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Short-distance radar sensing application
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11.1 Introduction AQ1

Human-related sensing AQ2plays a more and more important role because of the
emerging applications that include search and rescue, security and surveillance, and
other important operations. Radar offers a number of unique advantages compared
with the other technologies (e.g., infrared cameras [1] and lidar systems [2]). For
instance, the Doppler radar system is cost-effective and can sense the target
unobtrusively by penetrating obstacles with lower propagation loss. Due to these
characteristics, researchers usually employ the Doppler radar in the long-distance
object detection (e.g., pedestrian detection [3] and human localization [4]). But
recently, researchers start to find out that the use of the Doppler radar is also a
natural choice for human micro-motion sensing. Because Doppler information
represents the time rate of change of a range, the Doppler radar can suppress sta-
tionary clutters to highlight human-related micro-scale movements. The employ-
ment of the Doppler radar in short-range micro-motion sensing widely broadens the
domain of human sensing network. In the following, we highlight the emerging
radar sensing applications in the area of home-based smart-health and human
biometrics.

11.1.1 Smart healthcare
In the healthcare domain, the quality of sleep has gained increasing attention
because there is a growing recognition of the adverse effects from poor sleep
quality and sleep disorders. Patients with sleep disorders are prone to suffer from
chronic diseases such as obesity, diabetes, and hypertension. Vorona et al. [5]
demonstrated the relationship between obesity and sleep time. Spiegel et al. [6]
showed that sleep loss increases the risk for diabetes and obesity. Unfortunately,
people are usually not aware of sleep disorders because they happen during sleep.
Therefore, it has become a chronic, underexplored but critical health challenge in
modern life.
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To date, there are several methods to perform sleep monitoring based on
polysomnography devices or real-time infrared camera. However, the obtrusive-
ness [7,8] and lack of privacy [9,10] of these methods prevent people from using
current sleep monitoring systems in daily life. Therefore, it is interesting to explore
how to accurately detect the very small magnitude of human sleep activities
without interrupting the user’s sleep at night.

One research group successfully addressed this challenge by developing a
Doppler radar-based sleep monitoring system, called SleepSense, which is non-
contact and cost-effective [11,12]. Sleep is a period of inactivity and rejuvenation.
During sleep, the breathing pattern and movement distribution pattern are particu-
larly being interested, as they characterize the different sleep states and are closely
associated the sleep quality. Based on the movement distribution pattern and
breathing pattern, they defined three sleep events: on-bed movement event, bed-
exit event, and breathing event. The on-bed movement event contains the move-
ments such as turnover and arm trebling. In the breathing event, the subject keeps
still on the bed without body movements. The bed-exit event refers to the event
with bed-exit movement, which indicates the interruption of sleeping state. Suc-
cessful recognition of these three interested sleep events is the basis for obtaining
the breathing pattern and movement distribution pattern.

To perform sleep monitoring in a remote and cost-effective manner, they
instrumented an electromagnetic probe as shown in Figure 11.1. In their case, the
electromagnetic probe was developed based on the COTS AQ4components. Specifi-
cally, the electromagnetic probe generates a single-tone carrier signal which is
transmitted to the subject. When the microwave hits the subject, the body dis-
placement (caused by the movement or the respiration) of the subject enables the
microwave to generate a phase shift. This phase shift is proportional to the corre-
sponding body displacement. By demodulating this phase information properly,
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Figure 11.1 (a) The electromagnetic probe and the DAQ NI-USB6008 device.
(b) The AQ5block diagram of electromagnetic probe. The
electromagnetic probe captures the sleep-related signal and outputs
the baseband signal, which is digitized by a DAQ device [11]
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they were able to obtain the displacement information. The electromagnetic probe
adopted direct-conversion radar architecture to capture the subject movement and
breathing signal. In the circuit implementation, the voltage-controlled oscillator
(VCO) in the transmitter generates a carrier signal at 2.4-GHz space. The VCO also
provides local oscillator to the mixer in the receiver chain. The output power of this
transmitter is around 0 dBm. The system combined AQ6a low-noise amplifier (LNA), a
band-pass filter (BPF), a gain block, a balun, a mixer, and two baseband operational
amplifiers (OPs) form the receiver chain. The LNA amplifies the received signal at
2.4 GHz. The interferences with frequencies outside the 2.4-GHz band are removed
by the BPF. A gain block is adopted to further amplify the received signal. Two
OPs with the same gain of 40 dB are used to amplify the downconverted I(t) and
Q(t) baseband signals. Lastly, an NI AQ7data acquisition (DAQ) device, NI USB-6008,
digitizes the baseband I(t) and Q(t) signal.

Overall, their system can monitor and classify the sleep-related events by
detecting the on-bed movement activities during sleep based on the radar signal.
The Doppler effect [13] has been employed in various motion detection applica-
tions, such as gait assessment, vital signal detection, and hand gesture recognition.
In SleepSense, a specialized Doppler radar was developed to measure subject’s
chest displacement remotely. The sampled baseband radar signal went through a
demodulation module that uses the extended differentiate and cross multiple
(DACM) algorithm to obtain the body movement information from sleep status.
Afterward, the sleep status recognition framework processed the displacement
signal and accurately recognized three sleep stages, i.e., on-bed movement, bed
exit, and breathing section. By deploying such a sleep monitoring system at home,
SleepSense can help people to assess sleep quality, even diagnose the sleep dis-
orders at the earliest stages ( AQ8Figure 11.2).
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Figure 11.2 The experimental setup: the subject lies his back on a mattress. The
electromagnetic probe locates on the top of the chest with the
distance of one meter. In the meanwhile, an airflow sensor and an
accelerometer sensor are attached to serve as the ground truth
measurements [11]
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Another work also proposed a routine long-term home monitoring solution
based on radar sensing technology [14]. With the growth of aging population,
innovative technology approaches have been increasingly investigated for the last
two decades aiming at human-being long-term monitoring. However, current
solutions suffer from critical limitations as they are based on devices attached to the
patient’s body, involving pressing a button, e.g., worn as a necklace, in emergency
situations [15,16]. However, persons in such situation may already be unconscious
or no longer sufficiently reflexive to do so. The ideal solution is therefore a con-
tactless health monitoring system, avoiding the need for actions by the elderly
person.

In the last two decades, attention has been focused mainly on contactless vital
sign monitoring for remote fall which is also in connection with health monitoring
in home environments. Many relevant academic developments are based on radar
techniques implemented as a single device sensor, e.g., continuous-wave (CW)
Doppler radar or ultra-wideband impulse-radio (UWB-IR) radar in the controlled
condition. Other investigations are systems based on video cameras [17], floor
vibration [18], and acoustic sensors [19]. Besides privacy concerns, the use of video
camera systems is still troubled by issues related to low light environments, field of
view, and image processing, resulting in a success rate of 90% using two cameras
[17]. Successes in floor vibration and acoustic sensors are similarly limited due to
environmental interference and background noise. Moreover, they are also less
effective in detecting cases of soft human falls, defined as a fall after the individual
collides with an object (e.g., table, chair, or carpet).

As a result, the authors in [14] proposed a full system which enables indoor,
noninvasive fall detection, and tagless localization. The system combined radar,
wireless communications, and data-processing techniques. Moreover, it has been
designed to satisfy the European and Federal Communications Commission (FCC)
UWB spectrum masks, and it can also be potentially connected to medical mon-
itoring personnel to provide a prompt alert in the event of emergencies. Figure 11.3
shows a simplified block diagram of the proposed health monitoring system. It
consists of a sensor, combining both radar and wireless communications features,
and a base station for data processing. A radar waveform is generated and sent to
the target, and then its reflected echo, containing speed and absolute distance
information, is collected by the receiver. The resulting baseband signals are digi-
tized and transmitted wirelessly to a base station that consists of a Zigbee module,
a laptop, and a microcontroller. The latter collects and transfers the data received
from the Zigbee module to the laptop to determine remotely the target’s absolute
distance and to distinguish a fall event from normal movements (e.g., walking or
sitting down).

The data processing is not performed by the sensor in order to avoid complex
processor on board, reducing costs, size, and energy consumption. Moreover, this
represents a flexible solution if multiple sensors will be used in the future. In fact,
the base station should combine and process multiple pieces of information
simultaneously. The radar waveform was designed based on a previous hybrid
approach [20]. It consisted of a single tone, at 5.8 GHz in the ISM AQ9band, alternated
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with a stepped frequency CW (SFCW) waveform working in the UWB band. Each
tone lasts 1 s and was used to continuously detect the speed of a person using the
Doppler concept. The SFCW waveform was used to detect the target’s absolute
distance. It consisted of N ¼ 40 coherent CW pulses (called burst), the frequencies
of which are increased from pulse to pulse by a fixed increment Df ¼ 25 MHz.
Each pulse was T ¼ 50 ms long, resulting in a burst duration N � T of 2 ms, while its
total band N � Df is 1 GHz positioned between 6 and 7 GHz AQ10, enabling a smallest
resolution of 15 cm. The full waveform is 1.002 s. Afterward, they carried out the
waveform spectral analysis and utilized specific considerations to justify the choice
of the waveform parameters and to explain the operations of compensation and
calibration in data processing.

In the experiment evaluation, they recruited real human volunteers who were
allowed to move freely about the whole room. The sensor were fixed to the wall at
a height of 1.5 m. Furniture and metallic shelves were deliberately included to
enable the existence of clutter and reflections, mimicking a typical room setting.
Falls were mimicked with two different human volunteers, with a similar 1.75 m
height but different weights to enable the evaluation of different fall speeds. The
first and second subjects’ weights were 90 and 75 kg, respectively. However, only
frontal falls have been evaluated at different locations at radial distances in the
whole room, using an inflated mattress to avoid injuries. Also, only one person was
present in the room at a time. The tagless localization evaluation showed that after
applying the compensation and the calibration process, their system can perfectly
distinguish the target’s signal peak, which indicates the target’s absolute distance,
and will not be overwhelmed by the undesired reflections originating from the
clutter and the antenna’s cross coupling. Then, they validated whether their system
can detect the fall event. Specifically, a data set was built containing 70 activities
measured from two persons. In particular, 20 walking signals have been acquired
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Figure 11.3 The simplified block diagram of the proposed health monitoring
system [14]
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for each person, who was allowed free movement in the whole room, and 30 fall
signals have been acquired with each subject located at known distances from the
antennas. The LS-SVM AQ11model was trained using the data of a single person (Tar-
get 1) and then validated using the data from the other person (Target 2). The above
process was repeated two times since data from two persons were available. The
results demonstrated that the LS-SVM model with the GA AQ12kernel, which incorpo-
rates time-dependent information, presented a success rate in distinguishing fall
events from normal movements of 94.3% outperforming the linear and RBF AQ13ker-
nels. This is consistent with the expectation since falls exhibit a time-dependent
structure as the speed increases continuously until the sudden moment when it stops
abruptly. An alternative method called dynamic time warping (DTW) combined
with a Euclidean distance measure is frequently used to classify sequences of
vectors. In order to compare the LS-SVM with GA solution to this standard
method, they ran an additional experiment and the results showed that the GA
kernel slightly outperforms the DTW alternative on their data set. They also
pointed out that by further reducing the cross talk, it will be possible to increase the
total receiver gain and, consequently, to improve the accuracy of velocity detection,
besides the detection range extension. Moreover, the system’s sampling rate
influenced the accuracy of the speed detection, i.e., the higher it is, the more
accurate is its detection. However, this will significantly complicate the system
since the duration of the SFCW pulses must be shortened, and the ADC AQ14sample rate
increased. This will involve higher power consumption and a larger number of
transmitted frames to the base station. However, it is important to note that in their
fall detection application, the main goal is to detect the changes in speed and not to
determine how accurate is the value of the instantaneous speed.

To sum up, they proposed a new radar-based system for contactless fall
detection and tagless localization in an indoor environment. This research work is
in line with the growing need for novel healthcare solutions. The full system
combined radar, wireless communications, and data-processing techniques to
satisfy the European and FCC UWB spectrum masks. They proposed unique
hardware structures and algorithms to address the practical problems, such as
backscattering and cross talk. Experimental evaluations with real human subjects
demonstrated accurate detection of the target’s absolute distance and fall events.

11.1.2 Biometric authentication AQ15

Human authentication has been unprecedentedly important in the era of the Internet
of Things (IoT) as IoT devices are becoming increasingly attractive targets for
cybercriminals. Taking smartphone as an example, hundreds of millions of Amer-
icans have had their private or financial information compromised and more than
12 new people are hacked each second [21,22]. Meanwhile, it is proven that
Internet-connected cars can be compromised, and hackers can carry out any num-
ber of malicious activities, including taking control of the vehicle system and
unlocking the doors [23]. Wearables can also become a source of threat since
hackers can use the motion sensors embedded in smartwatches to steal information
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you’re typing, or gather health data from health tracker devices you might be using.
Therefore, how to securely protect IoT devices without interrupting user activities
has achieved great attention.

The current widely applied security defense is the so-called human authenti-
cation, which is a mechanism to secure the access of an IoT device by determining
whether a person is who he or she claims to be. Among different kinds, biometric
authentication is believed to be more secure because it is a “what you are” factor
based on unique individual characteristics. Two types of biometric properties have
been proliferating in customer devices. Specifically, physical biometrics emphasizes
the unique physiological attributes in human body, which include fingerprints [24],
facial recognitions [25], and eye scans (iris [26], retina [27]). Behavioral biometrics,
on the other hand, represents the way people do things and the typical examples are
keystroke rhythms [28], gait patterns [29] and handwritten signatures [30].

Because of the unobtrusive and sensitive nature of radar sensing, researches
begin to explore the usage of radar in human identification for better usability and
performance. For instance, one nascent work instrumented a system that can
identify a subject accurately by using the MIMO AQ16array sensor for the safety mon-
itoring [31]. The authors set an 8 � 8 MIMO radar array around the target, and
observed waves reflected and scattered from the target. As depicted in Figure 11.4,
a single-pole 64 throw (SP64T) switch was used at the transmitting side. A CW
signal at 2.47125 GHz was used, and transmitted power at the antennas was set to
�12 dBm. The CW signal was later split to the receiver side since accurate syn-
chronization between transmitting and receiving sides is required. At the receiver
side, the received signals were input to a downconverter unit by way of an LNA.
The downconverted baseband signals (I1, Q1 ~ I8, Q8) AQ17were digitized by a DAQ unit
with sampling frequency of 20 kHz. The snapshot rate for the MIMO channel is
determined by the switching speed of the SP64T. In the experiment, the rate for
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Figure 11.4 AQ18The system setup of the proposed radar MIMO array in [31].
(a) The system diagram. (b) The experiment setup
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taking a snapshot of the MIMO channel was set to 100 Hz. In their experiment, they
found that the target generates a time-variant channel due to respiration and
heartbeat. Based on the spatial and temporal characteristics of the measured
channel, the system was able to identify different subjects. Their experiments were
carried out in an indoor environment to evaluate the recognition performance of the
system. The results show that the proposed method can identify eight individuals
and reject four impostors with 0% equal error rate. This work has proved the fea-
sibility of detecting human biometrics through the reflected radar signals.

One research team also presented an interesting work [32] and we hereafter
introduce their work in detail. They pointed out that existing biometric authenti-
cations often follow the principle of one-step validation. After the initial login,
there is no further identification procedure as long as the device remains active.
This is mainly because the existing biometrics (e.g., fingerprint reading, iris scan-
ning, or face recognition) are often intrusive and disruptive so that users are only
willing to perform the authentication once at the beginning of the usage. Conse-
quently, an impostor can gain physical access to the device if the legitimate user
leaves it unlocked and unattended. For this reason, this is critical to propose a
continuous authentication scheme.

After the wide exploration, the team placed their attention on the cardiac
motion, which is a periodical three-dimensional (3D) automatic heart deformation
caused by the unique self-excitement of the cardiac muscle in individuals [33]
(Figure 11.5 AQ19). The cardiac motion is unique (i.e., distinguishable across subjects),
non-volitional (i.e., unknown to the user), secure (i.e., difficult to counterfeit), and
present in all living individuals (i.e., intrinsic liveness). However, they identify
three main challenges before further utilizing it as a secure human biometric:
(1) How to obtain the high-resolution cardiac motion information unobtrusively?
(2) How to extract invariant geometric-based features for each heart with regard to
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Figure 11.5 Cardiac Scan directly and continuously detects the heart motion via
the Doppler radar signal. The system utilizes the micro-motion signal
as the unique human biometric to secure the account security
through the entire login session [32]
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the cardiac motion mechanism? (3) How to examine the usability and security of
the continuous authentication scheme?

11.1.2.1 Noncontact cardiac motion sensing
Noncontact monitoring of human body motion, such as respiration and heartbeat
rates using a Doppler radar motion sensor, has gone through a few decades of
scientific study [34–38]. Efforts have been devoted to the development of radar
front-end hardware, signal processing algorithms, and system on-chip/on-board
integration. Compared with other techniques such as noncontact laser vibrometer
[39] and infrared imager [40] that can only detect motion at body surface, it has
been shown that the Doppler radar sensor can directly measure the motion of
internal organs [41] and heart [42,43]. However, research results in those works are
incomprehensive for a real authentication system; e.g., the impact of random body
movement is not considered. Although random body movement and clutter noise
still require significant efforts to resolve, some progress has been achieved [44,45]
and preliminary clinical studies have been reported [46]. However, existing can-
cellation approaches either compromise the quality of the baseband signals [44] or
require sweeping the carrier frequency and adjusting the target position [45], which
is not applicable to capture the high-fidelity cardiac motion in a real-world setup.

Instead, this team proposed that DC-coupled interferometry radar and Doppler
radar with digital intermediate frequency (digital-IF) architecture can avoid
frequency-selective signal distortion and thus make it possible to recover accurate
motion patterns using CW Doppler radar sensors. In detail, to monitor cardiac
motion pattern, a smart DC-coupled CW radar sensor was employed by taking
advantage of real-time signal processing and mixed-signal design in modern devices.
For cardiac motion sensing, the DC offset due to reflection from other parts of the
body not related to cardiopulmonary activities may easily saturate the receiver and
create frequency-dependent distortion, and is an important factor for the central
intelligence unit to handle. As shown in Figure 11.6, the DC-coupled adaptive tuning
architecture includes radio frequency (RF) coarse-tuning and baseband fine-tuning.
For RF tuning, the electronically controlled phase shifter and attenuator add a portion
of the transmitted signal to the receiver signal to cancel most of the DC offset caused
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Figure 11.6 Doppler radar sensor with adaptive DC tuning proposed in [32]
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by clutter reflections. However, due to quadrature imbalance, the phase variation of
the received signals, and the limited resolution of the phase shifter and the attenuator,
the RF tuning cannot completely remove all the DC offsets. To further eliminate the
remaining DC offsets, a baseband fine-tuning block was implemented to dynami-
cally adjust the amplifier bias to the desired level that allows the maximum dynamic
range. With the above DC tuning realized by a smart center in real time, the radar
will precisely measure cardiac motion pattern. The integration of the DC-tuning
technique into portable devices will be addressed with the help of logic control AQ20
circuits coordinated by the I2C bus and CMOS-integrated calibration DAC AQ21s.

Besides manipulating the penetration depth, radar carrier frequency also
determines the modulation sensitivity. Therefore, they carried out experiments to
compare the performance of carrier frequencies ranging from 2.4 to 40 GHz. It
should be noted that increasing the carrier frequency beyond 40 GHz may not help
because as the wavelength approaches physiological motion amplitude, strong
nonlinear phase modulation will generate harmonic interference [47]. Moreover,
cardiac sensing should be realized from different angles to obtain sufficient infor-
mation for biometrics applications. Also, multiple radars around a subject may
“probe” cardiac signals simultaneously. To achieve this, they believed that a radar
can configure the radiation beam to precisely point at the location of interest. As
shown in Figure 11.6, digital beam control was implemented on the radar front end.
Conventional beamforming systems directly adjust the phase and amplitude of the
signal of each element antenna. They demonstrated that it is much more convenient
to simultaneously adjust the phase and amplitude in the complex domain than to
adjust them separately. For a complex signal x ¼ expð�j2pftÞ sent into each ele-
ment antenna (where f is the signal frequency), a vector multiplier was used to
realize phase and amplitude modulation by first splitting the signal into in- and out-
of-phase components and then by multiplying each one using a variable gain
amplifier. Finally, by adding the amplified in- and out-of-phase components toge-
ther, complex modulation to the original signal can be achieved thus effectively
realizing radar beam control. In their work, they used a laser pointer to indicate the
beam direction by aligning the radar beam with the user.

Afterward, they elaborated on the radio signal processing schemes and corre-
spondingly investigated user authentication methods to achieve secure and usable
authentication results. As depicted in Figure 11.7, their proposed approach was
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Figure 11.7 The flowchart of Cardiac Scan, a heart-biometric-based continuous
user authentication system [32]

300 Short-range micro-motion sensing with radar technology

Gu-6990419 11 April 2019; 20:8:26



mainly comprised of three modules. First, the original sequential signal was pre-
processed for noise reduction. The noise includes low-band components (e.g.,
baseline wander), high-band components (e.g., power-line interference), and
unpredictable-band components (e.g., arbitrary motion in the scene). Considering
diverse and known frequency bands of the noise spectrum, we have addressed the
noise-level reduction in two areas: one-pass noise-reduction techniques (e.g., a
Butterworth BPF) and adaptive noise-canceling techniques. Second, they per-
formed de-noising-aware radar signal demodulation by investigating an extended
DACM algorithm to avoid the phase unwrapping problem. Their proposed algo-
rithm computes a derivative to the arctangent-demodulated phase information and
reconstructs the desired phase information, which represents cardiac motion. Third,
they extracted fiducial-based descriptors from the periodical signal segments. The
fiducial-based method extracts intrinsic geometrical descriptors (e.g., temporal,
amplitude, area, or angle) from fiducial points in the cardiac motion signal. Spe-
cifically, fiducial points are the biomarkers with physical meanings in clinics dur-
ing the cardiac motion cycle. Fiducial points contain the biological information that
is unique and nonvolatile for individuals, and are also independent of the sensor
location or state of the individual such as anxiety, nervousness, or excitement.
Lastly, they obtained authentication results. Note that the existing heart-based
biometrics, such as ECG AQ22, is recording the electrical activity of the heart, whose
descriptors are extracted on the basis of the QRS AQ23complex [48]. As a new biometric
modality, their noncontact cardiac motion is substantially different from the typical
ECG signal in that it is a direct heart motion activity measured by an RF sensor.

To elaborate the system usage, they devised three scenarios in particular for
Cardiac Scan enabled continuous authentication, including Authentic user is pre-
sent, Authentic user leaves, and Adversary is present.

Authentic user is present
When an authentic user has logged into the system and is present within the range
of the radar sensor, Cardiac Scan is able to detect sensed cardiac motions are from
the same person who was initially authorized. Thus, the permission of using the
system for the user can be continuously granted without any interruption, unless
the user logs off intentionally or leaves, as shown in Figure 11.8(a). By designing
the false negative tolerance, Cardiac Scan allows one single “classified as
adversary” event given that the classification results just before and after this
event are both positive as “classified as authentic user.” In case two or more than
two consecutive “classified as adversary” events occur, though it has a low
probability, Cardiac Scan will log out the initial user. Under such circumstance,
the user is asked to confirm its identity again using other complementary existing
biometrics system, such as PIN, fingerprint, or face.

Authentic user leaves
When the authentic user is away from the system and the radar sensor has detected
the user’s absence, as shown in Figure 11.8(b), Cardiac Scan will first check
whether the user has logged off and the system has been locked up. If so, Cardiac
Scan will classify the user’s absence as a legitimate action and no further action
needs to be taken. Otherwise, the system is at risk of unauthorized access, hence
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necessary actions such as locking the session, logging out the original user, or
notifying the administrator [49], which depend on the system policy, have to be
considered to address the security risks.

Adversary is present
In this scenario, an unauthorized adversary (the dark one in Figure 11.8(c)) is
present and close to the system, and the system has been logged in initially by an
authentic user. This can happen when the authentic use is forced to be present or
the adversary takes over the system before the system automatically locks up when
the authentic user leaves. Therefore, immediate action is demanded to keep the
adversary outside the system and prevent the leakage of sensitive information. In
this case, Cardiac Scan will immediately log out the initial user and lock up the
system once the false negative tolerance threshold Thnt is exceeded.

In the experiment, they conducted a pilot study to prove identifiability in
cardiac motion. A Doppler radar vital sign detection system was developed for the
study. As shown in Figure 11.9, a subject sat in a chair in a relaxed condition. The
customized Doppler radar sensor was placed in front of the subject with a distance
of 1 m and the sampling frequency was 20 Hz. An iPhone was placed close to a
radar to record the subject identity and label the ground truth. Motion compensation
was carried out for the baseband complex signal obtained from subjects who
breathed normally but randomly moved their body. A pulsed sensor (UFI AQ251010
pulse transducer) was attached to the subject’s finger to provide a heartbeat refer-
ence, and a chest belt (UFI 1132 piezo-electric respiration transducer) was used to
provide a respiration reference. Seventy-eight healthy subjects (46 males and
32 females) without heart disease participated in the study. Each subject has
20 trials, and each trial lasts 8 s including 8 to 10 cardiac cycles. In total, there are
14,886 cardiac cycle samples in the evaluation.

User present

(a) (b) (c)

Radar

User away Adversary present

System

Figure 11.8 Continuous authentication scenarios: (a) Authentic user is present AQ24
and the system remains unlocked. (b) Authentic user leaves and the
system locks up. (c) Adversary is present and the system locks up.
Green screen means the system is unlocked and red screen means the
system is locked [32]
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They first studied the effectiveness of random body movement compensation
because the subject will perform free movements in the practical continuous
monitoring system. Compared with cardiac motion, body movement may result in a
large perturbation to the output DC offset, and thus confuse the radar demodulation
algorithm or even saturate the baseband circuit. In the experiment, the time-domain
signal had fluctuations due to the random body motion as shown in Figure 11.10(a).
This phenomenon was first observed in [50] and the authors observed the strong
near-DC spectral components and found that the heartbeat was invisible in the
spectrum as shown in Figure 11.10(b). Simply reducing the front-end gain, as
adopted in some communication systems, does not work because the radar will lose
the sensitivity to the weak cardiac motion signal.

Because biomedical radar can detect cardiac motion from four sides of a
human body, multiple radars can be installed at different locations around the
human body to cancel out random body motion based on the different patterns of
body motion and cardiac motion [44]. In the view of the two radars, the heartbeat-
and-respiration-caused body movements are in phase, while the random body
movements are out of phase. For example, in case of two AQ26radars detecting from the
front and the back of the body, when the body is drifting toward one radar, it is
moving away from the other; whereas heartbeat presents similar expansion/con-
traction patterns to the two radars [?] AQ27. Therefore, random body motion creates an
opposite Doppler frequency shift to the signals of the radars, while cardiac motion
leads to the same polarity. By properly combining the low-speed baseband signals
from the radars, one type of motion can be canceled and the other type will be
enhanced. Figure 11.10(c) shows the results after random body motion cancella-
tion, where not only are the near-DC interferences suppressed but also the heartbeat
signal is clearly visible based on the proposed solution. Moreover, respiration
signal can also be identified within a range of frequencies which is the most pro-
minent peak than the other peaks in the spectrum.

LabVIEW
interface Smartphone

Chest belt

Data
acquisition

device
Front radar

Pulse
sensor

Back radar

Figure 11.9 Experimental setup for cardiac motion sensing. A subject is sitting
one meter away from both radar sensors, a chest belt and a pulsed
sensor is attached to the subject [32]
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They also emphasized that the baseband output of each radar has very low
frequencies because human physiological motion is very slow (no more than a few
hertzs). In the meantime, the “coherence detection” feature of the radar is main-
tained at the front end of each individual radar to achieve a sub-millimeter-scale
detection sensitivity, which is not affected by the synchronization among different
radars. Therefore, for practical noncontact cardiac password applications, either
wired or wireless secure data communication can transfer the data to a central
computing unit signal processing.

Afterward, they verified the validity of the collected data from their system.
When the radar sensor detects the cardiac motion, the fingertip sensor simulta-
neously collects a signal as the ground truth signal. Both the radar sensor and
fingertip pulse sensor were sampled at 20 Hz. They observed that the cardiac
motion circles are in similar shape with the corresponding fingertip signal which is
served as the ground truth. The detected cardiac AQ28motion signals appeared periodi-
cally, each of which precisely matches the peaks in the fingertip signal. To this end,
they verified that Cardiac Scan could accurately detect the cardiac motion signal in
a noncontact way. Then, they evaluated the performance, usability, and vulner-
abilities in practice of Cardiac Scan. Here, we’d like to introduce the vulnerability
study to demonstrate the robustness of their radar sensing system for authentication.
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Figure 11.10 (a) Time-domain signal of 20 s under random body motion;
(b) Spectrum without random body motion cancellation;
(c) Spectrum with the random body motion cancellation [50]
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Investigating the vulnerability of Cardiac Scan is crucial. Although cardiac
motion is invisible and might possess better safety and security than other
authentication approaches (e.g., PIN and fingerprint), it could become fallible
under direct or spoofing attacks [51]. One immediate attack approach is the pre-
sentation of human characteristics to the acquisition device, including different
living traits (i.e., zero-effort impostor attempts that try to take advantage of the
false acceptance rate of biometric systems) [52]. Specifically, they discussed one
advanced spoofing approach, i.e., replay attack.

Replay attack
One major risk of using biometrics is the danger that the biometric token can be
intercepted and replayed by an unauthorized party. Compared to visual-based still
biometrics (face/fingerprint/iris), the cardiac motion is more complex and dynamic to
fake or replicate. However, there is still a chance to compromise Cardiac Scan under
some extreme scenarios. For example, attackers might hack into the database and
obtain cardiac motion patterns or engineer the same cardiac motion sensing device to
extract a user’s cardiac motion. The authors conducted this experiment to prove the
possibility of a replay attack on Cardiac Scan if a legitimate user’s cardiac signals are
obtained by attackers. The team investigated the method of synthesizing cardiac
motion and developed a programmable actuator to imitate the cardiac motion. As
shown in Figure 11.11, a linear actuator (ZABER TNA08A50) and a linear transla-
tional stage (ZABER TSB28-1) were placed 30 cm from the cardiac motion-sensing
device. The actuator was programmed to perform a harmonic back-and-forth motion
toward the fixed position radar for mimicking cardiac motion patterns.

Anti-spoofing (liveness artifacts)
Given the above attack, the team also investigated a set of anti-spoofing approaches
against a replay attack. The general idea of anti-spoofing is liveness detection
[53,54]. Liveness detection has been applied to existing biometrics systems by
using living traits of humans. Pan et al. proposed the method to extract liveness
information through eye blinks in face recognition [55]. Wei et al. detected coun-
terfeit iris through texture analysis [56]. In their work, they exploited the unique-
ness of living traits in human cardiac motion to defend the above adversarial model.

Real-time signal processing

Audio cable

Radar sensor Actuator

Actuator control cable

Figure 11.11 A linear actuator imitates cardiac motion as a replay attack [32]
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Specifically, they tackled the challenge from two dimensions: hardware-based and
software-based approaches. First, they integrated assisted sensors in Cardiac Scan,
so that they can leverage additional information from these sensors to examine the
legitimacy of subjects and capture the characteristics of multidimensional cardiac
motions for liveness simultaneously. Specifically, the system employed multi-
channel radars for noise reduction. Since the linear actuator only moves in recti-
linear directions, the direction of arrival (DoA) [57] measurements with the linear
actuator on these radars are different from DoA measured with real cardiac motion.
Second, we have investigated software-based approaches. Based on the experiment,
the sensor data from a live subject inevitably include vital sign (e.g., respiration)
and other motion artifacts (e.g., body sway). Utilizing these vital sign detection and
motion artifacts, liveness detection is conducted against the replay attack [58].
They programmed the actuator working with different moving amplitudes and
frequencies to imitate cardiac motions of 12 subjects. All replay attacks were
successfully rejected by the proposed liveness detection method.

Overall, their group prototyped a novel biomedical radar system, Cardiac Scan,
featured with DC-coupled interferometry radar and Doppler radar with digital-IF
architecture. Such a design can avoid frequency-select signal distortion and thus
accurately recover the internal cardiac motion via remote sensing. Cardiac Scan
represents a new security mechanism which significantly enhances the security
level of the system by continuously monitoring the user’s trait during the entire
login session without compromising the usability. It holds the potential to trans-
form existing authentication systems into a more undeceivable, disclosure-resistant,
and user-friendly solution. Moreover, Cardiac Scan can be conveniently integrated
with existing one-pass user verification techniques (e.g., personal identification
number, fingerprint, iris scan, and face recognition) to enhance the continuous
authentication capability of existing systems.
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