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ABSTRACT
In this paper we propose a new biometric measure to authenticate
the user of a smartphone: the movement the user performs when
answering (or placing) a phone call. The biometric measure lever-
ages features that are becoming commodities in new smartphones,
i.e. accelerometer and orientation sensors. We argue that this new
biometric measure has a unique feature. That is, it allows a trans-
parent authentication (not requiring an additional specific interac-
tion for this) to check that the user that is answering (or placing)
a phone call is the one authorized to do that. At the same time,
this biometric measure can also be used as a non transparent au-
thentication method, e.g. the user may need to move the phone as
if answering a call, in order to unlock the phone to get access to
SMSs or emails. As a consequence of being a biometric measure,
an adversary that spies on the movement (e.g. captures it with a
camera) and tries to replicate it, will not be granted access to the
phone.

We prototyped our solution and conducted several experiments
to assess its feasibility. Results show that the method is effective,
and the performance is comparable to that of other transparent au-
thentication methods, like face or voice recognition.

Categories and Subject Descriptors
K.6.5 [Security and Protection]: Authentication

General Terms
Security

Keywords
Smartphone Security, Biometric Authentication

1. INTRODUCTION
Mobile phones have become everyday personal devices. Peo-

ple use them for both managing personal data and handling private

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ASIACCS ’11, March 22–24, 2011, Hong Kong, China.
Copyright 2011 ACM 978-1-4503-0564-8/11/03 ...$10.00.

communications. Hence, many authentication methods have been
provided to restrict access to unauthorized users. Non transparent
methods (e.g. PIN) are the most commonly used, while requir-
ing an aware interaction with the user—for this reason, some users
tend to avoid this type of authentication. Furthermore, even when
in place, these methods often do not block a malicious user to get
some access to the phone, e.g. answering to an incoming call. On
the other hand, current transparent methods (e.g. keystroke analy-
sis) take a significant amount of time to authenticate the user, and
they cannot guarantee that an unauthorized user is blocked before
she gets access to the desired data or service. In general, most of
the current systems leave the possibility to answer a phone call even
if the phone is locked (e.g. with a PIN).

Previous works have already investigated the possibility to use
the accelerometer as biometric authentication. However, they either
only considered secret movements the user needs to remember [15]
(i.e. non transparent authentication), or they require the user to do
some gesture that is not naturally connected to the phone usage
(e.g. walking [16]).

In this paper, we propose a new authentication method that aims
to solve the problems mentioned before. The proposed method of-
fers transparency by identifying if the user that is answering (or
placing) a call is the authorized one. In particular, we investigate
if a user can be authenticated just by using the movement she per-
forms, from the moment she presses “start” (to initiate a call), until
she takes the phone to the ear. We will refer to this movement as
a pattern. We treat this movement as a biometric feature, and we
demonstrate that there are sufficient differences between different
users, such that the movement can effectively be used for identifi-
cation. In this way, as soon as a call is answered (or placed), the
phone can promptly evaluate if the user is authorized to perform
this action, and block the system in case of non authorized users.

Moreover, the mechanism might be used even in case of phones
shared among multiple users. Each user could have its own profile
and authentication would be performed by comparing new move-
ments to the existing profiles. If it is determined that the user ac-
cessing the device can be matched to one of the existing profiles,
then access is granted, otherwise it is denied. Another possible use
of our system is to perform forensics analysis, e.g. to investigate
who used the phone at a particular point in time.

Finally, we note that the proposed mechanism might be even
used just in substitution of current (non secret) unlocking mecha-
nisms, without user identification purposes: these mechanisms are
the ones currently in place to avoid accidentally answering (or plac-
ing) a call while the phone is, for example, within the user’s bag.
Checking for an answering movement pattern after the “start” but-
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ton is pressed (that can be accidental), the phone avoids that un-
wanted calls are placed or answered.

Contribution. The main contribution of this work is to assess
whether the call answering movement is a unique biometric feature—
no previous work has investigated on this issue. We consider the
movement performed from the instant an user presses “start”, to
initiate a mobile conversation, until she places the phone to the ear.
Moreover, we propose to use also the orientation sensor for bio-
metric measurements. To our knowledge, so far researchers used
only the accelerometer sensor when dealing with movement pat-
terns recognitions. We observe that both orientation sensor and ac-
celerometer sensor are common in smartphones today on the mar-
ket (e.g. the Google Dev phones).

We propose four basic authentication methods, each one being
a specific combination of considered sensor and recognition algo-
rithm. Each of these methods needs a training phase. After this,
the method compares a newly observed pattern with the reference
ones. Depending on the similarity measure and the threshold set,
the method outputs a binary result: 0 (rejected user), 1 (accepted
user). We also propose a way of combining these basic methods to
improve their performances. In particular, we leverage the fact that,
combining methods, the similarity measures can give us more in-
formation than the binary one gives as output. We implemented our
proposals for the Android system, and tested it with the HTC Dev
1 smartphone considering ten different users. The results are very
promising and show that: (i) the proposed method is effective; (ii)
the performances are comparable to the ones of other transparent
authentication methods, like face or voice recognition—in terms of
both False Alarm Rate (FAR) and Impostor Pass Rate (IPR); (iii)
the proposed way of combining methods is further able to improve
the (already good) performances of the basic methods.

Roadmap. In Section 2 we present the main authentication meth-
ods that have been proposed over the years, and we discuss why
there is a need for improvements. In Section 3 we present the main
technologies used by our solution, the recognition algorithms ap-
plied, and the other preliminaries for this paper. Section 4 presents
the solution we are proposing. Section 5 reports on the experiments
that were conducted and discuss the results obtained. Finally, Sec-
tion 6 concludes this paper and discuss further possible improve-
ments.

2. RELATED WORK
Smartphones nowadays are very popular. They offer support for

an increasing number of applications like web browsers, e-mail
clients, applications for editing documents, taking pictures, and so
on. This increase of capabilities and usage creates also the need
to improve the security of these devices. However, authentication
methods already available for smartphones do not offer sufficient
transparency and security.

Classical (non transparent, non biometric) authentication solu-
tions, like PIN based methods or graphical passwords, have been
proposed long time back. However, being non transparent, these
methods ask for the aware participation from the user. This leads
often to annoy the user, e.g. continuously prompting her with some
challenges. As a result, many users tend to completely remove
such authentication methods. Moreover, classical methods based
on PINs or passwords are easy to break. This is the case because
people choose predictable passwords that have a meaning (e.g. im-
portant dates or pet names), making them easy to remember but also
easy to break [19]. Similarly, graphical passwords use secret draw-
ings [12], instead of secret strings of characters. Even in this case,
users tend to choose symmetric figures making the password space
small, and again easy to break. Finally, we have to mention pos-

sible attacks where the adversary steals the secret by spying (e.g.
with a camera) the user while she inputs the secret (password or
drawing). For example, a recent work [7] has shown the feasibility
of the “smudge attack” to the Android password pattern. That is,
using a camera that takes pictures of the screen of the smartphone, it
is possible to reconstruct the pattern drawn by the user on the touch
screen, to unlock the phone. This is done by leveraging the light re-
flex of the smudge left on the smartphone. Interestingly, this seems
to be feasible even taking pictures long time after the user drawn
her unlocking pattern, or the screen has been (apparently) clean.

Some of the mentioned problems of classical authentication meth-
ods can be solved by biometric authentication methods. In fact,
these methods increase the security since their secrets can not be
easily spied and reproduced—since they identify the user based on
her natural features. Biometric measures are classified into two
main categories: physiological biometrics and behavioral biomet-
rics [20].

Physiological biometrics identify the user based on her physi-
ological features. They include: face recognition [4], fingerprint
recognition [20], external ear shape recognition [18], internal acous-
tic ear shape recognition [6] (i.e. measuring the shape of the ear
channel using acoustic data). However, we found the current phys-
iological biometric solutions to be affected by one or more of the
following problems: (i) non transparent usage; (ii) performances
are heavily influenced by external factors such as illumination, po-
sition or occlusion [20] ; (iii) lack of required hardware on current
smartphones.

For example, a good recognition rate could be obtained when us-
ing external ear shape recognition [18, 9] (recognition rate of some
90%) or internal acoustic ear recognition [6] (Equal Error Rate,
EER, of some 5.5%). However, this methods are heavily influ-
enced by external factors. For example, it is hard to transparently
get a useful picture of the ear, or get a useful acoustic feedback
that characterizes the internal shape [6], when the ear might be ob-
structed by hair, or because user is wearing things like hats or veils.
Similarly, the camera should be at a distance appropriate to get the
correct focus on the target. In fact, we note that in the experiments
described in [9], the cited recognition rates were achieved under
these conditions: (i) a specific setup for capturing the image; (ii)
an active participation of the user (e.g. uncovering the ears from
the hair). These constraints result in a completely non transparent
authentication of the user.

Within physiological biometric measures, methods that do not
suffer much by obstruction problems are fingerprint recognition
and internal ear recognition. The area that needs to be captured
for fingerprint is small, and usually there is no occlusion that may
intervene between the user’s finger and the scanner [20] (unless
the user wears gloves). However, this method would suffer by the
other highlighted problems. That is, it is not transparent to the user
and, most importantly, it cannot be leveraged by the technologies
already available in smartphones. Similarly, internal ear recogni-
tion [6] needs extra devices: a special device that is placed in the
ear to emit acoustic signals and a special microphone needs to be
attached to the smartphone.

The other classification of biometric measures is the one of be-
havioral biometrics, where user is identified based on her behav-
ioral features: e.g. keystroke dynamics [10], voice pattern [17],
or gesture (e.g. the user’s walking pattern [16]). However, for
these currently implemented methods the recognition process takes
a long period of time. For example, in order to recognize the user
from her walking pattern [16], the user would have to walk first for
the device to figure out whether she is the correct user or not. For
keystroke dynamics the user has to type a phrase, e.g. up to over
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100 characters before recognition can be performed [13, 14, 10].
Similarly, for voice recognition the user would have to output some
predefined phrases, or sounds, before being authenticated [17].

Recently, researchers proposed other interesting authentication
methods, that are non biometric but use accelerometer devices—
commonly present in smartphones. These mechanisms aim at iden-
tifying the user based on a secret movement pattern [15] (e.g. mov-
ing the phone as if to draw an “8” in the air, where “8” is the se-
cret). The movement pattern is measured using data from the ac-
celerometer sensor. The security obtained is high. However, similar
to classical PIN or password methods, an adversary might spy the
movement, replay it, and get access to the phone and its data.

In this paper, we present a method that solve the problems of the
cited methods. The proposed solution is to measure the movement
pattern performed by a user while answering (or placing) a phone
call. In particular, the considered pattern initiates from the moment
the user presses “start”—to answer an incoming call or to initiate a
new one—up to the moment she brings the phone to the ear. Hence,
as soon as the phone reaches the ear, the measuring ends and the
recognition process starts. We observe that, differently from the
solution in [15], in our proposal the secret is not the movement
itself (e.g. the “8” drawn in the air) but is the biometric measures of
a specific user’s movement—i.e. even if an adversary spies how the
user answers the phone, she is not able to replay the movement in
a way such that it can replicate the biometric features of the correct
user.

Furthermore, we find particularly interesting to compare our method
with the ones of (external or internal) ear recognition. In fact, sim-
ilar to our method, also these methods could be used for authen-
ticating the user answering a phone call, without requiring a spe-
cific interaction for the authentication. However, these methods
have the drawbacks discussed before: they suffer from influence of
external factors (e.g. hair, hats, and veils); they are not so trans-
parent (the camera must be at an appropriate distance to get the
focus); they require devices not commonly present in smartphones
(e.g. a camera close to the ear position for external ear recognition,
or a microphone close to the ear position for the internal acoustic
ear recognition). In addition, even if we assume these problems
can be solved (e.g. equipping the new smartphones with new—and
costly—devices, and requiring the user not to wear hats or veils),
we observe the following. In the ear recognition the registration of
the measure of interest starts when the phone is at the ear—that is
the moment at which the measure of our pattern ends. Hence, this
would further prolong the recognition process, so further delaying
the beginning of the actual phone communication.

We propose to measure movement patterns using both the ac-
celerometer sensor and the orientation sensor. To the best of our
knowledge the second one has never been used before for authen-
tication purposes. Also, leveraging the idea of combining different
authentication methods [21], we propose a specific way of combin-
ing our different proposed authentication methods (based on differ-
ent sensors and different recognition algorithms). In this way, we
manage to further improve the performances of the basic methods
involved in the combination: reducing at the same time both FAR
(False Alarm Rate) and IPR (Impostor Pass Rate).

3. PRELIMINARIES AND NOTATION
In this section, we introduce some building block concepts for

our proposal. In particular, our proposal leverages technologies
widely available on smartphones: accelerometer sensor and ori-
entation sensor. Hence, in Section 3.1 we introduce the working
of this sensors. Furthermore, we introduce the building block al-
gorithms that we use to measure similarity between patterns: the

Dynamic Time Wrapping (DTW) algorithm (Section 3.2). In par-
ticular, we implement two different versions of this algorithm: Dy-
namic Time Warping Distance (DTW-D, Section 3.2.1), and Dy-
namic Time Warping Similarity (DTW-S, Section 3.2.2). Finally,
in Section 3.3 we introduce definitions and notation used in the rest
of the paper.

3.1 Considered Sensors
Current smartphones come equipped with a wide range of sen-

sors, e.g. to measure acceleration, light, magnetic field, orientation,
and temperature. Some of these sensors have already been used for
authentication purposes. In particular, the accelerometer sensor has
been used both for capturing secret movements [15], and for mea-
suring biometric features like the walking pattern [11]. On the con-
trary, orientation sensor has never been used before our proposal.

Our proposal leverages both accelerometer sensor and orienta-
tion sensor. In particular, we implemented a proof of concept of our
proposal for the Android system. Android implements the OpenGL
ES coordinate system [3]. The coordinate system on the Android
platform is defined with relation to the screen of the phone, when
the phone is in its default position (the default position—either por-
trait or landscape—depends on the specific smartphone model, e.g.
it is portrait for the Dev 1 phone used in our testing). The origin of
the coordinates is given by the lower left corner of the screen. The
x-axis are horizontal and point right, the y-axis are vertical and
point up, and the z-axis point outside the front face of the screen.
This coordinate system applies both to the accelerometer and the
orientation sensor. Also, these coordinates do not change when the
orientation of the phone is changed.

3.1.1 Accelerometer Sensor (Sa)
The accelerometer sensor measures the forces applied to the phone

(minus the force of gravity) on the three axis: x, y and z. This
means that when the phone is pushed toward the sky with an ac-
celeration a (expressed in meter per second squared m

s2
), the ac-

celeration measured by the sensor will be a + 9.81 m
s2

. This value
represents the acceleration of the device: a minus the force of grav-
ity (9.81 m

s2
).

Let us denote the values of the acceleration of the device on the
axis x, y and z, as ax, ay , and az , respectively. Similarly, let us de-
note the values of the force of gravity on the axis x, y and z, as gx,
gy , and gz , respectively. The values provided by the accelerometer
sensor are the following:

• force applied by the device on the x-axis (ax - gx);

• force applied by the device on the y-axis (ay - gy);

• force applied by the device on the z-axis (az - gz).

3.1.2 Orientation Sensor (So)
The orientation sensor measures values of the angles in degrees

of arc, representing the orientation of the phone on the three axis.
For example, let us assume a user is standing in a point holding
the phone in one hand. If the user rotate her body, this will mainly
imply a modification of the value referring to the rotation around z-
axis. Similarly, a rotation on z is also observed rotating the device
from portrait to landscape. The values provided by the accelerom-
eter sensor are the following:

• rotation around z-axis, yaw (0◦≤ yaw ≤ 360◦, 0◦= North,
90◦= East, 180◦= South, 270◦= West);

• rotation around x-axis, pitch (-180◦≤ pitch ≤ 180◦, with
positive values when z-axis moves toward y-axis);
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• rotation around y-axis, roll (-90◦≤ roll≤ 90◦, with positive
values when z-axis moves toward x-axis).

3.2 Considered Similarity algorithms
As for the similarity algorithm used, we focused on the Dynamic

Time Warping (DTW), being it widely used in the literature for au-
thentication purposes [22, 23]. The DTW is an algorithm for mea-
suring similarity between two sequences which may vary in time
or speed. It was first used in speech recognition in the 70s but it
is currently used in many areas: handwriting recognition, signature
recognition, sign language recognition, and gesture recognition.

This algorithm gained its popularity in this field due to its capa-
bility of minimizing the effects of shifting and distortion in time, for
time series data [22, 23]. The continuity of the input patterns is less
important in the DTW than in other pattern matching algorithms
(e.g. Support Vector Machines, Bayesian Networks, and Decision
Tree Learning) as it is particularly suited for matching sequences
with missing information.

In the following, we describe the two specific algorithms that
we use in our proposal, both derived from DTW: DTW-D (Section
3.2.1), and DTW-S (Section 3.2.2). Using these two algorithms,
and two different sensors Sa and So, we propose four different
methods, that are: 1) DTW-D with data from Sa; 2) DTW-S with
data from Sa; 3) DTW-D with data from So; 4) DTW-S with data
from So.

3.2.1 Dynamic Time Warping Distance (DTW-D)
The Dynamic Time Warping Distance (DTW-D) uses as com-

parison algorithm the classical DTW algorithm. The data is rep-
resented in the form of time series. By a time series we mean a
sequence of pairs: each pair represents a 3D point (values x, y, and
z) and the corresponding time. In our scenario, the time is normal-
ized such that each sequence starts at zero and all the other values
represent the time interval that passed from the starting point.

The result obtained when comparing two time series is a real
value (∈ ℜ+), and it represents a distance measure. The minimum
distance that can be obtained is zero. Smaller the result, smaller the
distance between the two pattern, higher the similarity. When two
identical time series are compared the outputted result is zero.

During the training phase, T patterns (i.e. their corresponding
measures) are added to the database. Let us denote these pat-
terns as t1, . . . , tT . Once the patterns are added, each two series
are compared using the DTW algorithm. The maximum distance
(maxDist) value obtained in this comparison is stored, and used
during the recognition phase. That is:

maxDist = maxT
i,j=0{DTW (ti, tj)}, (1)

where DTW(ti,tj) is the similarity measure compute by DTW-D
between the patterns ti and tj . The maxDist value has the pur-
pose to make the authentication mechanism being dependent on the
specific user’s behaviour: instead of choosing a general maximum
distance allowed between two patterns, we will consider maxDist,
which is dependent on the training set.

During the recognition phase, a new test pattern, given to the sys-
tem for recognition, is compared to each pattern in the training set,
this resulting in T similarity measure di, i = 1 . . . T . If for more
than half of these similarity measures are smaller than the maxi-
mum distance plus a given threshold (τD) the user is considered to
be the correct one, and the access is allowed. Formally, a user is
accepted if the following holds:

|{di|di < maxDist+ τD, i = 1 . . . T}| > T

2
(2)

If Equation 2 does not hold, the user is considered an impostor—
hence, the access is not granted.

3.2.2 Dynamic Time Warping Similarity (DTW-S)
The Dynamic Time Warping Similarity (DTW-S) [5] uses for

comparison an adaptation of the classical DTW algorithm. That
is, instead of giving as a result a distance measure, this method
gives as output a percentage of similarity between the two series.
in DTW-S the three axis are considered independently. In partic-
ular, three instances are created, one for each axis (x, y and z).
When two patterns are compared, the instances corresponding to
the same axis are compared. These three results are averaged and
the outcome is returned as the final result—that is a percentage
value. Two instances that are identical will give as result 100%.
Hence, differently from DTW-D, for DTW-S the higher the result,
the higher the similarity between two patterns.

During the training phase a number of T patterns is added to
the database. Since the results that can be obtained by this method
are bounded both on the lower side (0%) and on the upper side
(100%), no processing is performed for the training set. That is,
instead of using a maximum allowed distance that is dependent on
the training set (as done for DTW-D), for DTW-S we only use a
maximum accepted threshold τS .

During the recognition phase, each new pattern is compared with
each training pattern and the results are averaged. If the average
obtained is bigger than a given threshold, the user is considered to
be the correct one—and the access is guaranteed. On the contrary,
if the average is smaller, the user is consider an impostor—and the
access is denied.

3.3 Definitions and Notation
We remind that we investigate on the feasibility of using the call

answering movement (that the user performs when answering or
placing a phone call) as a biometric authentication measure. We
also assume that only one user is authorized to answer or place
calls. Coherently with previous work on biometric authentication
[8, 10, 13, 14], we use the following two definitions to evaluate the
performances of our proposal.

Definition 1. False Alarm Rate (FAR). The FAR is the percent-
age of accesses attempted by the authorized user of the system, er-
roneously rejected.

Definition 2. Impostor Pass Rate (IPR). The IPR is the per-
centage of successful accesses to the system by impostors, pretend-
ing to be the authorized users.

Table 1 summarizes the notation and abbreviations used in this
paper.

4. A NOVEL BIOMETRIC AUTHENTICA-
TION

In the literature (cfr. Section 2) there is no efficient and effective
solution to transparently authenticate a user while she answers (or
places) a phone call. However, we argue that it is possible to use
the values obtained from the accelerometer and orientation sensors
(while the user answers, or places, a call) as a biometric measure in
order to authenticate the user.

In this section, we first report on a preliminary assessment of
our intuition (Section 4.1). Based on the preliminary confirmation
of our intuition, we propose four different basic methods (Section
4.2), that are the result of all the possible combinations of consid-
ered sensors (accelerometer sensor Sa, and orientation sensor So),
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Table 1: Notation and Abbreviations.
Symbol Meaning

FAR False Alarm Rate
IPR Impostor Pass Rate

DTW-D Dynamic Time Warping algorithm with distance feature
DTW-S Dynamic Time Warping algorithm with similarity feature
SA Accelerometer sensor
SO Orientation sensor
T Size of training set
ti i-th training pattern (i=1, . . . , T )
τ A generic threshold value
τD Threshold value for algorithm DTW-D
τS Threshold value for algorithm DTW-S
τ̂ Threshold value for combined methods

and considered similarity algorithms (DTW-D and DTW-S). Fur-
thermore, we propose to combine together the basic methods. First,
we do this with simple boolean operations (Section 4.3). After, we
propose a novel way of combining the basic methods. In particular,
we leverage the following fact.

While the final answer of a basic method can only be 1 (accept
the user) or 0 (reject the user), we argue that the similarity values
computed by these methods actually express more information on
the likelihood that the current user is the correct one. Our proposed
non-boolean combination (Section 4.4) aims at combining methods
in a way such that this additional information can be leveraged to
improve, at the same time, both FAR and IPR. The evaluation of all
the proposed methods (basic methods and combined ones) is shown
in Section 5.

4.1 Intuition Assessment
Our proposal is based on the intuition that the movement a user

performs while answering (or placing) a call might be used as a bio-
metric measure. In the following, we will refer to this movement
(as well as the measures associated with it) as a pattern. In particu-
lar, we assume that when the phone rings first the user handles the
phone in front of her—to see who is calling—then she presses the
“start” button to initiate the call. Similarly, when the user places
a call, we assume she handles the phone in front of her—to com-
pose the number or search for a name in the contact list—, then she
presses the “start” button to initiate the call. We specifically con-
sider the movement that begins from the instant the user presses
“start”, until she handles to phone close to the ear.

We run some preliminary experiments to have a confirmation of
our intuition. That is, we were looking for a preliminary assessment
of the following question: can the measurements associated with
the described movement be used as a biometric measure to discern
between different users? In practice, the aim of these experiments
were just to observe how close are the values measured for the same
user, and how far are the patterns observed for different users.

We wrote an Android application that logs the values sensed by
the accelerometer sensor (acceleration on x, y, and z-axis) and the
orientation sensors (pitch, roll, and yaw), while the user moves
the phone accordingly to the described pattern. We collected this
data by asking 10 users to use the test application to trace data of
several movement patterns. For space limitation, we report here
only part of the results we obtained. In particular, we only report
here (Figure 1) the values of the acceleration on x-axis (of the ac-
celerometer sensor) obtained with two users (User 1 and User 2),
each one performing the movement five times (Pattern 1, Pattern 2,
Pattern 3, Pattern 4, and Patterns 5). Figure 1(a) shows the results
of the five patterns of User 1. Figure 1(b) shows the results of the
five patterns of User 2. In particular, the x-axis (of the graph) rep-

resents the time (starting from the moment the call is initiated), and
the y-axis (of the figure) represents the corresponding measured
acceleration (on the x-axis of the phone).
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Figure 1: Examples of patterns. Accelerometer Sensor: accel-
eration observed on x-axis of the phone (plotted on the y-axis
on the graphs).

From Figure 1(a) we observe that the different patterns of the
User 1 are very close to each other. On the other hand, the patterns
of User 1 are far from the ones of User 2. However, we also observe
as the patterns of User 2 are not close to each other as they are
the ones of User 1. A similar behavior has been observed also for
other movement patterns, for other users, and for other measured
values—not reported in Figure 1—i.e. for the other sensor values
(y and z-axis for the accelerometer sensor; pitch, roll, and yaw for
the orientation sensor). While the intuition seems to be confirmed
by these preliminary results, these data are not sufficient to assess
the effectiveness of a possible approach.

4.2 Basic Methods
We propose four different basic methods. These are the result of

all the possible combinations of the considered sensors (accelerom-
eter sensor Sa, and orientation sensor So), and considered similar-
ity algorithms (DTW-D and DTW-S). Hence, the resulting methods
are:
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• DTW-D-Sa: this method applies DTW-D algorithm to the
data collected by the accelerometer sensor (Sa);

• DTW-D-So: this method applies DTW-D algorithm to the
data collected by the orientation sensor (So);

• DTW-S-Sa: this method applies DTW-S algorithm to the
data collected by the accelerometer sensor (Sa);

• DTW-S-So: this method applies DTW-S algorithm to the
data collected by the orientation sensor (So).

We remind that both DTW-D and DTW-S need a training phase,
that is, they need to store a set of T training patterns. Furthermore,
the results of these algorithms are influenced by the value that is
considered as threshold, τ , in order to either accept or reject a new
test pattern (not in the training set). In particular, we denote the
threshold used for DTW-D and DTW-S, with τD and τS , respec-
tively. We expect to get more users accepted while having a less
strict threshold. We remind that, because of the specific working
of the algorithms, for DTW-D this happens when increasing τD ,
while for DTW-S this happens when decreasing τS . We investigate
the influence of these parameters (T , τD , and τS) in Section 5.1.

We finally observe that varying a threshold will always influence
FAR and IPR in an opposite way. For example, increasing τD in
the DTW-D algorithm would decrease FAR. However, IPR will be
increased. Similarly for other variation of parameter: whenever a
variation brings a positive influence on one of the performance met-
rics (FAR or IPR), the same variation brings a negative influence on
the other performance metric.

4.3 Boolean Combinations
In this section, we describe some simple boolean ways of com-

bining the basic methods presented in Section 4.2. The boolean
combinations take as input the binary results of the basic meth-
ods: 1, for accepted patterns, and 0, for rejected patterns. We build
these methods to discuss the behaviour of FAR and IPR, and also
as building blocks for the methods proposed in Section 4.4.

First, we propose to combine two methods with a boolean op-
erator. This mechanism of combination is independent from the
specific basic methods considered as building blocks. So, we refer
in general terms to the building block methods as Method A and
Method B. Similarly, we refer to FAR and IPR of Method A as
FARA and IPRA (FARB and IPRB , for Method B). When com-
bining two basic methods with AND (cfr. Table 2), a test pattern
will be accepted only if both methods accept it (fourth line of Table
2).

Line n. method A method B AND combination
1 0 0 0
2 0 1 0
3 1 0 0
4 1 1 1

Table 2: Output of combination with AND.

Let us now discuss the case of the third line of Table 2: Method
A accepts the user, while Method B rejects her. It is clear that in
this case, one of the methods has failed; either (i) the user is an
impostor and Method A is wrong, or (ii) the user is the correct one
and Method B is wrong. In case (i), Method A makes a mistake that
would lead to an higher IPR. Hence, taking the AND combination
of the two results, the Method B might help to reduce the mistakes

of Method A, hence reducing the IPR. However, it could also be
the other way around: case (ii). That is, Method B is wrongly
rejecting a pattern from the correct user, this leading to an increase
of the FAR. Unfortunately, in this scenario, the AND combination
does not allow Method A to help reduce these type of mistakes of
Method B, hence not allowing a reduction of FAR (note that an
OR combination would allow this to happen). As a general result,
considering the cases laying in the other lines of Table 2, the AND
combination:

• can only reduce the IPR. Resulting IPR will enjoy IPR ≤
IPRA, IPR ≤ IPRB . That is:

IPR ≤ min{IPRA, IPRB}. (3)

• can only increase the FAR. Resulting FAR will enjoy FAR ≥
FARA, FAR ≥ FARB . That is:

FAR ≥ max{FARA, FARB}. (4)

In terms of sets we can describe the AND combination as fol-
lows. Let us consider the following two sets: the set IPA, of pat-
terns that result to be impostor pass cases for Method A, and the set
IPB , of patterns that results to be impostor pass cases for Method
B. The improvement that an AND combination can lead to the re-
sulting IPR depends on the size of IPA ∩ IPA. In fact, if IPA ∩ IPA

= ∅, the IPR of the combinations will be 0. On the other side, if
IPA ∩ IPA = IPA = IPB then IPR will be IPR=IPRA=IPRB .

In general, using AND the patterns will be accepted only when
both methods accept it. In this way, the number of accepted patterns
decreases, potentially decreasing IPR (i.e. the actual decreasing
depends on the size of IPA∩ IPA), and potentially increasing FAR.

When using OR, the patterns will be accepted even if only one
of the methods accepts it. In this way, the number of patterns that
get accepted increases, potentially reducing FAR and potentially
increasing IPR. Hence, the IPR resulting from an OR combination,
will enjoy:

IPR ≤ min{IPRA, IPRB}. (5)

While for the FAR of an OR combination, the following equation
holds:

FAR ≥ max{FARA, FARB}. (6)

We might also combine the four building blocks methods all to-
gether at the same time, instead of just two by two as described.
In this way, the combination mechanism accepts the user based on
how many basic methods accept the user (i.e. if n = 1, 2, 3, or 4 out
of 4 methods accept her). We expect to get less patterns accepted
as we increase n, hence a decreasing IPR, and an increasing FAR.

We can conclude this section by observing that, combining basic
methods with boolean operations can be helpful to select a different
combination of FAR and IPR. That is, as it is possible by varying T
and τ , also with boolean combinations we might look for a different
value of one of the performance metrics (FAR and IPR). However,
we observe that also with boolean combinations is not possible to
improve both FAR and IPR at the same time.

The best possible scenario expected for boolean combinations
is that, compared to one of the basic method, one of the metric
improve, while the other remain the same. The analysis cannot tell
us the chance to have such cases—the actual behaviour depends on
the specific users’ patterns, that is it depends on the size of the set
being intersections of cases, as discussed before for IPA and IPB .
Hence, we have to conduct experiments (results shown in Section
5.2) to better understand the behaviour of incorrect recognitions
(FAR and IPR).
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4.4 Leveraging non boolean output—can we
do it better, for free?

By combining the basic methods in a boolean way, as presented
in Section 4.3, we considered only the binary output (1, accepted,
or 0, rejected) of each single basic method involved in the combi-
nation. Instead, we argue that each single basic method has poten-
tially more information, rather than just the binary output (accep-
t/reject). In fact, each of the two algorithms (DTW-D and DTW-S)
considered in the basic methods gives its output based on a sim-
ilarity measure. The similarity measure is a value that expresses
how close (or how far) is the new test pattern compared to the T
patterns in the training set. While a single method can only out-
put a binary value with respect to a threshold, combining meth-
ods together, as described below, can convey more information. In
particular, the intuition is the following. Assume for example that
Method A suggests that the new pattern is very close to the one
of the correct user, while Method B suggests that the pattern does
not belong to the correct user just because the similarity goes be-
yond the threshold for a small value. We expect that in this case,
the likelihood that Method B is making a mistake is significantly
higher than the probability that Method A is making a mistake. We
describe combinations that can be applied to both DTW-D (Section
3.2.1) and DTW-S (Section 3.2.2) to leverage additional informa-
tion from the similarity measure, rather than only binary outputs.
We expect that this combination is able to significantly reduce, at
the same time, both FAR and IPR (not just one of them as we expect
for the boolean combination).

4.4.1 DTW-D Normalized
In DTW-D, a test pattern is compared with the threshold maxDist

+ τD (cfr. Section 3.2.2). We modify DTW-D to have an output that
is normalized, in the range of possible distances from maxDist
+ τD . In presenting the proposed normalization, we refer to Fig-
ure 2, where: the line represents an axis where the possible output
similarity values lie (lower bounded by 0—for identical patterns);
above the line we indicate the range of values that are accepted,
[0, maxDist + τD), and the range of values that are rejected,
[maxDist + τD , ∞); av and rv indicate the values assigned to
an example of accepted and an example of a rejected pattern, re-
spectively (their computation are explained below); the dotted in-
terval indicates the distance between the value av and maxDist
+ τD; similarly, the dashed interval indicates the distance between
the example of a rejected value rv and maxDist + τD .

Figure 2: Normalized output for DTW-D.

We remind that DTW-D, in its intermediate steps (cfr. Section
3.2.2), computes for the test pattern a distance di from each pat-
tern in the training set (i = 1 . . . T ). Then, these di are evaluated
to decide whether to accept or reject the test pattern (cfr. Section
3.2.2). Here, we propose a different usage of these di. First, we
compute the average of this values (

∑T
i=1 di/T ). In case this av-

erage is ≤ maxDist + τD we denote this result as av; otherwise,
we denote the result as rv (examples of av and rv are reported in
Figure 2). However, we are now looking for a normalized value.

That is, we want to make the obtained value normalized to a ref-
erence interval. We consider as reference interval the one from 0
to maxDist + τD , that is the interval of all possible accepted val-
ues. This normalization will apply to both av and rv . The result r
outputted by the normalized DTW-D will be:

• r > 0, if (
∑T

i=1 di/T ) < (maxDist+ τD);

• r < 0, if (
∑T

i=1 di/T ) > (maxDist+ τD);

• r = 0 if (
∑T

i=1 di/T ) = (maxDist+ τD).

In general, r is described by the following equation:

r =
(maxDist+ τD)−

∑T
i=1 di/T

(maxDist+ τD)
. (7)

4.4.2 DTW-S Normalized
We give a normalized version of DTW-S in a way that is similar

to the one used for DTW-D (Section 4.4.1). The main difference
is the way users get accepted. In this case, a test pattern is consid-
ered to correspond to the authorized user if the result is greater (not
smaller, as for the DTW-D) than a given threshold. We refer to Fig-
ure 3 to describe the normalized version of DTW-S. The notation
used in the figure is consistent with the one described in Section
4.4.1 for Figure 2. However, we underline that the accepted val-
ues are now on the right of the threshold (that here is τS), and the
rejected values are on the left of the same threshold.

Figure 3: Normalized output for DTW-S.

The result r, for the normalized version of DTW-S, is computed
according to the following equation (where si is the similarity value
that the non normalized version of DTW-S outputs):

r =

∑T
i=1 si/T − τS

τS
(8)

4.4.3 Combining Normalized Results
Now that we have the normalized version of both DTW-D and

DTW-S, we need to design the combination mechanism. First, we
observe that the result r of the normalized algorithms is no more
just binary (1, accept, or 0, reject). The mechanism to combine
the results is simple as just computing the sum of the normalized
results for each method, and compare it to a new threshold, τ̂ .

Let us first consider the case of two methods, say Method A and
Method B, that use the normalized versions DTW-D and DTW-S.
Let us also denote their results are mA (for Method A) and mB

(for Method B). In the combined method, the user is accepted if
the following equation holds (where α and β are parameters of the
combination mechanism):

(αmA + βmC) ≥ τ̂ , (9)
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Parameters α and β are used to regulate the influence of the two
building block methods on the overall result. If Equation 9 does
not hold, the user is rejected.

More generally, combining all four methods, we propose a simi-
lar procedure, except that we compute the sum of all the four meth-
ods (mA, mB , mC and mD), and compare them again with the
threshold τ̂ . Finally, the user is accepted if the following equation
holds:

(αmA + βmB + γmC + δmD) ≥ τ̂ , (10)

where α, β, γ, and δ are used to control the importance given to
each method. If Equation 10 does not hold, the user is rejected.

5. EVALUATION
To evaluate our proposal, we performed a wide range of exper-

iments. In particular, we investigated the performances of all the
presented basic methods (cfr. Section 4.2), and the possible com-
binations (cfr. Section 4.4 and Section 4.4). We wrote an Android
application, named FANTASY-app to get movement patterns, that
is the corresponding values over time of the accelerometer and ori-
entation sensors. We installed FANTASY-app on the Android Dev
Phone 1 [1], equipped with Android platform version 1.6. More in-
formation on our proposal, the FANTASY-app, and its source code
can be found on the project website [2]. We involved in our exper-
iments 10 test users (User 1, . . . , User 10), each of them providing
us with 50 movement patterns (for answering or placing a call). In
particular, we asked the users to answer the phone in the way we
depicted before, put the phone in front of them, press the “start”
button to imitate the call, then bring the phone to the ear. We did
not consider different ways of starting a call, like using hand-free
devices or using voice-recognition to find a name in the contact list
and automatically initiate the call.

As for performance metrics, we used the ones commonly used
for evaluation of biometric authentication systems [8, 10, 9], that
are: the percentage of times the correct user is not granted access—
FAR (False Alarm Rate)—, and the percentage of times an impos-
tor is granted access—IPR (Impostor Pass Rate). For computing
FAR, for each user we trained the system with her first T out of all
(50) patterns. Then, we gave as input to the authentication method
the remaining T − 50 patterns, hence considered test patterns. We
counted the percentage of times the system were not accepting this
patterns—hence not granting access to the correct user. Similarly,
we computed IPR by using the first T patterns of User 1 as training
patterns, and the patterns of the the other users as test patterns.

Given the described setting, in the following we show and dis-
cuss the results of our experiments. In particular, Section 5.1 dis-
cusses the experimental results for the basic methods, Section 5.2
the ones for the boolean combinations, while Section 5.3 present
the ones for the combinations considering the normalized version
of both DTW-D and DTW-S algorithms. When combining the ba-
sic methods, we considered, for each of them, the choice of param-
eters T and τ as summarized in Table 3.

5.1 The basic methods
In this section we show the results obtained for the four basic

methods: DTW-D-Sa, DTW-S-Sa, DTW-D-So, and DTW-S-So.
For each of this methods, we varied the number of training patterns,
T , from 2 to 20, and we tested 10 different values for the threshold
(τ ). In particular, since the two considered algorithm DTW-D and
DTW-S work in different ways, we also considered for the two of
them different set of threshold values. That is, we considered the
following values for the threshold τD: 0, 1000, 3000, 5000, 7500,

10000, 12500, 15000, 17500, and 20000. Similarly, for τS (thresh-
old of DTW-S), we considered the following values: 7%, 8%, 9%,
10%, 11%, 12%, 13%, 14%, 15%, and 16%. We run experiments
with all the combination of these parameters and for each combi-
nation, we computed FAR and IPR.

Figures 4 and 5 show how the variation of T and τD influences
FAR and IPR, in the DTW-D-So method. Figure 4 reports the re-
sults for different values of τD , when varying T on the x-axis. In
particular, Figure 4(a) shows (on y-axis) the corresponding FAR,
and Figure 4(b) the corresponding IPR. Similarly, Figure 5 gives a
different view on the same data. It reports the results for the vari-
ation of τS (on the x-axis) for different values of T . In particular,
Figure 5(a) shows the FAR, while Figure 5(b) shows the IPR.
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Figure 4: DTW-D-So, Varying T .

We observe from Figure 4 that an increase in the number of train-
ing patterns decreases the FAR by 30% (from 45%, for T = 0, to
15% for T = 20), and increases the number of IPR by only 10%
(from 0%, for T = 0, to less then 10% for T = 20). Also, we
observe that the results for the several considered τS are close to
each other. Hence, within the considered range, the variation of
the threshold does not significantly influence the results. This ob-
servation can also be drawn from the other view we have on the
same data (Figure 5)—the curves for different threshold values are
almost parallel to the x-axis.

Due to space limitation, we do not report here the same detailed
results for the other methods: DTW-D-Sa, DTW-S-Sa, and DTW-
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Figure 5: DTW-D-So, Varying τD .

S-So, for which we observed behaviour similar to the one shown for
DTW-D-So. However, we report some results that summarize the
overall performances of all the basic methods. We observe that any
variation of the parameters T and τ might improve one of the two
metrics (FAR and IPR), while decreasing the other one. Since there
is no variation that at the same can improve both metrics, it is up
to the user of the system to prefer to have a smaller FAR (at a cost
of an higher IPR), or to have a smaller IPR (at a cost of an higher
FAR). To summarize the result we used to following method. For
each combination of the considered T and τ , we measured the cor-
responding FAR and IPR. Then, we computed the average between
this two values. For each method, we looked for the parameters
setting (T and τ ) giving the smallest average of the two metrics. In
Figure 6 we report, for each method, the IPR and FAR obtained in
this way. Also, for each method, we report on Table 3 the values
of T and τ for which we obtained the lowest average between FAR
and IPR.

We conclude this section by observing that the performances ob-
tained for the basic methods are comparable to the ones of other
transparent authentication methods (Section 2). In fact, we ob-
tained for a single (not combined) method, DTW-D-So: IPR ∼
4.4% and FAR ∼ 9.3%. As an example of performances of concur-
rent transparent authentication system, we remind that gait recog-
nition (i.e. walking pattern) enjoys Equal Error Rate (EER) close
to 7% [16]. That is, the performances of walking patterns recog-

 0

 20

 40

 60

 80

 100

DTW-D-S
a

DTW-S-S
a

DTW-D-S
o

DTW-S-S
o

R
a
te

(%
)

Methods

IPR
FAR

Figure 6: Selection of basic methods with best performances.

Method τ T IPR FAR
DTW-D-Sa 0 6 13.1111 23.6666
DTW-S-Sa 58 20 12.8888 20.6666
DTW-D-So 0 20 4.4444 9.3333
DTW-S-So 14 20 32.0000 19.6666

Table 3: Parameters for methods comparison.

nition are similar to the ones of our system. However, while being
transparent, walking pattern recognition takes a long time before
the system can detect that the person using the phone is not the cor-
rect one. Keystroke dynamic, while obtaining an EER close to zero
when performed on computers, it gave for mobile devices an EER
= 12.8% [10, 8]. We argue that not only this result is high (making
this method more insecure), but also the system requires long time
before it collects enough data to take a decision; again, this giving
the intruder enough time to access sensitive data. Finally, acoustic
(internal) ear recognition has the best EER between the cited meth-
ods. It enjoys an EER of some 5.5% [6]. In this case, the result is
slightly better than the one obtained by our method. However, we
remind that this method actually requires devices that are not avail-
able on current smartphones. Also, we underline that the result of
EER ∼ 5.5% were obtained in a specific experimental setting, not
influenced by external factors like hair, or users wearing things like
hats or veils. Hence, we can claim that the performances of our
basic solutions are comparable (even better in most of the cases)
to the ones of other authentication methods. Furthermore, we re-
mind that our solution can solve a very specific problem that the
other solution can not solve: transparently authenticate the user
of a smartphone when she answers (or places) a phone call, using
devices already available on current smartphones, and without the
system being influenced by external factors like ears being covered.

5.2 Boolean Combinations
In this section, we report on the experiments we run in order

to evaluate the boolean combination approach discussed in Section
4.3.

Figure 7(a) (in Appendix) summarizes the results of all the pos-
sible AND combinations of the basic methods. As expected, in all
the possible combinations of two basic methods (say Method A and
Method B), resulting IPR and FAR satisfy Equation 3 and Equa-
tion 4, respectively. For example, let us see the case of the AND
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combination of DTW-D-So (Method A) and DTW-D-Sa (Method
B). IPRA is some 4.4; IPRB is some 13.3; the resulting IPR of
the AND combination is some 1.5 (that is, smaller than the small-
est between IPRA and IPRB). On the other side: FARA is some
9.3; FARB is some 23.6; the resulting FAR of the AND combina-
tion is some 24.6 (that is, bigger than the biggest between FARA

and FARB). For the OR combination, results are shown in Figure
7(b) (in Appendix), we observed, as expected, the opposite effect
on the combined results. That is, resulting IPR and FAR behave
accordingly to Equation 5 and Equation 6, respectively.

Finally, we considered the combination where the user is ac-
cepted when at least n out of the four methods accept her (n =
1, 2, 3, and 4). The results are shown in Figure 7(c) (in Appendix).
From this figure we observe that, as expected, when we increase n,
fewer users get accepted—hence decreasing IPR, while increasing
FAR. For example, IPR goes from some 41.1 to some 0.6 moving
from n = 1 to n = 4. During the same variation of n, FAR goes
from some 1 to some 40.9.

5.3 Normalized Combinations
In this section, we report the results we obtained for the evalua-

tion of the combination of basic methods proposed in Section 4.4,
where we consider the normalized version of DTW-D and DTW-S
(cfr. Section 4.4.1 and Section 4.4.1, respectively). We run exper-
iments considering both of the following: (i) combining methods
two by two; (ii) combining all the four methods together. In case
(i), we considered α = β = 1 in Equation 9 (i.e. giving the two meth-
ods equal importance). In case (ii), we considered α = β = γ = δ =
1 in Equation 10. That is, each building block method influences in
the same way the overall decision whether the user’s pattern should
be accepted. For the threshold τ̂ we used these values: -0.5, 0.0,
0.5, and 1.0.

The results obtained combining the methods two by two are shown
in figures 8(a), 8(b), 8(c), 8(d), 8(e), and 8(f) (in Appendix), for all
the possible combinations of the basic methods. The results for the
combination of all the four methods at the same time are shown in
Figure 8(g) (in Appendix).

As we can note from Figure 8, increasing τ̂ leads to an increased
FAR and a decreased IPR—this observation is consistent for all
the considered combinations. This is because increasing τ̂ means
requiring the combined basic methods to output a normalized value
that is closer to the one of the training set. After the influence of τ̂ ,
the interesting point is that the proposed normalization of DTW-D
and DTW-S, and the proposed combination of basic methods using
these algorithms, is able to significantly improve the results. In
fact, using this combination, we were able to improve both FAR
and IPR, i.e. from IPR ∼ 4.4%, FAR ∼ 9.3% (obtained for DTW-
D-So with parameters in Table 3) to IPR ∼ 2.5%, FAR ∼ 8% (for
combination of DTW-S-Sa and DTW-D-So—cfr. Figure 8(f)—,
with τ̂ = 0, using normalized version of DTW-D and DTW-D,
and again considering for them the parameters in Table 3). For
the described combination and parameter setting we observed EER
∼ 7%. We remind that varying T or τ in the basic methods, or
combining methods with boolean operator, is not possible to reduce
at the same time both FAR and IPR. Instead, with the proposed
algorithms normalization and combination, we are able to reduce
the IPR of some 50% from the best result we observed considering
the single methods, and at the same time also significantly reduce
FAR.

6. CONCLUSION
In this paper we propose a new biometric measure for users of

smartphones. That is, we focus on the movement that a user per-

forms when answering (or placing) a phone call, and we investigate
whether this movement can be used as a biometric authentication
measure. We propose four basic methods (leveraging different sen-
sors available on the phone and several similarity algorithms). In
this way, we manage to obtained for a single method (i.e. DTW-
D-So): IPR (Impostor Pass Rate) of some 4.5% , and FAR (False
Alarm Rate) of some 9.5%. Also, we propose a novel way of com-
bining the basic methods together. The results show that the pro-
posed combination can improve, at the same time, both FAR and
IPR. In fact, for a specific combination, we observed IPR ∼ 2.5%,
and FAR ∼ 8%, thus reducing again IPR by ∼ 2% and FAR by
∼ 1.5%. The proposed biometric measure is not only effective, as
proven by the results; it also enjoys a unique feature. That is, it
can be transparently used to authenticate a user that is answering
(or placing) a phone call, without this being affected by external
factors (like light exposure or users wearing hats or veils).

As future work, we mainly aim at more thorough experiments
(e.g. more users, different devices, different similarity algorithms).
We would also like to investigate the effectiveness in using this
mechanism in constrained environments (e.g. a crowded bus), in
case of shared devices (more authorized users on the same device),
and combining our mechanism with other authentication methods
(e.g. acoustic ear recognition). Finally, we aim at possible opti-
mization like the one on the similarity algorithm [23].
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Appendix
This section gives further details on the proposal evaluation. In
particular, we report FAR and IPR for the several proposed ways of
combining methods. First we report the results for boolean com-
binations (Section 4.3). Figure 7(a) shows the results for any pos-
sible combination of two basic methods with AND. Figure 7(b)
shows the results for any possible combination of two basic meth-
ods with OR. Finally, Figure 7(c) shows the results for the com-
bination where a user is accepted when n out of the four methods
accept it (n = 1, 2, 3, and 4). Then, we report the results for the
combination that is based on the normalized versions of DTW-D
and DTW-S (Section 4.4). Figures 8(a), 8(b), 8(c), 8(d), 8(e), and
8(f) report the results for all the possible combinations of two basic
methods. Figure 8(g) reports the results for the combination of all
the four methods together.
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Figure 8: Non-Boolean Combinations.
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