95% confidence intervals.

framework becomes more confident that it is the user
attempting to authenticate as more questions are answered.

Expectedly, the confidence estimate varies with the
modeled adversary. Our framework estimates the highest
confidence rating for the user when modeling against a
naive, observing, or always-correct adversary, garnering
ratings just over 70 after five questions. This result is
encouraging, because these adversaries are by far the most
likely. Users must answer many more questions to achieve
a comparable confidence estimate when modeled against
the empirical-observing adversary. Assuming an empirical-
knows-correct adversary, however, our model offers a
much more conservative estimate—around 45 after 5
questions—but still increases in confidence as more
questions are answered. These results make sense: the
empirical-observing and empirical-knows-correct
adversaries have more resources than the others.

We also simulated all of the adversaries trying to
impersonate the user, plotting the results in Figure 3. For
brevity, we only show the plots for three of the five
adversaries modeled against. The results, again, are
encouraging. Relative to impersonators, the user always
obtains a comparatively high rating as the attempting
authenticator, no matter the adversary. Furthermore,
regardless of the modeled adversary, users were able to
obtain higher ratings after answering more questions.

Impersonators’ performances varied greatly depending on
the adversary being modeled against. For example, the
always-correct impersonator obtained high confidence
estimates—often higher than the user—when modeled
against any adversary except itself. When modeled against
itself, however, an impersonating always-correct adversary
obtains a confidence estimate close to 0. In fact, this pattern
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Figure 3. Each graph represents the mean confidence rating after answering 5 and 8 questions, aggregated across all users and all
sessions. Confidence ratings are plotted for all six attempting authenticators—the user and the five impersonating adversaries—
modeled against the naive, always correct and empirical-knows-correct adversaries. 95% confidence intervals are included.

is relatively constant across all impersonators: when
correctly modeled against, the impersonator obtains much
lower confidence estimates.

The most likely adversaries—naive and observing—do not
perform well no matter the modeled adversary, with mean
confidence ratings around 15 or lower after five questions.
Even the more realistic of the empirical adversaries, the
empirical-observing adversary, performs badly relative to
the actual user, generally obtaining confidence ratings
around 25-30 after five questions whereas the user obtains
ratings closer to 70. The empirical-knows-correct proves
more robust and effective, performing well no matter the
modeled adversary—at times indistinguishably from the
user. On the other hand, when modeled against itself, the
empirical-knows-correct impersonator obtains increasingly
lower confidence estimates as more questions are answered,
while the user obtains increasingly higher estimates.
Modeling against an empirical-knows-correct adversary,
however, produces much more conservative ratings overall.

These results are encouraging. Employing the correct
adversary model is key to mitigating false positives, but we
can see that no matter the modeled adversary, the actual
users obtain high confidence ratings when authenticating.
Furthermore, the most likely adversaries—the naive, the
observing and the always-correct—do not achieve very
high confidence ratings in impersonating the user, or are
easy to identify and model against.

DISCUSSION

In this paper, we explored the feasibility of a new type of
authentication that leverages the unique context-sensing and
logging affordances of smartphones [7]. We offered the
first empirical model of capturable everyday memory and
constructed a framework that estimates a continuous
confidence rating that an attempting authenticator is the
user based on his answers to a series of autobiographical
questions. Our evaluation shows that autobiographical
authentication shows promise: by accounting for systematic
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response error, our framework generally estimates high
confidence ratings for actual users and low confidence
ratings for even sophisticated impersonators.

However, there is a lot to be done before autobiographical
authentication is practical. The most glaring limitation is
that autobiographical authentication is slow. On average, it
took users 22 seconds to answer each question, even for
recognition questions. Thus, a five-question session would
take about a minute and a half—substantially more time
than simply entering a password. One reason for the delay
is the cognitive overhead involved with each question. With
a password, the challenge and the response are known
ahead of time, and procedural memory can help with its
input. With autobiographical authentication, the question
must be parsed and the answer recalled. Based on our exit
survey, users were not thrilled with the idea of answering
autobiographical questions instead of using a password.
However, their sentiment rested on the assumption that they
every question should be answered correctly.

Another limitation is that autobiographical authentication
requires constant device usage to replenish its knowledge
base. Constant usage may be a reasonable assumption for
smartphones, but not for other digital devices and services
(e.g., a social networking site). One solution is to integrate
the knowledge bases for all of a user’s devices on the cloud
so that her laptop can use information from her phone for
authentication. Future research will be needed to investigate
this and other solutions to overcome this limitation.

While perhaps not a replacement for passwords,
autobiographical authentication can shine in risky situations
or situations where safe use of passwords is unusable—for
example, in accessing sensitive information from an
unknown location. Furthermore, with the continuous
confidence estimate, authentication can be tiered instead of
binary. For example, read access to non-sensitive
information could require a low score—perhaps 40—while
write access to security settings should require a higher



Session: Authentication

score—perhaps  70. In addition, autobiographical
authentication can adopt different adversary models in
different contexts [6]. For example, when at home, the most
likely adversary is the observing adversary that represents a
family member. If the phone is at an unknown location, we
might adopt a stronger adversary model such as the
empirical-knows-correct adversary.

There remain a number of interesting, open questions. For
example, it would be pertinent to find heuristics to detect
which type of adversary we should model against. We
should also explore other questions that can be answered
correctly more often and those that one user answers
differently than the general population. These are the
questions that will stump the empirical adversaries. Finally,
we should optimize the question generation algorithm to
minimize the number of questions asked to achieve a stable
confidence estimate.

CONCLUSION

In summary, we made two contributions: (1) a model of
capturable everyday memory—ephemeral, event-specific
memories captured by smartphones and remembered by
users; and, (2) a framework for and evaluation of
autobiographical authentication—an authentication scheme
based on users answering questions about capturable
everyday memory. We found that wusers answer
autobiographical questions predictably. By accounting for
systematic response error in answering questions, we
derived a formula for computing a confidence rating that
the attempted authenticator is the user from a sequence of
question-answer responses. We tested our formula against
five simulated adversaries based on plausible real-life
counterparts. Our simulations indicate that our model of
autobiographical authentication performs well in assigning
high confidence estimates to the user and low confidence
estimates to impersonating adversaries. While at an early
stage, this work represents an important step in enhancing
traditional authentication for personal mobile devices.
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