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Abstract. Multimodal biometrics provides high recognition accuracy and
population coverage by using various biometric features. A single finger
contains finger veins, fingerprints, and finger geometry features; by us-
ing multimodal biometrics, information on these multiple features can be
simultaneously obtained in a short time and their fusion can outperform
the use of a single feature. This paper proposes a new finger recognition
method based on the score-level fusion of finger veins, fingerprints, and
finger geometry features. This research is novel in the following four ways.
First, the performances of the finger-vein and fingerprint recognition are
improved by using a method based on a local derivative pattern. Second,
the accuracy of the finger geometry recognition is greatly increased by
combining a Fourier descriptor with principal component analysis. Third, a
fuzzy score normalization method is introduced; its performance is better
than the conventional Z-score normalization method. Fourth, finger-vein,
fingerprint, and finger geometry recognitions are combined by using three
support vector machines and a weighted SUM rule. Experimental results
showed that the equal error rate of the proposed method was 0.254%,
which was lower than those of the other methods. C© 2011 Society of Photo-
Optical Instrumentation Engineers (SPIE). [DOI: 10.1117/1.3530023]
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1 Introduction
Biometrics is a technology used to automatically identify in-
dividuals using physiological or behavioral features such as
veins, fingerprints, irises, hand geometry, and faces. Conven-
tional biometric systems that use a single biometric feature
are disadvantaged in that their recognition capacities are lim-
ited by the degree of freedom of the biometric feature. Their
performances are seriously affected by the conditions of the
user’s health, illumination, type of sensor, etc.1 In a fin-
gerprint recognition system, serious intrapersonal variations
can arise from the humidity of the finger surface and skin
distortions.2, 3 The accuracy of a vein recognition system is
reduced by changes in the vein thickness, which is related to
the blood flow. A user’s health and the weather conditions
lead to variations in the blood flow.2–4 Multimodal biometric
technology solves the problems of biometric systems that use
only a single biometric feature.1–5 Owing to the use of var-
ious biometric features obtained from multiple modalities,
multimodal biometric technology has higher recognition ac-
curacy than biometric systems that use a single biometric
feature. This paper proposes a new finger recognition system
based on the score-level fusion of various biometric features
obtained from a single finger. A single finger contains several
biometric features such as finger veins, the fingerprint, and
the finger’s geometric features. If multiple finger features are
used for user authentication, high recognition accuracy and
population coverage can be achieved in addition to avoiding
the threat of spoofing.5
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In previous works, many recognition approaches us-
ing the features of a single finger, such as fingerprint
recognition,6–9 finger-vein recognition,10–12 and finger ge-
ometry recognition2, 3 have been introduced. There have also
been studies that combined two biometric features of a finger
to overcome the limitations of unimodal biometrics,2, 3 but
there have been no studies on the fusion of three features of
a finger.

Ferrer et al. combined the hand vein and hand geometry
features extracted by a 2D Gabor wavelet filter.13 However,
the problem with this method was that the size of the cap-
turing device was increased to acquire the hand features. To
overcome this problem, Kang et al. introduced a multimodal
biometric method based on the fusion of the finger geometry
and finger-vein features.2, 3 Lee et al. introduced the new de-
vice which can capture the finger vein and fingerprint images
at the same time, but did not research the recognition algo-
rithms of finger vein and fingerprint.15 In this paper, we pro-
pose a new finger recognition approach based on the fusion
of the finger-vein, fingerprint, and finger geometry features
in order to provide higher recognition accuracy and popu-
lation coverage than the previous approaches that combined
only two biometric features.

Lee et al. proposed a finger-vein recognition system based
on the local binary pattern (LBP) method.10 In this study, we
effectively extracted the finger-vein and fingerprint features
by using a local derivative pattern (LDP) method. Because the
LDP method can extract more elaborate and discriminative
features than the LBP method,14 the LDP-based finger-vein
and fingerprint recognition approaches perform better than
the previous LBP-based approaches.10, 11
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Fig. 1 Capturing device used to acquire the finger-vein and finger-
print images:15 (a) structure of the device; (b) path of the NIR light;
and (c) path of the visible light.

The previous finger geometry recognition approach ob-
tains finger shape representations based on the vertical thick-
ness vectors of the finger region.2 And the performance of
the finger geometry recognition was enhanced by using the
Fourier descriptor (FD) of the vertical thickness vectors of
the finger region because the vertical thickness vectors are
affected by the finger rotation, translation and segmenta-
tion error of finger region.3 However, there was a still prob-
lem that the performance of the finger geometry recognition
is degraded because orthogonality between the FDs is not
guaranteed.3 Therefore, we combined the FDs and principal
component analysis (PCA) to guarantee the orthogonality;
the subsequent performance of the finger geometry recogni-
tion was greatly improved.

The score-level fusion of the finger-vein, fingerprint, and
finger geometry recognition was achieved by using three sup-
port vector machines (SVMs) and a weighted SUM rule after
their scores were normalized by a fuzzy score normalization
method. The proposed approach has a better performance
than unimodal biometrics and the previous multimodal bio-
metric methods.

The rest of this paper is organized as follows: Sec. 2
presents the proposed approach in detail, including descrip-
tions of the LDP, FD, and PCA. The experimental results are
explained in Sec. 3, and Sec. 4 summarizes our conclusions.

2 Proposed Multimodal Finger Recognition
Method

2.1 Proposed Capturing Device
Figure 1 shows the structure for the capturing device to obtain
the fingerprint, finger geometry, and finger-vein features of
a single finger at the same time.15 A finger-vein image is ac-
quired using near-infrared (NIR) light illumination because
NIR light is absorbed into the hemoglobin and penetrates the
skin of the finger.12, 16 A fingerprint image can be obtained
under visible light illumination because the fingerprint on the
skin surface of the finger reflects visible light. In the captur-
ing device, four 880-nm NIR light-emitting diodes (LEDs)
and an NIR passing filter are used to acquire the finger-vein
image, and a single 600-nm visible light LED is used for
acquiring the fingerprint image. In order to reduce the size of
the device, we used two conventional web cameras.17 For the
camera used for the finger-vein image, the NIR blocking fil-
ter inside the camera was removed with the NIR passing filter
attached to the front of the camera sensor. Because the cam-
era used for the fingerprint image captures the image using
visible light, it was left unaltered. In addition, the finger-vein
and fingerprint images were simultaneously obtained from
the two cameras by using a hot mirror that reflects the NIR
light and transmits the visible light. Fig. 16 shows examples
of the fingerprint and finger-vein images obtained from the
capturing device.

2.2 Overview of the Proposed Approach
Figure 2 shows a block diagram illustrating the overall pro-
cedure of the finger recognition method that combines infor-
mation from multiple biometric sources. Because the optical
axis of the camera for the finger-vein image is in accordance
with that of the camera for the fingerprint image based on
the structure shown in Fig. 1,15 the finger is positioned at the
same coordinates in the finger-vein and fingerprint images via
an uncomplicated camera calibration. Thus, the position of
the finger region in the fingerprint image is determined from
the results of the finger detection in the finger-vein image.
The finger-vein image is used for the finger detection because
the fingerprint image includes a large amount of background
noise at levels greater than those of the finger-vein image, as
shown in Figs. 5(b) and 5(c). This is because the fingerprint
image is captured under a visible light environment, and more
noisy components in the background can be seen in visible
light than in NIR light, as shown in Figs. 5(b) and 5(c).

Fig. 2 Flowchart of the proposed multimodal biometric method combining the finger-vein, fingerprint, and finger geometry features.
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Fig. 3 Finger region and fingertip detection: (a) original finger-vein image; (b) result of the fingertip detection; (c) candidate area for the finger
region detection; and (d) result of the finger region detection.

The finger region in the finger-vein image is found by
detecting the horizontal edge lines between the finger and
background; the fingertip is detected by image binarization.
After measuring the angle between the x-axis and center line
of the finger region, the rotation of the finger is aligned. Then,
the three biometric features are extracted from a single fin-
ger as follows. The finger-vein and fingerprint features are
extracted by the LDP. The finger geometry features are ob-
tained by the method that combines the FD and PCA from
the finger-vein image. The fuzzy membership scores are cal-
culated by the predefined membership function by matching
the scores of the three biometric features, and then, the user
authentication is finally completed by fusion of the fuzzy
scores using the three SVMs and the weighted SUM rule.

2.3 Finger Region and Fingertip Detection
Because the NIR light penetrates the finger skin, the finger
skin shows higher intensity values than the background in a
finger-vein image, as shown in Fig. 3(a). The finger region
is less than 30% of the finger-vein image when the user’s
finger is located at the depth of focus region of the camera,
so the brightest 30% of the pixels are assigned to 255 as the
finger region. The remaining pixels in the background area
are assigned to 0, as shown in Fig. 3(b). Because some of
the background pixels can be set to 255 owing to ambient
light and image noise, the largest region is found by com-
ponent labeling; the x position of its right end point is then
determined as the x position of the fingertip.

In order to detect the finger region in more detail, edge
detection masks are used, as shown in Fig. 4. Because the NIR
light barely penetrates through a thick finger, the finger-vein
patterns are hard to separate from the finger skin on the left
side of the finger region, as shown in Fig. 3(c). In addition,

Fig. 4 Finger boundary detection mask: (a) detecting the upper
boundary and (b) detecting the lower boundary.2,3

the right side of the finger region rarely includes finger-vein
patterns. Thus, the finger region is detected in the candidate
area excluding the left and right sides of the finger region, as
shown in Fig. 3(d). The M and N values are empirically set
to 350 and 50 pixels, respectively, in the experiment.

2.4 Rotation Alignment
In order to reduce the recognition errors caused by rotation
of the finger, a rotation alignment is carried out. The cen-
ter line of the finger region is produced by calculating the
mean values of the y positions of the upper and lower finger
boundaries at each x position; the angle θ of the rotation is
then determined by the Hough transform as

y = x tan θ + y0, (1)

where (x, y) and y0 denote the points on the center line and
the y position of the start point of the center line, respectively,
as shown in Fig. 5(a). The start point is the location that is
M pixels distant from the fingertip (xft), and the angle θ is
constrained in the range of –30◦ to 30◦ for fast processing
in consideration of the limitations on finger rotation in our
device. Figs. 5(b) and 5(c) show the results of the rotation
alignment.

2.5 Finger-Vein Recognition Based on LDP
The procedure for the finger-vein recognition is depicted in
Fig. 6. The finger region is normalized into dimensions of
180×60 pixels to solve the problem of the size variations
caused by the change in Z distance between the finger and
camera. The size normalization is achieved by stretching the
finger region horizontally and vertically; Fig. 7 shows some
examples. To eliminate image noise and reduce the com-
putational time, a subsampled image of 60 × 20 pixels is

Fig. 5 Rotation alignment of a finger: (a) example of measuring the
rotation angle from the center line; (b) original images; and (c) aligned
finger-vein and fingerprint images.
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Fig. 6 Flowchart of the finger-vein recognition method.

obtained by selecting the mean gray value in every nonover-
lapping block of 3 × 3 pixels within the normalized image.3

The LBP is the descriptor for representing the first-order
derivative pattern;18, 19 the LDP represents the high-order
derivative pattern in a specific direction.14 Therefore, the
LDP is reported to extract more elaborate and discriminative
features than the LBP.14 In this paper, the finger-vein codes
are extracted from the sub-sampled image by using a second-
order LDP employed in the 0◦, 45◦, 90◦, and 135◦ directions.
If the eight adjacent pixels are located around Ic, as shown in
Fig. 8, the first-order derivative bits along each direction are
defined as

B0◦
(
xc, yc

) = f (I4 − I c) , (2)

B45◦
(
xc, yc

) = f (I3 − I c) , (3)

B90◦
(
xc, yc

) = f (I2 − I c) , (4)

B135◦
(
xc, yc

) = f (I1 − I c) , (5)

f (k) =
{

1, k > th
0, k ≤ th

, (6)

where (xc, yc) and th denote the position of the center pixel
Ic and the predefined threshold, respectively. The predefined
threshold was set to 0 in our experiment. The LDP extracts
the feature codes from the exclusive-OR (⊗) operation of the
corresponding first-order derivative bits between the center
pixel and eight adjacent pixels.

LDPα(xc, yc) =
8∑

i=1

{Bα(xc, yc) ⊗ Bα(xc + ui , yc

+v i )}· 2i−1, (7)

Fig. 7 Examples of the size normalization of the finger-vein image:
(a) results of the finger detection and (b) subsampled images of
60×20 pixels.

Fig. 8 Example of the eight adjacent pixels around Ic.

ua =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

−1, if a = 1
0, if a = 2
1, if a = 3
1, if a = 4
1, if a = 5
0, if a = 6

−1, if a = 7
−1, if a = 8

, v a =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

−1, if a = 1
−1, if a = 2
−1, if a = 3

0, if a = 4
1, if a = 5
1, if a = 6
1, if a = 7
0, if a = 8

, (8)

LDPα

(
xc, yc

) = {
LDPα

(
xc, yc

) | α = 0◦, 45◦, 90◦, 135◦}.
(9)

Figure 9 shows an example of the second-order LDP for
the 0◦ direction at (3, 3). First, the first-order derivative bits
are calculated at the center pixel and top-left adjacent pixel
along the 0◦ direction, as shown in the left-uppermost case
of Fig. 9. I4 and Ic of the center pixel are 8 and 2, and I4
and Ic of the top-left adjacent pixel are 5 and 7. Therefore,
the first-order derivative bits of the center pixel and top-left
adjacent pixel are 1 and 0, respectively, and the result of
their exclusive-OR operation is 1. Similar to this method,
the first-order derivative bits between the center pixel and
adjacent pixels are compared in the clockwise direction, and
8 bits for the 0◦ direction are extracted, as shown in Fig. 9.
Consequently, 32 bits per pixel are extracted for the four di-
rections of 0◦, 45◦, 90◦, and 135◦. The finger-vein code of
28,672 (56×16×32) bits is produced from the sub-sampled
image of 60×20 pixels. Four rows and four columns are ex-
cluded at the image border because the first-order derivative
bits cannot be calculated at an image border.

The score of the finger-vein recognition is finally mea-
sured by calculating the hamming distance (HD) between
the finger-vein codes of the enrolled and those of input im-
ages as

HD = 1

N
‖codeA ⊗ codeB‖ , (10)

where code A and code B denote the finger-vein codes of
the enrolled and input images, respectively. N denotes the
number of bits of finger-vein codes.

2.6 Fingerprint Recognition Based on LDP
The ridge quality of the fingerprint image by the proposed
device is not as good as that by a conventional 2D fingerprint
sensor because the image is acquired without touching the
sensor, as shown in Fig. 1. Therefore, the errors of detect-
ing ridge and minutia points are great, which degrades the
consequent accuracy of fingerprint recognition (see Figs. 18
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Fig. 9 Example of the LDP method.

and 19). We propose LDP-based fingerprint recognition to
counteract this problem.

Figure 10 shows the overall process for fingerprint recog-
nition. First, the fingerprint region is selected, as shown in
Fig. 11. The center of the fingerprint region is determined by
the medial point between the upper and lower boundaries of
the detected finger region at each x position, which is as dis-
tant as L pixels from the fingertip. Here, the upper and lower
boundaries of the finger region and fingertip are detected by
the method presented in Fig. 3.

The width and height of the fingerprint region are deter-
mined by half of the finger thickness at the medial point. The
finger thickness is defined as the distance between the upper
and lower boundaries of the finger region. In order to extract
fingerprint codes that are robust to the size variations caused
by changes in the Z distance between the camera and user’s

finger, the L value of Fig. 11 is adaptively determined as two-
thirds of the average finger thickness. The fingerprint region
is also normalized into 40 × 40 pixels to reduce computation
time and image noise.

The fingerprint codes are extracted by the LDP method
in the same manner as finger-vein recognition. The repet-
itive feature codes of fingerprint are extracted from the
continuative edges between the valley and ridge. In this study,
four histograms were obtained from the decimal values of the
fingerprint codes in four directions (0◦, 45◦, 90◦, and 135◦,
as shown in Fig. 9), and the dissimilarity score was then
calculated by the chi square distance (CSD) between the
histograms of the enrolled and input images as20

CSD = 1

2

255∑
i=0

[histoAα (i) − histoBα (i)]2

histoAα (i) + histoBα (i)
,

Fig. 10 Flowchart of the finger print recognition method.
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Fig. 11 Example of the fingerprint region detection.

α = 0◦, 45◦, 90◦, 135◦, (11)

where histoAα (i)and histoBα (i) denote the histograms of
the decimal values for the LDP codes of the enrolled and
input images, respectively. A small positional difference in
the enrolled and input images can cause great intra-variation
because the fingerprint has a fine structure of ridges, and the
local matching based on the HD of Eq. (10) cannot solve
this problem. Thus, we use the histogram-based matching of
Eq. (11), which is global matching and insensitive to small
positional differences.

The finger veins exist sparsely, as shown in Fig. 7, and
are more insensitive to the positional differences than finger-
print ridges. Thus, HD-based matching is used for finger-vein
recognition, as shown in Eq. (10).

2.7 Finger Geometry Recognition Based
on FD and PCA

The procedure for finger geometry recognition is presented in
Fig. 12. In previous works, the Fourier descriptor (FD) of the
finger thickness was used for the finger geometry features.3

The FDs represent the shape of a single finger in the fre-
quency domain; the descriptors of the low frequency com-
ponents represent the global shape, and the descriptors of
the high frequency components represent the detailed shape.
After measuring the finger thicknesses ti of the finger region,
as shown in Fig. 13, they are transformed into the frequency
domain by using a fast Fourier transform.3 In addition, G is
the vector of the FDs, which consists of the magnitudes of
the frequency components, and is given as

G =
[ |T 1|
|T 0| · · · |T n−1|

|T 0|
]

, (12)

where Ti and T0 denote the ith component in the frequency
domain and DC component, respectively. The scale invariant
geometry features can be extracted by dividing the frequency
components by the DC component.3 In this study, the number
of finger thickness features was 512, so 511 FDs were used
for the finger geometry recognition. In a previous study,3

Fig. 13 Example of the finger geometry feature based on the finger
thickness.2,3

finger geometry features based on FDs were obtained using
these methods.

However, the accuracy of the finger geometry recognition
in Ref. 3 can be enhanced because orthogonality between
the FDs is not guaranteed. Thus, PCA is used. The so-called
scatter matrix S is calculated as21

S =
N∑

i=1

[
Gi − Ḡ

] [
Gi − Ḡ

]T
, (13)

where Ḡ denotes the mean vector of the FDs on the training
dataset. The eigenvector ei and eigenvalue λi are obtained by

Sei = λi ei , i = 1, 2, · · · , N . (14)

The score of the finger geometry recognition is finally
measured by calculating the Euclidean distance (ED) be-
tween the eigenvalues of the enrolled and input FDs as

ED = 1

m − 1

√
‖λA − λB‖2, (15)

where λA and λB denote the vectors of eigenvalues of the
enrolled and input FDs, respectively. m denotes the number
of eigenvalues.

2.8 Fuzzy Score Normalization
The scores of the finger-vein, fingerprint, and finger geome-
try recognition are normalized by the proposed fuzzy score
normalization. This technique provides an attribute value that
represents the degree of membership in a specific class.22 On
the basis of this value, the degree of membership is newly
proposed as

h′ = 1

1 + e
[h−(μg+μi )/2]

max(σg ,σi )/2

, (16)

where μg and σ g denote the mean and standard deviation of
the genuine class, respectively. μi and σ i are the mean and
standard deviation of the imposter class, respectively.

Fig. 12 Flowchart of the finger geometry recognition method.
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Fig. 14 Proposed fuzzy score normalization.

The genuine input data show lower distances [Eqs. (10),
(11), and (15)] with the enrolled data by finger-vein, fin-
gerprint, and finger geometry recognition. The imposter
data show higher distances. On the basis of these facts, we
design a fuzzy membership function for score normalization,
as shown in Fig. 14.

After obtaining the genuine and imposter classes with
training data, the score (distance) belonging to the genuine
class is forced to be 1, and that to the imposter class is 0
through the membership function. Through normalization of
each score (distance) of the finger-vein, fingerprint, and finger
geometry recognition by using three membership functions,

the separation of the genuine and imposter classes can be
increased, which reduces the consequent equal error rate
(EER) of recognition.

The normalized score is set to 0.5 at the center of the
means (μg and μi) of the genuine and imposter distribu-
tions, as shown in Fig. 14, and the gradient of the score
normalization curve is controlled by the two standard devia-
tions (σ g and σ i) of the genuine and imposter distributions.
Smaller standard deviations make the curve steep and vice
versa.

2.9 Score-Level Fusion and Classification
The three normalized scores are used as the inputs of
the SVM, which finds the optimal decision hyperplane in
terms of maximizing the distances between the support
vectors.21, 23, 24 A three-dimensional SVM requires a great
number of samples and has higher complexity than a two-
dimensional SVM. Thus, we divided the problem into three
SVMs that use two scores for inputs, as shown in Fig. 15;
the three decision values obtained from the three SVMs
were then combined using a weighted SUM rule. In our
experiments, the optimal decision hyperplanes of the SVMs
were determined by a radial basis function (RBF) kernel
(with a γ value of 1) among the five kernels tested: the dot,
polynomial, RBF, neural, and ANOVA kernels.

3 Experimental Results

3.1 Databases
There is no public database in which finger-vein and fin-
gerprint images have been captured at the same time, so
finger-vein and fingerprint images were collected with the

Fig. 15 Score-level fusion and classification.
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Fig. 16 Images on the collected database: (a) finger-vein images
and (b) fingerprint images.

capturing device shown in Fig. 1. The database consists of
6380 finger-vein images and 6380 fingerprint images; these
were acquired from eight fingers of 80 people. Nine to 10
finger-vein images and fingerprint images were simultane-

ously captured per each finger. It was difficult to capture the
thumb image by the proposed capturing device. The veins of
the thumb are not clear because the NIR light barely pene-
trates the skin of the thick thumb. The thumb is not used in
other commercial systems either.12, 25 The resolution of the
finger-vein and fingerprint images was 640 × 480 pixels with
an 8-bit gray level. Figure 16 shows examples of the database
images.

3.2 Comparisons of the Different Types of
Approaches for Finger-Vein Recognition

The performances of different types of approaches for finger-
vein recognition were compared in terms of recognition ac-
curacy. Using the LBP and LDP methods, the finger-vein
codes were extracted from the normalized images obtained
in the preprocessing step. We then measured the similarity
between the codes of the input image and those of the en-
rolled ones using two types of methods: one calculated the
HD from the finger-vein codes, and the other calculated the
CSD from the histograms of the finger-vein codes.

Figure 17 shows the ROC curves obtained from the four
different types of approaches for finger-vein recognition. The
ROC curve indicates the genuine acceptance rate (GAR) at
various levels of false acceptance rates (FAR). The GAR
is defined as 100 – FRR (%). FRR is the false rejection
rate, which is the error rate of falsely rejecting the enrolled
(genuine) code as an un-enrolled (imposter) one. FAR is the
error rate of falsely accepting the unenrolled (imposter) code
as the enrolled (genuine) one.

The approach calculating the HD between the finger-vein
codes extracted by the LDP method produced the best results,
as shown in Fig. 17. Because a human finger does not have
repetitive and fine vein patterns, as shown in Fig. 7, the
intra-variations caused by the positional differences between
the input and enrolled image are not great. Thus, the local

Fig. 17 ROC curves of various finger-vein recognition methods on 6380 finger-vein images.
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Fig. 18 ROC curves of various fingerprint recognition methods on 6380 fingerprint images.

matching using the HD between the binary finger-vein codes
[Eq. (10)] performed better than global matching using the
CSD between histograms [Eq. (11)].

3.3 Comparisons of the Different Types of
Approaches for Fingerprint Recognition

The performances of the different types of approaches for
fingerprint recognition were compared in the same manner
as the finger-vein recognition methods. As shown in Fig. 18,
the recognition accuracy of calculating the CSD between the
histograms of the fingerprint codes extracted by the LDP
method was better than the other methods.

Because a human fingerprint consists of repetitive and
fine patterns of ridges and valleys—unlike finger veins—
the intra-variations caused by the positional differences
between the input and enrolled image can be great.
Thus, global matching using the CSD between histograms
[Eq. (11)] performed better than local matching using the
HD [Eq. (10)] between binary fingerprint codes. The ridge
quality of the fingerprint image by the proposed device is
not as good as that by the conventional 2D fingerprint sensor
because the image is acquired without touching on the sen-
sor, as shown in Fig. 1. Thus, the errors in detecting ridge
and minutia points are great, which degrades the consequent
accuracy of fingerprint recognition.

Fig. 19 Example of fingerprint line segmentation: (a) original image;
(b) segmented image; (c) skeleton image; and (d) detected minutia
points (cross = ending points, dots = bifurcation points).

The ROC curve of the minutiae-based fingerprint recog-
nition was measured by calculating the modified Hausdorff
distance after detecting minutia points with local binarization
and thinning algorithm. As shown in Fig. 19, many minutia
points are incorrectly detected because fingerprint images
with bad quality are captured owing to touchless acquisition,
illumination variation, and image noises. Thus, the perfor-
mance of the minutiae-based fingerprint recognition was not
good, as shown in Fig. 18.

3.4 Comparisons of the Different Types of
Approaches for Finger Geometry Recognition

The performance of the proposed approach combining the FD
and PCA methods was compared with those of the previous
approach that used only the FD method.3 In our experiment,
1276 finger images were used to train the PCA, and the other
images were used to measure the recognition accuracy.

In order to determine the optimal number of eigenvectors,
we measured the recognition accuracy (100 – EER) accord-
ing to the number of eigenvectors, as shown in Fig. 20. The
best recognition accuracy of 98.56% was produced when
using four eigenvectors. There were no great variations in
the recognition accuracy when more than four eigenvectors
was used, and the recognition accuracy was actually 97.21%
when all 511 eigenvectors were used. We measured the recog-
nition accuracy of the proposed approach on the test set of
5104 images. As shown in Fig. 21, the EER of the proposed
method was reduced by 3.191% (4.634% – 1.443%) over the
previous method that used only the FD found in Ref. 3.

3.5 Comparisons of Score Normalization Methods
The performance of the fuzzy score normalization method
was evaluated by comparing it to the Z-score normaliza-
tion method on the fusion method with the SUM rule. The
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Fig. 20 Recognition accuracy according to the number of eigenvectors.

Z-score normalization method uses the arithmetic mean μ
and standard deviation σ of the data distribution as 26

h′′ = h − μ

σ
. (17)

Training data are required for the parameter selection in
both the proposed score normalization method and Z-score
normalization method. Therefore, we selected 3190 train-
ing images randomly and measured the recognition accuracy
with the remaining images. The average recognition accu-
racy was measured from the test performed 10 times, and the
SUM rule was used for the fusion of the normalized scores.
The SUM rule determines a final score by the sum of the
scores obtained from each method. As shown in Fig. 22 and
Table 1, we obtained the following observations:

(i) The EER of the proposed score normalization method
was reduced by 0.469% (1.243% – 0.774%) over the
Z-score normalization method.

(ii) The difference between the minimum and maximum
EERs was smaller in the proposed method than in the
Z-score normalization method.

Fig. 21 ROC curves of the approaches for the finger geometry recog-
nition on the test set of 5104 images.

Therefore, we found that the proposed method achieves
a more stable and efficient score fusion than the Z-score
normalization method.

3.6 Comparisons of the Multimodal and Unimodal
Recognition Approaches

We compared the unimodal and multimodal recognition ap-
proaches that fused the scores with the SVM. For five itera-
tions, we randomly selected 3190 images to train the SVM
and measured the recognition accuracy with the remaining
images. The fusion of the finger veins (FV), fingerprints
(FP), and finger geometry (FG) was achieved by the pro-
posed method, which combined the decision values obtained
from the three SVMs by the weighted SUM rule. As shown in
Fig. 23, all of the multimodal recognition approaches outper-
formed the unimodal recognition approaches, and the fusion
of the three scores produced the best results. We found that
using various biometric features in conjunction leads to a
high recognition accuracy.

The processing time of the proposed method was mea-
sured on a desktop computer with an Intel Core Quad CPU
2.66 GHz. It took 79.0, 18.7, and 0.9 ms for the detections
of the finger region and fingertip, rotation alignment, and
size normalization, respectively. The processing times for
the LDP-based finger vein and the LDP-based fingerprint
recognition were 0.4 and 0.3 ms, respectively. The finger ge-
ometry recognition took 2.3 ms. In addition, it took about
3.1 ms for the score level fusion, including the fuzzy score
normalization and SVM classification. Consequently, the
total processing time of the proposed multimodal method
was almost 104.7 (79.0 + 18.7 + 0.9 + 0.4 + 0.3

Table 1 Recognition accuracy for different types of score normaliza-
tion methods.

EER (%)

Methods Min Max Average

Fuzzy score normalization 0.458 0.959 0.774

Z-score normalization 0.461 1.394 1.243
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Fig. 22 ROC curves of the different types of score normalization.

+ 2.3 + 3.1) ms on average, whereas those of the fin-
ger vein, fingerprint, and finger geometry recognitions were
99.0 (79.0 + 18.7 + 0.9 + 0.4), 98.9 (79.0 + 18.7 + 0.9 +
0.3), and 100.9 (79.0 + 18.7 + 0.9 + 2.3) ms, respectively.

Thus, we confirmed that the processing time of the pro-
posed multimodal method is a little longer than those of
finger vein, fingerprint and finger geometry recognitions by
5.7 (104.7 – 99.0), 5.8 (104.7 – 98.9) and 3.8 (104.7 – 100.9)
ms, respectively, because the unimodal biometric methods
also need preprocessing, including the detections of the finger

region and fingertip, rotation alignment, and size nor-
malization.

3.7 Comparisons of the Proposed Fusion
and Other Fusion Rules

The performance of the proposed fusion method was com-
pared with various fusion rules such as MAX, MEDIAN,
MIN, and SUM rules. The MAX, MEDIAN, and MIN rules
respectively represent the fusion methods that determine the

Fig. 23 ROC curves of the unimodal and multimodal recognition approaches using the SVM.
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Fig. 24 ROC curves of the fusion methods using the various rules.

final score by selecting the maximum, median, and minimum
score from the recognition approaches. The average recog-
nition accuracy was measured on the dataset excluding 3190
training images and using five iterations. As shown in Fig. 24,
the proposed fusion method outperformed the other fusion
methods because the proposed method effectively discrim-
inates between the genuine and imposter classes by using
the SVM.

4 Conclusion
This paper proposes a finger recognition approach based on
the score-level fusion of the finger-vein, fingerprint, and fin-
ger geometry features. The performances of the finger-vein
and fingerprint recognition were improved by using LDP,
and the performance of the finger geometry recognition was
greatly improved by combining the FDs with the PCA meth-
ods. A fuzzy score normalization was introduced, and we
combined the three decision values obtained from three two-
dimensional SVMs in order to reduce the complexity inher-
ent to three-dimensional SVM. Consequently, the proposed
finger recognition had high recognition accuracy owing to
the use of the various biometric features. However, the per-
formance of the proposed approach can deteriorate by severe
rolling and bending of the finger; therefore, we will study fin-
ger recognition that is robust to rolling and bending fingers
in future work.
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19. T. Ojala, M. Pietikäinen, and T. Maenpaa, “Multiresolution gray-
scale and rotation invariant texture classification with local binary
patterns,” IEEE Trans. Pattern Anal. Mach. Intell. 24(7), 971–987
(2002).

20. P. Suau, “Robust artificial landmark recognition using polar his-
tograms,” Lect. Notes Comput. Sci. on IROBOT 3808, 455–461 (2005).

21. R. O. Duda, P. E. Hart, and D. G. Stork, Pattern Classification,
Wiley-Interscience Publication (2001).

22. W. Au and K. C. Chan, “Classification with degree of membership:
a fuzzy approach,” in Proc. IEEE International Conference on Data
Mining, pp. 35–42 (San Jose, California, USA. IEEE Computer Society,
2001).

23. M. S. Fahmy, A. F. Atiya, and R.S. Elfouly, “Biometric fusion us-
ing enhanced SVM classification,” in Proc. International Conference
on Intelligent Information Hiding and Multimedia Signal Processing,
pp. 1043–1048 (Los Alamitos, USA. IEEE Computer Society,
2008).

24. V. Vapnik, Statistical Learning Theory, Wiley-Interscience (1998).
25. Finger Vein Reader, http://www.hitachi-omron-ts.com/products/

fingervein/index.html/, accessed October 25, 2010.
26. A. K. Jain, K. Nandakumar, and A. Ross “Score normalization in

multimodal biometric systems,” Pattern Recogn. 38(12), 2270–2285
(2005).

Byung Jun Kang received his BS and MS
degrees in Software and Computer Sci-
ence from Sangmyung University, Seoul,
South Korea, in 2004 and 2006, respec-
tively. In 2009, he also earned a PhD in
Computer Science from the Department of
Computer Science, Sangmyung University,
Seoul, South Korea. He was a senior re-
searcher at the Electronics and Telecommu-
nications Research Institute from May 2009
to August 2010. He is a senior researcher

in the Technical Research Institute at Hyundai Mobis. His research
interests include biometrics, image processing, and advanced safety
vehicles.

Kang Ryoung Park received his BS and
MS degrees in Electronic Engineering from
Yonsei University, Seoul, Korea, in 1994 and
1996, respectively. He also received his PhD
in Computer Vision from the Department of
Electrical and Computer Engineering, Yonsei
University, in 2000. He was an assistant pro-
fessor in the Division of Digital Media Tech-
nology at Sangmyung University from March
2003 to February 2008. He has been an as-
sistant and associate professor in the Divi-

sion of Electronics and Electrical Engineering at Dongguk University
since March 2008. He is also a research member of BERC. His
research interests include computer vision, image processing, and
biometrics.

Jang-Hee Yoo received his BSc degree in
physics from HUFS in 1988, his MSc de-
gree in computer science from HUFS, S. Ko-
rea, in 1990. He received his PhD in elec-
tronics and computer science from the Uni-
versity of Southampton, UK, in 2004. Since
November 1989, he has been with Electron-
ics and Telecommunication Research Insti-
tute (ETRI), S. Korea as a principal mem-
ber of research staff. His current research in-
terests include embedded computer vision,

biometric systems, human motion analysis, intelligent video surveil-
lance, HCI and intelligent robot. He is a member of IEEE and IEEK.

Jeong Nyeo Kim received his BSc degree
from Chonnam National University in 1987,
his MSc degree in Computer Eng. from
Chungnam National University, S. Korea, in
2000. He received his PhD in Computer Eng.
from Chungnam National University, in 2004.
Since February 1988, he has been with Elec-
tronics and Telecommunication Research In-
stitute (ETRI), S. Korea. His current research
interests include system & network security,
security OS, and biometrics.

Optical Engineering January 2011/Vol. 50(1)017201-13

Downloaded From: http://opticalengineering.spiedigitallibrary.org/ on 08/07/2015 Terms of Use: http://spiedigitallibrary.org/ss/TermsOfUse.aspx

http://www.logitech.com/
http://dx.doi.org/10.1016/0031-3203(95)00067-4
http://dx.doi.org/10.1109/TPAMI.2002.1017623
http://dx.doi.org/10.1007/11595014_45
http://www.hitachi-omron-ts.com/products/fingervein/index.html/
http://www.hitachi-omron-ts.com/products/fingervein/index.html/
http://dx.doi.org/10.1016/j.patcog.2005.01.012

