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Abstract—The widespread creative application and smart
devices call for convenient and secure interaction with human
users. We propose, design, and implement a smartwatch-
based two-factor real-time identification and authentication
system named ThumbUp, where smartwatch users can identify
and authenticate themselves by some simple hand and finger
gestures, such as thumb-up. ThumbUp leverages the signal
collected from the Inertial Measurement Unit (IMU) in Com-
mercial Off-The-Shelf (COTS) smart devices and discovers the
unique fingerprint pattern produced by each user’s simple hand
gestures using a carefully crafted deep learning model. We
implement our system and conduct extensive experiments to
evaluate its efficacy and efficiency with 65 different users over
a period of more than 3 months. It reaches an accuracy of 97%
for identification, and EER 0.014 for authentication using only
one simple gesture. We also survey the users’ acceptance of
our system and discuss how the proficiency of gestures affects
authentication accuracy.

Index Terms—Smartwatch, Authentication, Hand Gestures

I. Introduction

The widespread smart wearable devices have provided a
fast and convenient way to interact with the physical world.
Specifically, global smartwatch shipments are forecast to
reach 113 million units by 2022. Smartwatches provide vari-
ous services such as instant messaging, online shopping and
quick mobile payment. While smartwatches provide users
convenience, they also pose a looming threat to impinge
on users security [3]. Therefore, it is crucial to implement
reliable and convenient identification and authentication
schemes for smart wearable devices.

Existing authentication methods have a different empha-
sis on security and usability. The traditional methods, for
example, PINs lack both usability (inconvenient to input
passwords on smart devices with small-sized screen) and
security (shoulder-surfing [30] attacks). Another popular
method, face recognition, may be bypassed using images
or counterfeit videos [4]. While other methods (e.g., iris and
fingerprint) are more secure but require additional special-
ized sensors. Recently, researchers also proposed many dif-
ferent authentication schemes by exploiting users’ behavior
patterns and motion habits, e.g., gait [28], head movements
[16], handwriting [1], and even tongue movement [22]. Com-
pared with other means of authentication, behavior-based
authentication methods may provide weaker security but of-
fer greater convenience. Among these behaviors, gestures as
biometric authentication have attracted considerable interest.
Much work using IMU [12], [34] so far has focused on

Fig. 1. Illustration of nine gestures studied in ThumbUp (from top, left
to right): G1(finger-snapping), G2(finger-turning in circles), G3(beckon),
G4(hand-waving), G5(fist-making), G6(victory-gesture), G7(gun-gesture),
G8(thumb-up), G9(finger-bending).

large motion patterns by arm movements for distinguishing
different users. Using large motion patterns for authenti-
cation could be inconvenient in many daily applications.
Furthermore, it could suffer the risk of being impersonated
as attackers can observe and learn these motions.

We found that current solutions cannot achieve usability,
security, and user-friendliness simultaneously. In this work,
we design schemes for convenient and reliable identification
and authentication for wearable devices by using simple
hand gestures which are mainly performed by fingers, in-
cluding turning fingers or thumbing up (as shown in Fig. 1).
Furthermore, the training phase of our model only requires
a small number of samples (e.g., 10 samples in our system)
for each user to improve usability. Specifically, we need to
address several critical technical challenges:
• Limited Training Set: The motion signals of tiny

gestures collected by IMU are significantly weaker than
that by arm movements. Also, asking a user to repeat
the gesture many times in the user-training phase is not
user-friendly. We aim to limit the number of training
samples to 10. It is extremely challenging to extract use-
ful features that can uniquely represent each user from
weak signals with the limited samples. Furthermore, the
valid features from tiny hand/finger movement could
be buried in the inherent noises produced by the IMU
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sensors.
• Reliability and Robustness: It is necessary that our

system can classify different users, authenticate legit-
imate users accurately and defend against attackers
that may attempt to impersonate the legitimate users
maliciously. Thus, the features adopted by our system
for authentication should embrace both diversity of
different users and consistency for the same user. As be-
havior biometrics, the gestures of users change slightly
after a long period inevitably. For better usability, the
system should be adaptive to slight changes in the hand
gesture by legitimate users.

• Energy-efficiency and Real-time Ability: We need to
implement a light-weight identification/authentication
scheme with the limited storage and computing power
of smartwatches, while simultaneously maintain high
stability and real-time ability that required by a conve-
nient system.

To meet these challenges, we design, implement and
evaluate ThumbUp, a two-factor identification and authen-
tication system that can authenticate users by a tiny gesture
like thumb up. We analyze the anatomy of hand movement in
human kinematics. Meanwhile, we explore the stability and
diversity of the motion sensor signals with the electromyo-
graphy (EMG) signal as auxiliary verification. After motion
signals pre-processing and detection, we design a novel
light-weight deep neural network model with multilayer
Bidirectional Long Short-Term Memory (BiLSTM) and an
attention mechanism for automatic feature extraction and
classification. Through a prototype implementation on COTS
wearable devices and evaluation on 65 participants, we
demonstrate that ThumbUp can precisely identify users with
a mean accuracy exceeding 95.7% and correctly authenticate
a legitimate user with a low mean error rate of 0.025.

To the best of our knowledge, ThumbUp is the first system
to use simple finger-movement gestures for user identifica-
tion/authentication with IMU on COTS smartwatches. We
expect that ThumbUp has potential applications in (1) giving
access to smart wearable devices, (2) quick payment through
simple interaction, (3) operating mobile devices privately
and reliably.

To summarize, our contributions are as follows:

• We design and implement a reliable authentication
scheme for wearable devices using tiny gestures. We ex-
plore the feasibility of hand-gesture-based biometrics as
certification factors and demonstrate that hand gestures
contain unique signatures of users. We design the model
which extracts features and classifies gesture patterns
of users. Moreover, we propose a self-calibration and
transfer learning method to enhance the practicability
and validity.

• We evaluate ThumbUp through comprehensive experi-
ments over different system design parameters which
last for 3 months and involve 65 participants. The
experiments show that even finger movements like
victory-gesture can generate accurate identification re-

sults. Furthermore, we test the security of our system
under imitate attacks, which shows the system can resist
such attack with a mean EER of 0.025.

• In consideration of friendliness, the gestures utilized
in our system are well designed based on the study
of biological kinematics mechanisms. We investigate
the participants about the convenience of the gestures.
Then we determine the recommended gesture choices
combining both the authentication performance and
participants’ views.

The remainder of the paper is organized as follows. We
present the basis of hand movement and feasibility study in
Sec. II. In Sec. III, we give a brief overview of the main
design of ThumbUp. The details of data pre-processing are
illustrated in Sec. IV, followed by the model description in
Sec. V and calibration mechanism of the system in Sec. VI.
We present experimental evaluation results and user study in
Sec. VII. We review the related work in Sec. VIII and end
up with the conclusion in Sec. IX.

II. Basis of HandMovement & Feasibility Study

In this section, we discuss the basic biological kinematics
to demonstrate the feasibility of hand movements as unique
features theoretically, explore the stability and diversity of
the motion sensor signal, and further utilize the EMG for
auxiliary verification.

A. Hand Movement’s Anatomy

Subtle movements are intuitively easier to be imitated.
Nevertheless, the muscle movements are controlled by the
subconscious, and it is hard to be consciously modified. Even
if two users complete very similar movements, the biological
kinematics mechanisms of muscles are fairly distinguishable,
which allows identification based on small gestures. Besides,
being an internal part of the hand surface, muscles are quite
stable concerning changes in humidity and temperature [13].

The forearm muscles inside the position where we wear
the smartwatches, act upon hands. The bulk of these muscles
form the fleshy roundness of the forearm, with tendons
extending into the wrist and hand. Movements of the hand
are controlled by the hand itself (intrinsic muscles) as
well as muscles within muscles in the forearm (extrinsic
muscles) allowing excellent control of precise movements
and powerful movements [19]. The motion signals would be
perceived by a motion sensor on the forearm. It was shown
in [32] that the forearm muscles are good representations of
the hand movements and finger gestures.

Moreover, the small gesture without arm movements
involves tiny jitters of people’s peculiar habits. Thus, both
the biological and behavior patterns of muscles would be
captured in motion signals as a kind of authentication
information.

B. Feasibility Study

To gain a better understanding of the feasibility of Thum-
bUp, we explore the diversity, consistency, and uniqueness
of gesture motion signals.
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Fig. 2. The motion signals of (a)different gestures and (c)different users in the time and frequency domains, the DTW distance among (b)gestures and
(d)users.
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Fig. 3. (a) placement of EMG measuring devices, (b) EMG signals of Hand-stretching and Fist-masking for same user, (c) EMG signals of 4 people (3
female, 1 male) over 5s, (d) CDF diagram of Euclidean distance between EMG and motion signals.

Diversity & Consistency of Motion Signals: Firstly, we
have asked one participant to perform two different hand
movements 10 times for each gesture with a smartwatch. In
Fig. 2(a), we observe that the profiles for separate gestures
differ significantly. To illustrate the difference digitally, we
compute the normalized Dynamic Time Warping (DTW)
distance of the same gesture and different gestures (shown
in Fig. 2(b)). The figure clearly shows that it is feasible
to differentiate between different gestures. Meanwhile, the
result (shown in Fig. 2(a)) reveals that motion signals from
repetitions of the same gesture are fairly similar, which
demonstrates the consistency of gesture motion signals.

Uniqueness of Motion Signals: We intend to find out
whether motion signals of the same gesture generated by
different users are distinct. Three participants are asked to
snap fingers for 20 times. From Fig. 2(c), the profile differs
significantly both in time and frequency domain. Similarly,
we calculate the nomalized DTW distance (the result is
shown in Fig. 2(d)), and it reveals that motion signals are
unique for different users.

C. Motion Signal Correlation with EMG

We aim to explore the connection between muscle move-
ment and motion signals more intuitively. However, muscle
movements for gestures cannot be digitalized directly. The
EMG signal is superimposed action potential generated
from the contraction of muscle fibers, which can reflect
muscle movement more directly [20]. Hence, we verify the
correlation between muscle movements and motion signals
by analyzing the relationship between EMG signals and
motion sensor signals.

We place the EMG sensor on the center of the measured
muscle belly between an innervation zone and the distal
tendon for better accuracy, as shown in Fig. 3(a). We ask
volunteers to try their best to stretch their five fingers and
make fists for activating the muscle. The signal waveforms

of these two gestures are depicted in Fig. 3(b). The figure
shows that the signals between different gestures are fairly
different. To emphasize the individual differences, we ask 4
volunteers of different ages and genders to stretch fingers.
EMG results are shown in Fig. 3(c). Significant differences
exist in EMG signals among diverse people, even with the
same age and gender.

To obtain the correlation of EMG and motion signal, we
ask four participants to stretch fingers and make fist 20
times with EMG device and the smartwatch simultaneously
to obtain quantitative description (as shown in Fig. 3(a)). We
use S =

√
GT G + LT L to describe the motion sensor signal,

where G, T denote the integration of angular acceleration
and linear acceleration respectively. Similarly, we calculate
the integration of EMG signal noted as E, and we quantify
the similarity between S and E by DTW. The result is shown
in Fig. 3(d), where self-correlation is the similarity of two
types of signals for the same person and the cross-correlation
is for different people. The distance of cross-correlation
(AVG=159.11) is larger than self-correlation (AVG=120.01).
It can be derived from these statistics that there is a certain
similarity between the motion signal and EMG signal from
the same person, and the similarity decreases when the
signal source changes. Considering the individual difference
of EMG, the results demonstrate the feasibility of motion
signals as unique conditions for certification.

III. Design Scope & Overview

In this section, we describe our design scope and the
system overview of ThumbUp.

A. Objective and Design Scope

We divide the certification task into two parts: identifica-
tion and authentication. Identification represents multi-user
classification tasks; the main goal is to classify different
users. Authentication represents one-to-one identification
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Fig. 4. System Workflow and Key Components of ThumbUp

with malicious attacks; the main goal is to distinguish
between malicious and legitimate users correctly.

Gesture Design: We prefer to implement our system in
situations that require daily authentication of device owners,
such as smartwatch unlocking. The gestures that our system
adopts need to be convenient enough. The sophisticated
gestures that include movements of fingers, palm, and wrist
at the same time involve more information to discriminate,
but they are much less convenient. Meanwhile, too simple
gestures that only contain weak movement such as slightly
waving one finger are ineffective in uniquely identifying a
user. We define nine typical gestures (shown in Fig. 1), con-
sidering user-friendliness according to user preference, and
the trade-off between complexity and distinguishability. In
the following experiments, we test the users’ impressions of
these gestures for authentication and give recommendations
for improvement.

Availability: Our system needs to extract consistent and
distinguishable bio-metrical signal features from subtle mo-
tion signals, i.e., the features have to be persistent to meet the
needs of long-term usage, and high diversity to be resistant
to different forms of attacks. Moreover, our system should
contain classifier mechanisms and give the corresponding
results accurately for two tasks.

Universal: For universal requirement, we prefer to use
typical commercial smartwatches with accelerometers and
gyroscopes. As COTS smart-devices often have limited
computing and storage resources, lightweight design for our
system is in need.

Our goal is to build a highly secure and reliable real-
time authentication system based on 3D simple hand and
finger gestures using commercial smart-devices without any
additional hardware.

B. Overview of System

As shown in Fig. 4, ThumbUp consists of three parts: The
first part is pre-processing & detection (Sec. IV), which aims
to remove noises, segment, and extract sequential features
from continuous motion signals. The second part is model
description (Sec. V), which extracts representations from
spectrograms with carefully crafted deep learning methods.
Also, we describe our design of the classification algorithm.
The third part is the system evolving (Sec. VI), which in-
troduces the strategy for continuous model evolving to cope
with the behavioral changes of user and system initialization
for domain adaptation.

IV. Pre-processing & Detection

As the signals collected from motion sensors are noisy,
incomplete, and even erroneous, the first step of ThumbUp
is to filter the noise and segment the signal to match the
actual gestures.

A. Data Regulation & Denoising

To ensure uniform sampling of the accelerometer and
gyroscope, we interpolate the data to 100Hz of the sam-
pling rate. We use the Z-score normalization technique to
normalize the amplitude of the signals. The processed signals
obey the standard normal distribution, with the mean value 0
and the standard deviation 1. Afterwards, we reduce random
noise by a Savitzky-Golay smoothing filter [5], also called
least-square smoothing filter. The basic idea behind this filter
is to find a least-square fit with a polynomial of high degree
for each data point, over an odd sized window centered
around that data point [21], which not only reduces noise
but also maintains the shape and height of waveform peaks.

B. Detection and Segmentation

IMU continuously collects motion sensor signals; we need
to detect the possible samples and segment signals into a
given size. One common way is to set a constant threshold
empirically, and the part of the signal whose short-term
energy exceeds this threshold would be regarded as a gesture.
However, the threshold is hard to choose with different noise
levels in realistic scenarios.

We use a method similar to the Constant False Alarm
Rate (CFAR) algorithm [37] to detect the gestures. The main
idea is to determine the start and endpoint of one single
gesture by dynamic thresholds. We use X to denote the
long time-series signal, and x(i) is the square root of the
squared sum for six axes collected from the accelerometer
and gyroscope at the ith sample index. Let W denote the
sliding window size, set as 128. Besides, E(i) and D(i)
denote the average power and standard deviation at the ith
sample index, respectively. Here E(i) = 1

W ×
∑i

k=i−W+1 x(k)2,

and D(i) =

√
1
W ×
∑i

k=i−W+1(x(k)2 − E(i))2. Thus, a potential
start point of a gesture is detected if x(i)2 > E(i) + γ1 ×D(i)
and a potential endpoint is detected if x(i)2 < γ2× Ē, among
them, γ1 and γ2 are both the constant, Ē is the average noise
power detected before the first gesture.

The segmentation result is depicted in Fig. 5, and it shows
satisfactory efficiency. The orange line represents the motion
signals we concern.
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Fig. 5. Gesture Detection and Segmentation

C. Spectrogram Generating

For motion sensor signals, time-domain features reflect
the sequential relationship inside gestures, while frequency
features reflect different motions of muscles in hand. The
Short Time Fourier Transform (STFT) [7] is a widely used
tool for signal processing and has sensitivity in the time
domain for both high and low-frequency signal, contains
more frequency and time-domain features for next step than
Discrete Wavelet Transform (DWT). We use the power band
produced by STFT to represent the frequency spectrum.
The spectrogram is the magnitude squared of the STFT
|X(m,w)|2. For a given signal x[n] and a window func-
tion w[n], the discrete-time STFT of x[n] is calculated as
X(m,w) =

∑
n x[n]w[n−m]exp(− jwn). Hamming window is

applied for the window function w[n]. Evaluating X(m; w)
for more (m; w) points will provide high-resolution infor-
mation with decreased overall information and increased
computation overhead. We achieve a satisfactory trade-off

by experiments (shown in Sec. VII). We observe that the
vibration caused by human mobility is mostly less than
15 Hz, a 17 Hz cut-off frequency for F is sufficient to
retain enough information for the motion sensor signal.
We concatenate all channels and generate spectrograms to
represent the signals in the high dimension.

V. Model Description

Next, we propose a deep neural network (as shown in
Fig. 6) to extract subtle and stable representations from spec-
trograms and classify users for identification and authentica-
tion. The model is composed of four parts: spectrogram input
layer, BiLSTMs, sSE Networks, and classifier layer. Firstly,
the input data of the model is the gesture spectrograms
obtained by STFT. Then, a three-layer BiLSTMs are used
to extract motion features. For improving the model perfor-
mance, we add an attention mechanism with Squeeze-and-
Excitation Networks to significant aggregate information
from the motion representations generated by the BiLSTM
layers. Finally, we adopt a Multilayer Perceptron followed by
a softmax activation as the classifier in our model. Moreover,
we perform ablation studies (in Sec. VII-B2) to understand
aspects of the proposed model architecture, which results in
an improvement.

A. BiLSTM Layer

Owing to the structural property, Recurrent Neural Net-
works (RNNs) maintain the memory based on historical
information, which is suitable for processing sequential data
[18]. Long Short-Term Memory (LSTM) is explicitly de-
signed to address the long-term dependency problem through

Spectrogram

Forward LSTM
Backward LSTM

Depth-Concatenation

sSE Block

Flatten Layer

Softmax Layer

Input Layer 

BiLSTM x3

Attention

Output Layer

Representation

Classification

Dropout Layer

Fig. 6. Model Architecture

purpose-built memory cells, which performs better in longer
sequences. For the spectrogram of the sequential timing
signal, BiLSTMs [6] have stronger representation extraction
ability than LSTM with both previous and subsequent infor-
mation.

First, we get the input spectrogram s = [s1, ..., sT ], st ∈

Rd from STFT. The BiLSTMs layer computes the forward
hidden sequence

−→
h , the backward hidden sequence

←−
h and

the output sequence ht by iterating the backward layer from
t = T to 1, the forward layer from t = 1 to T . Then the layer
updates corresponding hidden states at each time-step:

−→
h t =

−−−−−−−→
LS T MF(

−−−→
hT−1, st),

←−
h t =

←−−−−−−
LS T MB(

←−−−
hT−1, st), (1)

where
−−−−−−−→
LS T MF and

←−−−−−−
LS T MB in our system are implemented

by the composite function proposed in [8].
Next, these hidden state outputs from the forward LSTM

−→
h t and backward LSTM

←−
h t are concatenated at every time-

step to enable encoding of information from past and future
contexts respectively. Especially since we only have a small
number of training samples, models will easily overfit on
these samples. In order to prevent complex co-adaptations
on training samples and perform model averaging with
networks, we feed these concatenated hidden states to the
dropout layer that temporarily discard neural network units
from the network with a certain probability. Then a Batch
Normalization layer is adopted for avoiding the gradient
disappearance and explosion in the process of backpropaga-
tion and makes the updating steps of different scales more
consistent.

B. Attention Layer

Convolutional Neural Networks (CNNs) take advantage of
convolutions, which help to extract relevant information at
a low computational cost. We can treat the features vectors
generated by BiLSTMs as an image. For image segmen-
tation, the pixel-wise spatial information is informative. In
order to improve the representational ability of the features,
we add an attention mechanism with Channel Squeeze and
Spatial Excitation Block (sSE) [26] network to the model
instead of using CNNs directly, which ’squeezes’ the feature
along the channels and ’excites’ spatially (shown in Fig. 7).

We note the output feature map generated by representa-
tion block as U ∈ RH×W×C . First, sSE slices the input tensor
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U = [u1,1, ...,ui, j, ...,uH,W ], where ui, j ∈ R1×1×C correspond-
ing to the spatial location (i, j) with i ∈ {1, ...,H} and j ∈
{1, ...,W}. The spatial squeeze operation is achieved through
a convolution q = Wsq ? U with weight Wsq ∈ R

1×1×C×1.
Each qi, j represents the linearly combined representation
for all channels C for a spatial location (i, j). Then q is
passed through a sigmoid layer σ(.) to recalibrate or excite
U spatially

ÛsS E = FsS E(U) = [σ(q1,1)u1,1, ..., σ(qH,W )uH,W ]. (2)

Each value σ(qi, j) corresponds to the relative importance of
spatial information (i, j) of the given feature. This recalibra-
tion provides more importance to relevant spatial locations
and ignores irrelevant ones.

C. Classifier

In the end, we use a Multilayer Perceptron (MLP)
layer with the softmax activation as the classifier in our
model. The softmax function calculates the cross entropy
and converts the logits into a probability distribution. The
probability of T -th sample for i class is calculated as
Pi = exp(θi

T )/
∑K

k=1 exp(θk
T ), where θT is the output logits

from the previous linear layer.
For identification tasks, we choose the user class with

maximum Pi as the prediction for identification. For authen-
tication tasks, the sample is labeled as a true sample for j
user if j = argmaxi {Pi | Pi > σi}, where σi is the threshold
that is empirically set by the user or adaptively learned from
the training set, which characterizes the strictness of the
system.

VI. System Evolving

A. Self Calibration

As time passes, the gesture of a legal user may change
slightly, which requires our model to be adaptive to the
transition to avoid frequent model reset. As we mentioned
above, we set a threshold σ for a legal user, and it will
decide whether the sample is legitimate or not in the
authentication task. We set a higher threshold σe for self-
calibration and add a sample into the training set of user
i when the model determines that the sample is legitimate
for corresponding user and Pi > σe,i > σi. According to
this process, the training set of the model is automatically
updated continuously when adding a new positive sample
or when a specified number of new positive samples are
accumulated, which ensures higher authentication accuracy
and makes the system more reliable and adaptive.

B. Transfer Learning

When the domain of users changes, retraining the
model will bring intensive time-consuming and resource-
consuming, and the ability of feature extraction would
be insufficient. We choose to utilize pre-trained and fine-
tuning [36] methods to retrain the new user’s model, which is
commonly used in transfer learning [23]. For the addition of
new datasets, we truncate the pre-trained softmax layer in the
pre-trained model and replace it with the softmax layer of the
new datasets. In order to maintain the training effect of the
original large-scale data, the parameters are updated using a
learning rate of one-tenth of the train from scratch. The fine-
tuning method effectively solves the previously mentioned
problems and maintains the validity of the model on new
datasets.

VII. Evaluation

We conduct a comprehensive evaluation of ThumbUp
through laboratory studies. We first collected motion sensor
signals from 65 participants to determine the accuracy of
ThumbUp for identification task and micro & macro bench-
mark of our model. Then, we explore the robustness of
authentication with imitation attacks. Moreover, we show the
performance of our system about the real-time ability and
power consumption. Additionally, we perform the user study
and illustrate how to choose gestures for better performance.

A. Implementation

Motion sensing: We conduct all our experiments using
the HUAWEI-WATCH with Android Wear 2.0.0 and An-
droid Operating System 7.1.1. For the motion signal col-
lection, we utilize the built-in accelerometer and gyroscope
in the smartwatches and use the motion readings through
existing Android Wear APIs to detect signals. The sampling
rates of the accelerometer and gyroscope are both 100Hz.

Algorithm model: We use TensorFlow for construction
and training for the neural networks off-line. We train the
deep learning model offline on a PC with 12 Intel i7-8700K
CPU kernels, 64GB memory, and 4 Titan X GPUs. After
that, we build the trained model in the TensorFlow Lite
framework and employ our system on the Android mobile
platform for real-time evaluation.

B. Identification Accuracy

We recruit 65 volunteers and perform extensive studies on
the collected dataset for over three months. 35 participants
are male, and 30 are female. Their ages range from 19 to 57
(AVG=28.6, 6 > 50s). 75% are students, and the rest are non-
students. 41 of them is fairly experienced with smart-phones
and computers. 23 of them are familiar with wearables.

1) Baseline Classification Accuracy: We first investigate
the accuracy of our system across multiple users. Before the
experiments, we explain our system briefly and show the
example photos of 9 gestures (illustrated in Fig. 1) to the
participants. We ask participants to wear the smartwatch on
their dominant hands, maintaining a comfortable tightness.
Before the data collection, the participants are asked to
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TABLE I
Results of the proposed model with different switch configurations.

Models Highest
F1-score

Lowest
F1-score

Average
F1-score

1-layer BilSTMs 0.90 0.96 0.935
2-layer BilSTMs 0.90 0.96 0.941
4-layer BilSTMs 0.92 0.97 0.946

without sSE 0.92 0.96 0.937
cSE 0.92 0.97 0.945
scSE 0.93 0.97 0.949

All(Full model+sSE) 0.94 0.97 0.957

practice the gestures a few times. Once comfortable, each
participant is asked to perform 9 gestures with 20 repetitions.
That is, we have 65 × 9 × 20 gestures in the dataset.

We evaluate the identification quality of the 9 gestures by
precision, recall, and F1-Score. For each gesture, we repeat
the training process for 10 times by randomly selecting 10 of
20 samples as the training samples and compute the average
results in the rest 10 samples. The results (shown in Fig.
8(a)) demonstrate that our system obtains average accuracy
of 95.7% for nine gestures. The accuracy of G2 (finger-
turning in circles) and G9 (finger-bending) is up to 97%,
which confirm the ability of identification.

2) Micro & Macro Benchmark: Impact of parameters
configuration: For the input spectrogram of extracted fea-
tures, our model reaches the best performance with the 128
width of a sliding window (choose from [256,128,64,32]),
8 for increment (choose from [32,16,8,4]). To know the
importance of various components in the model, we perform
ablation studies (shown in Table I). We verify that the good
performance of our model mostly results from using sSE
network and using 3-layer BiLSTM. We observe that 4-
layer BiLSTMs achieve comparable accuracy of 3-layers.
To balance the high-precision and computation cost, we
adopt 3-layer BiLSTMs in our system. Meanwhile, we
compare two commonly used attention mechanisms: cSE
[10] and scSE [26]. Also, we find that Batch Normalization
layer and Dropout layer have a significant effect on the
stability and generalization ability of the model. We compare
ThumbUp with BiLSTM, BiLSTM+CNN, SVM, and kNN,
which are commonly used in IMU signal classification [9]
[39]. Moreover, we use the features extracted by BiLSTM

as the input of traditional classification algorithms (SVM,
KNN), which achieves higher accuracy than using original
spectrogram and shows the effectiveness of our model for
feature extraction. The result (shown in Fig. 9(b)) displays
that our model achieves the highest accuracy on our dataset
with acceptable computation cost.

Impact of time horizon: To evaluate the similarity
and repeatability of authentication over time, we test the
performance of ThumbUp over 3 months. We recruit 20
participants ranging in age from 19 to 29 (AVG: 24.8,
SDT: 2.5) included in the list of the above 65 participants.
Each participant repeats 9 gestures 20 times in each session
(Date1, Date2, and Date3). The gap between two sessions is
3-4 weeks. Fig. 9(a) intuitively shows the temporal stability
of the accelerometer signals and its spectrogram for two
users over time. Fig. 9(b) shows the difference in DTW
distance among different periods. The signals undergo some
changes after a long interval of 3 periods but still similar.
We notice that the user remembers the type of gestures
but might forget the specific details after months, which
are essential factors of user uniqueness, especially for tiny
gestures. In order to maintain the usability of the model,
we add the evolving mechanism described in Sec. VI. We
train the initial model with 10 samples collected at the first
session. In each subsequent period, we split 10 samples
from 20 samples and select them to update the model
based on the evolution mechanism. The remaining samples
are used to test the accuracy of the model. We compare
the authentication accuracy of this method with/without the
update mechanism. The result (Fig. 8(c)) shows that our
system is less effective as the time gap increases between two
separate authentication attempts, which leads to a problem
that it cannot be used in applications with long intervals
without the opportunity to update itself. However, ThumbUp
achieves high accuracy with evolving mechanism. As our
experiments show, our method displays 0.95 F1-value even
after two periods and increases 0.18 than the one without
updating, which shows that our system with an evolving
mechanism is effective.

Impact of placement: In everyday life, users may not
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wear the smartwatch at the standard position. In order to test
the impact of the wearing position, we asked 5 participants
to wear the smartwatch at two atypical positions shown in
Fig. 8(d). Evaluations show that the average F1-score is 0.93
for the standard position, 0.44 for the loose band, 0.13 for
the forearm, which reveals that the system can not identify
users with smartwatch at atypical positions. We think that
the signal is too weaker at the forearm and it will add much
noise with a loose band.

C. Authentication Robustness

For exploring the security against attackers, we focus on
the imitation attack which we believe is the most threatening
attack type.

We asked 10 participants (attackers) outside the list of 65
participants in the training set to imitate motion patterns of
10 participants (targets) who are included in the training set.
Then we calculate their chances of successful imitation, i.e.,
ThumbUp mistakenly accepts samples from the attackers.
The attackers’ ages range from 19 to 50; 5 are male. All
participants are relatively proficient with computers and
smartwatches and familiar with these gestures. We take
video footage when the five target participants perform the
gestures. Each attacker mimics 9 gestures eight times to their
best effort while watching the targets’ videos. In summary,
we collect 40 samples for each gesture each target user. We
also ask the target users to repeat each gesture 40 times in
order to balance the number of positive and negative samples
in evaluation.

We calibrate the threshold σ in the authentication mech-
anism to observe the False Rejection Rate (FRR) and False
Acceptance Rate (FAR). The Receiver Operating Charac-
teristic (ROC) curve of one user is shown in Fig. 9(c).
We summarize the average Equal Error Rates (EER) for
the nine gestures in Table II. We observe that under an
appropriate threshold, we can make a proper distinction
between attackers and legitimate users. As the table shows,
G2 (finger-turning) and G4 (hand-waving) perform best
against imitation attacks, while G7 (gun-gesture) is close
behind. Moreover, we compare ThumbUp with state of the
art one-class classifiers: GAN [27] and Autoencoder+SVM
[40]. Comparing to 0.221 for GAN and 0.173 for AE+SVM,
ThumbUp achieves the lowest average EER, which is 0.025.
We suspect that the number of training samples is too little
for a one-class deep neural network classifier. ThumbUp is
trained by the amount of training samples from different
users, which take advantage of the feature extraction that

happens in the front layers of the network without develop-
ing the network from scratch. Moreover, as shown in Fig.
9(b), the DTW distance (used in [3]) from different users
cannot be clearly distinguished.

D. Delay and Power Consumption

We deploy our system on a HUAWEI-WATCH to explore
the real-time ability of ThumbUp. We estimate the delay of
5000 times. The average latency from the time when the
user finishes their gestures to the time that authentication is
finished is 0.085s. The result indicates the real-time ability
of our system.

We use the Android Debug Bridge (ADB) tool for eval-
uating power consumption. We compare two states of the
smartwatch: idle display and running the authentic system 5
times per second. Then we estimate the power consumption
of the screen-on smartwatch for one hour. With our system
running, the power capacity of the smartwatch drops to
213mAh, while the initial is 264mAh before running our
system. Meanwhile, when the system is idle, the power
capacity of the smartwatch drops to 231mAh with the same
initial battery capacity.

E. User Study and Discussion

Impact of proficiency: We ask the participants to record
the proficiency of gestures at the end of experiments and
divide samples from 34 participants into these 3 categories
(Rusty, Understanding, Proficient) (32:100:183). We calcu-
late the average F1-score for each category. As shown in
Fig. 10(a), for a certain gesture, the more proficient the user
is, the higher stability the authentication process has.

Impact of fatness: We record the Body Mass Index (BMI)
values and waist circumference of participants, which is
used to quantify the amount of tissue mass in an individual
[11]. We divide participants into 3 categories (underweight,
normal, and overweight) (13:24:12) according to [2]. As
shown in Fig. 10(b), we observe that the F1-score decreases
slightly as fatness rises. And we make the assumption that
the abilities to control muscles decline as fatness rises, which
may affect the accuracy of authentication.

Impact of age and gender: We divided participants into
4 categories by age (6:10:32:16). According to the result
shown in Fig. 10(c), users between 23 and 28 have higher
F1-score, which may be related to the stiffness or fatigue of
muscles caused by increasing age. Another reason may be
that younger participants are more adept at these gestures
according to the user survey. Besides, we choose 30 males
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TABLE II
F1-score of identification, EER of Imitate-Attack for each gesture and

the rank of user-friendliness

Gesture F1-score of
Identification

EER of
Imitation Attack

Rank of
Friendliness

G5 0.96 0.028 1
G8 0.94 0.033 2
G2 0.97 0.014 3
G6 0.95 0.026 4
G9 0.97 0.027 5
G7 0.96 0.020 6
G4 0.96 0.018 7
G1 0.95 0.032 8
G3 0.95 0.025 9

and 30 females that cover the age range from 19 to 60
separately. In Fig. 10(d), the F1-Scores of male and female
are roughly the same.

At the end of the study, we survey the participants’
opinions about the usability, applicability, and usefulness
of the system. 84% of participants think that ThumbUp is
convenient and reliable. They are willing to use our system
as the approach to get access to the smartwatches in daily
life. Furthermore, participants are asked to choose three
gestures that they are most willing to use in their daily
lives. The result is depicted in Table II. The popularity
decreases from top to bottom, ’1’ represents the gesture with
the highest user satisfaction, and ’9’ represents the least.
Our survey shows that most users prefer relatively simple
gestures like G5(fist-making) and G8(thumb-up). Combining
the statistical results of previous experiments, we generally
recommend the top five gestures (listed in Table II) with both
user-friendliness and usability. Considering the relationship
between proficiency and accuracy of gestures (shown in Fig.
10(a)), users can redefine their personal unlock gestures with
the most familiar gestures for better security.

VIII. RelatedWork

Existing biometrics authentication approaches can be di-
vided into two categories: physiological and behavioral
techniques. Physiological techniques take advantage of the
physical characteristics of human body, such as heart [17],
body electric potentials [33] and acoustics [39]. Behavioral
techniques utilize unique manners, such as gait [28], head
movements [16], and even tongue movement [22], which are
closely related to personal behavioral habits.

Gesture-based authentication and recognition have drawn
great attention in academia and industry, with sensor signal
based on depth camera [38], capacitance [31], electromag-
netic [14], wireless signals [24], etc. Zhao et al. [38] propose
a depth camera-based dynamic hand gesture authentication
method, which achieves 95.21% accuracy for the compli-
cated gesture and 91.38% for the simple gesture. Yang et al.
[35] present the study of mobile authentication using free-
form touchscreen gesture generated by participants instead
of text passwords. In this method, they find that participants
generate new passwords and authenticate faster with com-
parable memorability while being more willing to retry.

There are some gesture-based studies using inertial mea-
surement unit. Chris et al. [18] use motion patterns when

users are entering passwords on smartwatches. Object Hall-
marks [25] utilizes data from IMU embedded on the wear-
able wrist to generate fingerprints of users’ behaviors when
using objects like fridge and freezer, taking advantage of
Euclidean distance of signal peak values. Sun et al. [29]
propose a 3-D hand gesture signature-based biometric au-
thentication system with an on-phone accelerometer, and the
results tested by 19 users show 4.65% FRR and 0.27% FAR.
MotionAuth [34] uses the arm-movement based motion
sensor signal measured by wrist-worn smart devices, which
is similar to our design. It authenticates with a large scale
arm-generated gestures like lifting the hand, while ThumbUp
achieves a comparable secure authentication using a simple
hand gesture.

There are also some relative works about subtle gesture
kinematics analysis used for wrist-worn or other mobile
devices. TwistIn [15] takes a smartwatch as an authentication
token for access and control of other smart devices by
twisting the phone a few times, and it achieves 95% accuracy
for 12 users. Taprint [3] proposes a secure PIN input system,
which extends a virtual number pad on the back of hands
with smart wristbands. Also, it uses the tapping vibrometry
as biometrics to authenticate the user with an accuracy of
96% for 128 users.

IX. Conclusion

In this work, we present ThumbUp to identify and authen-
ticate users using only one simple gesture like thumb-up.
We carefully design pre-processing methods for converting
weak signals with noises to a spectrogram containing user
characteristics. A light-weight robust deep neural network
is designed to extract the unique representations from mo-
tion signals and identify users accurately. We demonstrate
its utility by extensive experimental studies with 65 users
over 3 months. The evaluations demonstrate the power of
ThumbUp: it achieves extremely high accuracy (above 97%)
for identification and EER 0.029 for authentication. We
believe that our design will open up a wide range of exciting
opportunities for convenient and secure authentication using
wearable smart devices.

Nevertheless, this is only a first step towards cracking
an extremely tough task. Several challenging issues are left
for future research: 1) improving the system robustness in a
more hostile environment when users engage in other daily
activities like walking and running; 2) implementing our
scheme in commercial products for further verifying system
performance in realistic scenarios; 3) exploring the system
adaptivity with gestures completely designed by users.
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