STEGONET: Turn Deep Neural Network into a Stegomalware

Tao Liu Zihao Liu Qi Liu
Lawrence Technological University Florida International University Lehigh University
tliud@ltu.edu zliu021@fiu.edu qil219@lehigh.edu
Wujie Wen Wenyao Xu Ming Li
Lehigh University University at Buffalo University of Arizona
wuw219@lehigh.edu wenyaoxu@buffalo.edu lim@email.arizona.edu

ABSTRACT

Deep Neural Networks (DNNs) are now presenting human-level
performance on many real-world applications, and DNN-based
intelligent services are becoming more and more popular across
all aspects of our lives. Unfortunately, the ever-increasing DNN
service implies a dangerous feature which has not yet been well
studied-allowing the marriage of existing malware and DNN model
for any pre-defined malicious purpose. In this paper, we compre-
hensively investigate how to turn DNN into a new breed evasive
self-contained stegomalware, namely STEGONET, using model pa-
rameter as a novel payload injection channel, with no service quality
degradation (i.e. accuracy) and the triggering event connected to
the physical world by specified DNN inputs. A series of payload
injection techniques which take advantage of a variety of unique
neural network natures like complex structure, high error resilience
capability and huge parameter size, are developed for both uncom-
pressed models (with model redundancy) and deeply compressed
models tailored for resource-limited devices (no model redundancy),
including LSB substitution, resilience training, value mapping, and
sign-mapping. We also proposed a set of triggering techniques like
logits trigger, rank trigger and fine-tuned rank trigger to trigger
STEGONET by specific physical events under realistic environment
variations. We implement the STEGONET prototype on Nvidia Jet-
son TX2 testbed. Extensive experimental results and discussions on
the evasiveness, integrity of proposed payload injection techniques,
and the reliability and sensitivity of the triggering techniques, well
demonstrate the feasibility and practicality of STEGONET.

CCS CONCEPTS

« Security and privacy — Embedded systems security; « Com-
puter systems organization — Embedded systems.

ACM Reference Format:

Tao Liu, Zihao Liu, Qi Liu, Wujie Wen, Wenyao Xu, and Ming Li. 2020.
STEGONET: Turn Deep Neural Network into a Stegomalware. In Annual
Computer Security Applications Conference (ACSAC 2020), December 7-11,
2020, Austin, USA. ACM, New York, NY, USA, 11 pages. https://doi.org/10.
1145/3427228.3427268

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

ACSAC 2020, December 7-11, 2020, Austin, USA

© 2020 Association for Computing Machinery.

ACM ISBN 978-1-4503-8858-0/20/12...$15.00
https://doi.org/10.1145/3427228.3427268

928

1 INTRODUCTION

Deep Neural Networks (DNNs) are nowadays becoming the de facto
technique to promote the artificial intelligence (AI) industry, as wit-
nessed by the consistent breakthroughs in a myriad of real-world
applications spanning from computer vision, speech recognition,
object detection, game playing to self-driving vehicles [26, 36, 40].
With the increasing support of DNN programming software and
computing hardware, many enterprise giants are starting to offer
Machine Learning as a Service (MLaaS) through their cloud infras-
tructures, such as Amazon AWS [1], Google Cloud Platform [14],
and Microsoft Azure [33]. Meanwhile, users can also exchange
or purchase the pre-trained “Plug & Play” DNN model on open
machine learning marketplace [22], thus to quickly deploy and
consume ML services in their private environment.

Unfortunately, such DNN services are subject to ever-increasing
security concerns. It is common for the non-ML expert to directly
consume services from the third-party without understanding the
end-to-end DNN process on data, training, and testing etc., which
could be untrustworthy. Prior studies show that adversary can easily
fool a normally trained DNN model by exploiting the algorithmic
vulnerabilities of DNN classifiers through adversary examples [10,
13, 35, 44] or poisoning attacks [6, 23], therefore to mislead the DNN
inference results. Besides, DNN backdoor [15, 28] can be crafted into
DNN through poisoned training data for targeted misclassification
using any input including a specific trigger.

Orthogonal to these aforementioned DNN security concerns,
in this paper, we discover and characterize a new type of threat
that synthesizes the DNN with stegomalware [39], which is a type
of most advanced malwares that use steganography to hinder de-
tection, by concealing the malicious code in covert channels like
images, videos. We found that the DNN implies an unprecedented
opportunity to mix the data and code in DNN model, to create DNN
powered stegomalware. By leveraging the structural complexity
and error-resilient property of DNN, adversary can easily replace
a small portion of DNN model parameters with malicious code,
therefore to turn DNN model into an evasive self-contained ste-
gomalware while still maintaining the service quality as normal.
The created malicious DNN can be deployed and survive in user’s
secured environment. Finally, the embedded malicious code in DNN
can be executed with a real-world object selected as a trigger event.
We name such a DNN powered stegomalware as STEGONET.

Figure 1 compares our STEGONET with traditional stegomalware.
Our interest focuses on exploring possible approach to embed code
into DNN model and handle the DNN input from physical world

https://doi.org/10.1145/3427228.3427268
https://doi.org/10.1145/3427228.3427268
https://doi.org/10.1145/3427228.3427268

ACSAC 2020, December 7-11, 2020, Austin, USA

Malware Image

O DNN Input from
Y Physical World

Stegomalware

Malicious
Code Pixels

Wrapper App
(e.g., Image Analyzer)

Code in‘D!_INiModeI Parameter

DNN Runtime

StegoNet

|—> Extract & Execute l—> Extract & Execute
Figure 1: Compare STEGONET with Stegomalware. Tradi-
tional stegomalware usually conceals malicious code in
covert channels like images, which will be transmitted
through Internet. A wrapper application is also required
to extract and execute the malicious code. Our STEGONET
creates the self-contained malicious DNN model in an iso-
lated environment. Our focus is to explore the possible ap-
proaches to embed malicious code into DNN models and trig-
ger it with DNN inputs from the physical world.

as trigger. To demonstrate the feasibility and practicality of STE-
GONET, we develop a set of DNN oriented payload injection and
trigger techniques. First, we explore a variety of model parameter
payload injection techniques, including “least significant bit (LSB)
substitution”, “resilience training”, “value mapping” and “sign map-
ping”, to embed malicious payload into a variety of mainstream
DNN models. With these techniques, STEGONET can protect the in-
tegrity of malicious payload in DNN model parameters even under
extreme conditions such as in deep compressed DNN model [16]
for embedded devices. In the meanwhile, the service quality will
not be degraded (i.e., the original classification accuracy to avoid
service rejection), therefore to conceal the malicious intent with
enhanced evasiveness and scalability. Second, we propose the DNN
logits based trigger to activate STEGONET with a selected real-world
object as trigger event. To overcome the triggering input variations
from the physical world and enhance the triggering performance,
“Logits trigger”, “rank trigger”, and “fine-tuned rank trigger” have
been further developed.

A STEGONET prototype is developed on the Nvidia Jetson TX2
platform to demonstrate and evaluate such an emerging DNN pow-
ered stegomalware. Based on our prototype, we comprehensively
study the evasiveness, efficiency, robustness, reliability and sensi-
tivity of STEGONET, and discuss its uniqueness. We for the first time
synthesize the DNN with stegomalware and study DNN oriented
payload injection techniques applicable to both uncompressed and
highly-compressed DNN models, and explore different DNN logits
based trigger designs to handle the input variations from physical-
world. To our best knowledge, no similar research has been con-
ducted. We hope that our results enable the community to examine
such an emerging security issue that is threatening the growing
deep learning enabled artificial intelligence industry.

929

Tao Liu, Zihao Liu, Qi Liu, Wujie Wen, Wenyao Xu, and Ming Li

2 BACKGROUND
2.1 DNN Basics

Deep Neural Network (DNN) is a computational model composed
of multiple layers with complex structures to abstract the data at
a high-level [18]. DNN models exhibit high effectiveness in many
intelligent applications based on the deep cascaded topology and
millions of parameters [17, 25, 37, 41]. In general, it consists of
complex multi-layer network structures to represent and generalize
high dimensional input data, which can be expressed as:

fw(): X —>Y (1)
with input X € R", output Y € R™ and model parameters (or
weights) w. To establish the causal chain X — Y, DNN model is
usually built upon different types of layers, including Convolution
(for feature extraction), Pooling (for feature reduction) and Soft-
max (for decision making). To train a DNN model, the randomly
initialized parameter w will be iteratively updated by minimizing
the loss £ until reaching the convergence:

arg min l/nZL(fw(in), 17n) (2
w 1

with training data X, and ground truth label Yy,. Such a minimiza-
tion problem can be solved through algorithms like stochastic gra-
dient descent [12]. After training, The DNN model can be deployed
for inference. In particular, the Softmax regression [2] is used in
most DNN models to infer the K-class problem:

haw(x) = 12K exp(wTx) [exp(w(l K Ty)] ®)

where h,,(x) is the estimated probability vector of K classes, {wK)y
is the weight parameter of the DNN model, 1/3K, exp(w)Tx) is the
normalizer and [exp(w(l’ ""K)Tx)] is the logits [2] (i.e. unnormal-
ized log probabilities for the K classes).

To distribute and deploy the trained DNN model, serialization
and deserialization process is used to combine the DNN topology,
DNN algorithms (function) and model parameters (data) into a sin-
gle package. For example, in Tensorflow, a serialized DNN model
consists of three different data pieces: the DNN topology and op-
erations are stored in .meta file, the structure and offset of DNN
parameters are stored in .index file, and the values of DNN parame-
ters are stored in .data file.

2.2 Emerging DNN Threat

Developing a “Plug & Play" DNN model for a specific machine
learning (ML) service is costly due to the long training time (i.e.
months or more) over expensive hardware platforms with large-
scale GPU-clusters and complex IP design, optimization and verifi-
cation. Therefore, DNN models are usually pre-trained by service
providers (ML experts), and then downloaded by end users (non-
ML experts). Such an emerging business model has been discussed
in many prior works [15, 28, 29, 38]. However, the DNN models
are programs, the behavior of DNN can be abused on modified
model [43]. Besides, the machine learning marketplace is still in its
infancy and lacks security guarantee. Anonymous DNN models can
be uploaded, distributed and eventually consumed by end users.
For example, Gu et al. [15] show the adversary can train the
DNN backdoor with poisoned training data with applied arbitrary

STEGONET: Turn Deep Neural Network into a Stegomalware

trigger pattern. The created backdoor in DNN will not impact the
testing accuracy on benign inputs. Liu et al. [28] propose the DNN
Trojaning attack by choosing a specific trigger pattern based on the
estimation of confidence values in DNN classification, thus to make
the created backdoor more sensitive to the trigger. Such a backdoor
can be created only with a few training data with guaranteed high
attack success rates.

Our study is different from aforementioned DNN threats. We
aim to turn DNN into an evasive stegomalware that can execute
self-contained payload.

2.3 Stegomalware and Steganalysis

Stegomalware [31, 39] is a type of malware that uses steganogra-
phy [5] to hinder malicious intention. In stegomalware, the ma-
licious code is usually concealed in covert files such as text and
image, thus to circumvent detection (see Figure 1). LSB replace-
ment in image is the most popular approach used for creating the
stegomalware [31], and can be realized in both spatial (i.e., raw
data) and frequency (DCT in JPEG) domains. A daemon process is
running on the background to extract and execute the malicious
code dynamically based on the trigger condition. Steganalysis [27]
is the art of deterring covert information against steganography
for stegomalware detection. For example, Primary Sets [8], Sample
Pairs [9], Chi Square [46], RS Analysis [11] are several classic ste-
ganalysis approaches to detect the image based LSB steganography
in spatial domain. Primary Sets and Chi Square detect the statistical
identity of neighboring pixels, and pairs of values (PoV) exchanged
during LSB embedding. Sample pairs and RS analysis can further
detect and trace randomly scattered LSB and bit flipping. Fusion
is a more powerful ensemble technique based on multiple spatial
classifiers. In our evaluation, we will evaluate whether these ste-
ganalysis techniques can successfully detect the proposed DNN
powered stegomalware.

3 THREAT MODEL

In this section, we present our threat model, and introduce the op-
portunities and approaches for creating the STEGONET. Our threat
model is defined as follows:

End user. End user is the non-ML expert who consumes DNN
services. It is common for an non-ML expert to consume DNN
services from the third-party without understanding the end-to-
end DNN process on data, training, and testing. Instead, end user
mainly cares about service quality (i.e., DNN testing accuracy). We
assume that end user will deploy the DNN service in a private
secured computing environment which is isolated and secured with
firewall, anti-malware, and steganalysis defense techniques, etc.

Adversary. We assume the adversary is an anonymous DNN
service provider who creates the malicious DNN (i.e., self-contained
stegomalware) which will be disguised as normal DNN service and
deployed on end user’s side. The adversary is unable to directly
access, modify or control the end user’s secured computing envi-
ronment via traditional cyber-channel (i.e., Internet).

Adversary’s goal. The adversary’s goal is to run the malicious
payload code in STEGONET on user’s side. In particular, based on
our assumption that the STEGONET will be eventually deployed in
user’s isolated environment, adversary should make STEGONET a

930

ACSAC 2020, December 7-11, 2020, Austin, USA

self-contained malicious DNN model. To achieve this goal, adver-
sary should consider following objectives step by step: 1) maintain
the DNN service quality on created STEGONET to avoid the service
rejection, therefore to disguise it as a normal DNN service; 2) en-
sure the STEGONET can circumvent existing countermeasures and
survive in end user’s secured environment; 3) trigger and run the
malicious payload along with a normal DNN service through DNN
inputs that are usually captured from the physical world.
Adversary’s approach. To create the self-contained malicious
DNN model, adversary only modifies the DNN model (including
model parameter and testing algorithm) at the service creation
phase. For example, an adversary can either manipulate the value
of a model parameter or place a malicious inline function along
with the testing algorithm by taking advantage of the insecure
deserialization. The adversary cannot touch the user’s physical
devices that will execute this DNN service. Once the malicious
DNN model is accepted and deployed by the end-user, the adversary
cannot communicate directly with the testing environment.

4 CREATE THE STEGONET

In this section, we first give an overview of our proof of concept
design. Then we present the design details of proposed payload
injection and trigger techniques.

4.1 An Overview

A DNN can be turned into a self-contained stegomalware-STEGONET
through the following steps:

(1) Prepare DNN model. Adversary can either train the DNN
model from scratch or obtain DNN model from the machine
learning marketplace [22] or DNN model zoo [4];

(2) Prepare malicious payload. Adversary can either directly use
many existing payloads for different purposes (e.g., forkbomb,
keylogger, etc.), or create new malicious payloads as needed.

(3) Inject payload. The malicious payload will be injected into
DNN model through proposed payload injection techniques,
without impacting service quality (i.e. similar to that of “un-
touched” model), including highly compressed DNN models
tailored for resource-limited embedded, IoT and mobile devices.
Create trigger. The trigger is created to control the execution
of embedded payload under a certain condition. In STEGONET,
we use real-world objects as the trigger event and propose DNN
logits based trigger designs to handle input variations existing
in physical world. The proof of concept design will execute the
payload by monitoring DNN output logits.

(4

=

Table 1: Redundancy in uncompressed/compressed DNNs.

Uncompressed DNN Models
AlexNet [25] GoogLeNet [41]

VGG-16 [37] ResNet-50 [17]

Layers 8 22 16 50
Parameters 61M ™ 138M 25M
Model Size 227MB 27MB 515MB 96MB
Redundant Bits 21 20 19 16
Redundant Space 152MB 16MB 312MB 47MB

Hardware-favorable Compressed DNN Models
Comp.AlexNet [16] Comp.VGG-16 [16] Mobilenet [19] Squeezenet [21]
8

Layers 16 28 18
Parameters 6.97M 11.26M 4.2M 1.24M
Model Size 6.63MB 10.78MB 4.2MB 4.6MB

ACSAC 2020, December 7-11, 2020, Austin, USA

L =

0100

0000

ol
|4

— Training
Payload Payload
c_cl
>
Index Permutation 010000 =
{B1, Az oo } l l l/ 001011 =

(a) Resilience training.

K
cls
HCIONE

W12(10.010000)
W1 (00.001010)

(b) Value-mapping.

Tao Liu, Zihao Liu, Qi Liu, Wujie Wen, Wenyao Xu, and Ming Li

. ~ b

N— oo

Wi} {40 &1}
Payload --- -
Fixed<8,6>

t+/01i+/0}

(c) Sign-mapping.

Figure 2: Illustration of proposed resilience training, value-mapping and sign-mapping techniques. (a) Resilience training se-
lect a bundle of model parameters with randomly generated index permutation. The value of selected parameters is replaced
by the payload segments, and will never be updated during the re-training. After the re-training, the accuracy of DNN model
with embedded payload is expected to be recovered to the original level; (b) In value-mapping, we conduct an exhaustive search-
ing to match (or replace) the same (or nearest) value of parameters with payload segments; (c) Sign-mapping goes through the
model parameters and match the parameter sign bit (+ for 0 and - for 1) with every single bit in the given payload.

4.2 DNN Favorable Payload Injection

In STEGONET, different types of payload injection techniques are
proposed to inject the malicious payload into DNN model param-
eters. These techniques are not only required to secure the DNN
testing accuracy but also the payload integrity. Moreover, they
should be scalable to different kinds of DNN models.

4.2.1 Investigate Model Capacity and Naive LSB Method.
To find the appropriate solutions, we investigated different types
of mainstream DNN models, including both uncompressed and
compressed DNN models, by measuring their model size and redun-
dancy (i.e., the maximum capacity for payload injection without
accuracy loss). As shown in Table 1, all the uncompressed DNN
models can provide a considerable scale of redundancy (>10 MB) to
accommodate most realistic malicious codes [34] (~100 KB), with-
out impairing the DNN testing accuracy. By taking advantage of
the sufficient redundancy in these DNN models, a simple solution
“LSB substitution” can be used for payload injection by replacing
the least significant bits (LSB) of DNN model parameters with the
payload binary. However, such a naive solution is not applicable
to highly compressed DNN models. As shown in Table 1, the size
of compressed DNN models has been aggressively shrunk by re-
ducing both the amount and data precision of model parameters.
For example, the size of MobileNet [19] is only 4MB with 8-bit 4M
parameters. These compressed models are unable to maintain the
accuracy even with a slight modification of parameters due to the
significantly reduced model redundancy.

4.2.2 Proposed Methods. To overcome this issue, we propose
enhanced payload injection techniques dedicated to compressed
DNN models, so as to improve the efficiency of payload injection
and protect the integrity of injected payload. Figure 2 shows the
basic idea of proposed “resilience training”, “value-mapping” and
“sign-mapping” techniques.

Resilience training. DNN model is intrinsically error resilient
and can self-repair from the internal errors. While removing a

931

bundle of neurons from the DNN topology can cause significant ac-
curacy degradation, parameters connecting the remaining neurons
can be rebuilt to reach the original accuracy after re-training. Based
on this intuition, we propose the resilience training technique.

As shown in Figure 2(a), resilience training can be conducted
with following detailed steps: i) Calculate the required number of
DNN parameters, i.e. n = [P/q], based on the size of payload P and
the quantized bit width ¢ of parameters; ii) Generate the “index
permutation” randomly in order to select the n parameters; iii)
Assign the value of payload segment to each selected parameter by
following the sequence in “index permutation” (i.e., {B1, Az, -}
in Figure 2); iv) Train the DNN model while fixing the values of
those selected parameters.

Resilience training will intentionally introduce internal errors in
model parameters by directly replacing the entire bits on selected
parameters with the payload segments. Such “broken neurons”
(i.e., replaced parameters) will never be updated during the re-
training. After resilience training, the accuracy of DNN model is
expected to be recovered, thus successfully concealing the injected
payload while maintaining the DNN service quality. In particular,
an “index permutation” will be randomly generated to indicate the
selected parameters for payload injection. To restore the payload,
we combine the binary segment of each parameter sequentially in
the “index permutation”.

Searching and mapping. “Value-mapping" and “sign-mapping"
inject the payload into compressed models through dedicated “search-
ing and mapping" rules, and improve the efficiency of payload
injection by eliminating the unavoidable re-training process in

“resilience training". Figure 2(b) and (c) show the basic idea of value-

mapping and sign-mapping.

In value-mapping, we first split the payload binary based on
the fractional precision of quantized DNN model parameters. For
example, “Fixed<8,6>" indicates a 8-bit fixed-point number with 6
fractional bits on each DNN model parameter. Therefore the pay-
load binary will be divided into many 6-bit segments. Then, for each
payload segment, we conduct an exhaustive searching on model

STEGONET: Turn Deep Neural Network into a Stegomalware

] output layer
trigger

event

ﬁl}

trigger
— {{gg} —

extract and execute

g LY i) - (e

(a) Logits trigger.

speojAed

ACSAC 2020, December 7-11, 2020, Austin, USA

Logits , Record Present , Record Present
P1 E 0.5 0.55 E T ’_F"?
P2 E 0.2 0.13 E Ps ps3
ps & 03 032 i P2 P2,

' Logits (unmatched) ' Logits Rank (matched)
(b) Rank trigger.

Figure 3: Illustration of proposed DNN logits based trigger techniques. (a) Logits trigger will monitor and compared the present
logits value with the recorded value. A perfect match will trigger the STEGONET; (b) Rank trigger will monitor and compare

the rank of logits instead of their values.

parameters to match (or replace) the same (or nearest) value of frac-
tional bits of parameters. As the example shown in Figure 2(b), given
payload segment “010000” (or “001011”), parameter w2 (or wa1) is
matched since the value of fractional bits “010000” (or “001010”) is
same as (or nearest to) the payload segment. Finally, we map the
payload segment(s) to matched parameter(s) by replacing the frac-
tional bits of parameter(s) with payload segment(s). Note that the
parameters in well-trained DNN model are usually scaled between
+1 and -1. Therefore, we use the fractional bits in value-mapping.

The sign-mapping technique adopts a similar “searching and
mapping” rule, based on the sign bit of model parameters. As shown
in Figure 2(c), sign-mapping will go through the model parame-
ters and match the parameter sign bit with every single bit in the
given payload, thus eventually mapping the payload to a sign bit(s)
sequence on matched parameters.

4.3 DNN Logits based Trigger

4.3.1 Why do we use the DNN output logits to create the
trigger? Before we present our trigger design, we first show our
investigation and explain the reason we use the DNN output logits
to create the trigger. To design the trigger in STEGONET, we investi-
gated the existing approach of using DNN input (i.e., image pattern)
as a trigger in DNN backdoor[15, 28]. We find that the DNN input
captured by sensors usually suffer from input variations due to the
noises from the physical world. The DNN input based trigger is not
a reliable solution to handle this issue. In contrast, the DNN output
logits in the last layer can provide a more reliable solution (i.e.,
logits rank) to handle the input variations. Besides, the DNN input
pattern is usually more complicated than that of the DNN output
logits for modern DNN services. Let us take the widely adopted
Imagenet [7] classification as an example, the data dimension of
DNN input (i.e., 227-pixx227-pixx3-color) is 154 larger than that
of the DNN output (i.e., 1K output logits). Therefore the logits based
trigger can be more efficient than that of DNN input. Moreover, the
final classification result is naturally calculated by comparing the
value of DNN output logits, which is an essential process housed
in the DNN output layer. This can help to reduce the footprint of
logits based trigger.

4.3.2 Proposed Methods. In STEGONET, we propose several dif-
ferent trigger techniques, including the basic “logits trigger”, and
more reliable “rank trigger” and “fine-tuned rank trigger” to moni-
tor the trigger event by assessing the DNN logits in output layer.

932

Logits Trigger. Figure 3(a) shows the basic idea of logits trigger,
which can be explained as a key-lock problem. Given the trigger
event x” as the key, DNN logits {logits} = {exp(0%)Tx")} will
be stored as the lock {reci} in STEGONET. Such a key-lock pair,
ie., {reci}lock = {logits;}k¢¥, will be created by adversary in
creation stage. After the deployment of STEGONET, the present
logits {logitsj }P"¢ for given DNN input x will be monitored and
compared with the recorded {recy }!°¢¥ as long as there comes a
new input at the DNN execution stage. STEGONET can be triggered
once the key-lock pair is perfectly matched as {logitsy }P"¢=ke¥y =
{rec} lock

Rank Trigger. The rank trigger is extended from the basic log-
its trigger. Since the input variations from physical world can sig-
nificantly reduce the possibility of the “perfect match” in logits
trigger, we further propose the rank-trigger to handle this issue.
Figure 3(b) shows the idea of a rank trigger. Instead of using the
logits value in key-lock pair, rank trigger uses the rank of logits to
create the key-lock pair. As the example in Figure 3(b) shows, given
a 3-dimension logits, logits trigger will store the key-lock pair as
{p1,p2,p3} = {0.5,0.2,0.3}. However, due to the input variations,
present logits always give the inconstant value as {0.55,0.13,0.32},
thus the key-lock pair is always mismatched. To solve this issue,
the rank trigger will use the logits rank, i.e., r = {p1, p3, p2}, as the
key-lock pair. Even with input variations, the present rank of logits
can be still matched, thus to successfully trigger STEGONET.

Fine-tuned Rank Trigger. Although rank trigger improves
the reliability of STEGONET against input variations from physical
world, we find that it is still less reliable to handle strong input varia-
tions (will present in Sec. 5.2). Therefore, we propose the fine-tuned
rank trigger to further enhance the trigger reliability. Such an en-
hanced design is extended from the rank trigger and inspired from
the fine-tuning techniques. We first create a small set of augmented
inputs by applying simulated strong variations on the original spe-
cific input. Then, we use these augmented inputs to fine-tune the
DNN parameters in output layer thus to improve the trigger relia-
bility against strong variations. Instead of minimizing the loss of
logits value adopted in traditional training (see Eq. 2), we minimize
the loss on logits rank. However, assessing such a “rank based
loss” is not practical. To solve this issue, we use a hard coded label
" to define the selected logits and the expected logits rank for
augmented inputs x".In particular, the used elements in hard coded

label A" are defined as an ranked arithmetic sequence with sum =

ACSAC 2020, December 7-11, 2020, Austin, USA

1, and the unused logits are all set to 0. For example, to train the
expected rank {1, -, 3, 2} with 4 logits, we set h” = {0.5, 0, 0.17, 0.33}.
Accordingly, Eq. 2 can be further translated into:

arg min 1/n Z L(fn(x), hT) (4)
w 1

for fine-tuning the model parameter in DNN output layer, so as to
improve the possibility of matching the expected logits rank.

5 PROTOTYPE

We implement a prototype of STEGONET for demonstration and
evaluation purposes. Table 2 shows our prototyping environment.
The STEGONET is created on a local server, and is deployed on
the isolated Nvidia Jetson TX2 platform to simulate an end-to-end
scenario.

5.1 Implementation of STEGONET

We implement our attack routine in STEGONET as follows: 1) Create
clear DNN models on a local server; 2) Assemble malicious binary
malwares such as fork bomb [30] as STEGONET payload; 3) Embed
the payload into DNN model through proposed payload injection
techniques, and create the triggers by using the “chessboard” input
(see Figure 3); 4) Leverage the insecure deserialization as an exam-
ple to modify the Softmax function used in DNN testing process,
and create the trigger, extract and execute inline functions for our
payload inside the Softmax function. The dynamic execution (Pthon
Exec) is used as an example to run the extracted payload code; 5)
Transfer and deploy the modified DNN models (as an end user) to
Jetson TX2 platform to demonstrate STEGONET.

2

0. Triggere

Figure 4: Prototype on Nvidia Jetson TX2.

Tao Liu, Zihao Liu, Qi Liu, Wujie Wen, Wenyao Xu, and Ming Li

Augmented variations.

Original Nonreflective Similarity Similarity
0332,
333582,
0: 24
Affine

Projective Piecewise Linear

Figure 5: Test STEGONET with DNN based image augmenta-
tion takes input from physical world.

Alternatively, adversary can also exploit different components
in DNN to execute the payload. Table 3 lists some examples of DNN
related Common Vulnerabilities and Exposures (CVEs) on different
platforms that can be exploited to implement our STEGONET. This
part is not our focus, we only show that STEGONET can be easily
realized and executed through many alternative approaches as well,
though we select the deserialization in our demonstration.

5.2 Demonstration

Figure 4 demonstrates the success of STEGONET using the ideal test
data under the laboratory configuration. In particular, we adopt the
simple LSB substitution and logits trigger in this case. At checkpoint-
0, the STEGONET has been triggered to extract and execute the
payload sequentially. First, user data is deleted on file system. Then,
a piece of remote code is executed locally by the “downloader”.
Eventually, the “forkbomb” payload is invoked to halt the system,
resulting in the DoS attack.

As shown in Figure 5, we tested STEGONET with our created
DNN based image augmentation application that takes input from
physical world. The object (i.e. a printed “chessboard” image) from
physical-world is captured by on-board camera in this case to test
STEGONET with rank trigger and fine-tuned rank trigger under
different input variations, i.e., different camera angles, image ro-
tations, distances and brightness. Meanwhile, a set of augmented
“chessboard" images with strong simulated variations have been
tested as well. In this demonstration, we observe that the logits
trigger is completely invalid for the real-world inputs because the
logits values keep changing when the camera captured images are
subject to the noises from the physical world. In contrast, the rank
trigger is more reliable for the real-world input as the logits rank
can be still maintained under small input variations. However, as

Table 2: Prototyping environment.

Nvidia Jetson TX2 (Isolated Secured Environment)

Computing Framework DNN Inference Runtime DNN Library API
JetPack 3.1 Tensorflow/Nvidia CUDA Nvidia cuDNN Python/C++ (MATLAB Code Generation)
Computing Substrate CPU GPU Memory
Tegra X2 Nvidia Denver2, Cortex-A57 Embedded, 256 CUDA cores LPDDR4, 8GB, 128bit, 58.4 GB/s
Local Server
DNN Engine CPU GPU Memory

MATLAB Deep Learning Toolbox Intel Core i7-6850K, 12 cores 2 * GeForce GTX 1080, 2560 CUDA cores

64 GB Main Mem, 16 GB Graphic Mem

933

STEGONET: Turn Deep Neural Network into a Stegomalware

Table 3: CVEs and risks in DNN software.

ACSAC 2020, December 7-11, 2020, Austin, USA

Table 5: Selected malware samples from Malware DB [34].

Common Vulnerabilities and Exposures Other approaches

DNN Software Component CVE ID Type Component Type
Jetson TX2 Kernel CVE-2018-6269 execution Python Insecure API
Jetson TX2 Kernel CVE-2018-6269 execution Javascript Obfuscation
Caffe/Torch Libjasper CVE-2017-9782 Overflow JSON
Caffe/Torch OpenCV CVE-2016-1516 execution XML Insecure
Tensorflow Numpy CVE-2017-12852 DOS Pickle Deserialization
Tensorflow Wave CVE-2017-14144 DOS Protocol Buffer

the variation strength increases, rank trigger becomes less effective
than fine-tuned rank trigger due to significantly biased logits rank.

6 EVALUATION

In this section, we evaluate STEGONET from different aspects, in-
cluding evasiveness, robustness of payload injection techniques,
as well as the reliability of trigger techniques.

Experimental Settings. We use the same testbed from Sec. 5
as our evaluation platform. For a comprehensive evaluation of
STEGONET, 13 state-of-the-art DNN models and 16 malware samples
from Malware DB [34] with different sizes are selected. The details
are listed in Table 1, Table 4 and Table 5. We embed these binary
malware samples into DNN models through four different payload
injection techniques to generate a set of STEGONET samples (836
in total) under appropriate size constraint (i.e., embedded malware
is smaller than DNN model).

6.1 Evasiveness

Metrics and Methods. The evasiveness indicates how can STE-
GONET be successfully deployed and survived in end user’s secured
environment, which can be measured from three different aspects:

o Testing accuracy is given first priority by end users. STEGONET
should maintain a level of accuracy similar to clean model to
prevent service rejection at the beginning. A higher testing
accuracy indicates better evasiveness.

e Anti-malware detection rate shows to what extent the embed-
ded payload can be detected by anti-malware. This is a naive
evasiveness measurement directly reported by commercial anti-
malware engines. A lower anti-malware detection rate indi-
cates better evasiveness.

o Steganalysis detection rate measures the probability of detect-
ing concealed payload in STEGONET samples by using steganaly-
sis methods, given that the payload injection to DNN model can
be treated as a specific spatial steganography, which is similar
to traditional stegomalware. A lower steganalysis detection
rate indicates better evasiveness.

To measure the testing accuracy, we evaluate created STEGONET
samples on Imagenet dataset, and compare the testing accuracy with
the original accuracy of clear DNN models. To measure the anti-
malware detection rate, we test selected STEGONET samples and two
baselines—vanilla malware and stegomalware through 37 leading

Table 4: Additional DNN models used in evaluation.

DNN Size #Para. DNN Size #Para.
Squeezenet [21] 4.6MB 1.24M Googlenet [41] 27MB ™
Resnet18 [17] 44MB 11.7M Densenet201 [20] 77MB 20M
Inceptionv3 [42] 89MB 239M Resnet50 [17] 96MB 25.6M
Resnet101 [17] 167MB 44.6M Alexnet [25] 227MB 61M
Vgg16 [37] 515MB 138M Vgg19 [37] 535MB 144M

934

Malware Size Malware Size
Stuxnet 0.02MB ZeusVM 0.05MB
Destover 0.08MB Asprox 0.09MB
Bladabindi 0.10MB EquationDrug 0.36MB
ZeusVM-decypted 0.40MB Kovter 0.41MB
Cerber 0.59MB Ardamax 0.77MB
NSIS 1.70MB Kelihos 1.88MB
Mamba 2.30MB WannaCry 3.35MB
Vikinghorde 7.08MB Artemis 12.75MB

anti-malware engines on Metadefender [32] such as McAfee, Avira,
etc., and compare the reported detection rate. The vanilla malware
is directly selected from Malware DB [34] while stegomalware is
created through LSB OpenStego [45] by embedding malwares into
grayscale cover images. To measure the steganalysis detection rate,
we test selected STEGONET samples and stegomalware with five
classic steganalysis methods (i.e., Primary Sets [8], Sample Pairs [9],
Chi Square [46], RS Analysis [11] and Fusion [24]) in StegExpose [3]
tool. Primary Sets and Chi Square detect the statistical identity of
neighboring pixels and pairs of values (PoV) exchanged during LSB
embedding. Sample pairs and RS analysis can further detect and
trace randomly scattered LSB and bit flipping. Fusion is a more
powerful ensemble technique based on multiple spatial classifiers.
To make StegExpose compatible with DNN model, we slightly mod-
ify the data acquisition interface by reshaping the data structure
of DNN model as the grayscale image. Benign samples (i.e., clear
images and DNN models) are added for steganalysis classifier to
match the number (1:1) of created stegomalware and STEGONET
samples.

6.1.1 Results of Testing Accuracy. Table 6 and Table 7 report
the testing accuracy of different DNN models before and after
embedding various malwares using techniques like LSB substi-
tution/resilience training, and value/sign mapping, respectively.
The dash-line indicates current technique is incapable of embed-
ding malware into DNN model due to the size constraint. The bold
numbers represent significant accuracy degradation compared with
the original accuracy. Note that the accuracy reduction after pay-
load injection can be very marginal for large DNN models such
as uncompressed Vgg19, Vgg16, Alexnet and Resnet10 due to the
sufficient redundant space, therefore we do not show such results.
Meanwhile, we can observe that sometimes the modified DNN mod-
els can achieve even better testing accuracy than that of original
model, this is because the evaluation is subject to < +1% errors
due to the randomness in DNN testing, which is in an acceptable
margin.

As Table 6 shows, though naive LSB substitution can maintain
the good testing accuracy on medium DNNs, this fact does not
hold on small DNNSs. For example, it causes significant accuracy
degradation (i.e., sharply drop to ~ 0.1%) on highly compressed
DNN models due to the limited data precision and reduced number
of parameters. In contrast, resilience training can relatively better
support payload injection on small DNNs. For small malwares like
EquationDrug, ZeusVM and Cerber, it can keep the testing accuracy
as the same level of original one even on the smallest Mobilenet
(4.2MB) and Squeezenet (4.6MB). However, the accuracy on Mo-
bilenet is significantly dropped from 66.7% to 0.7% as the malware
size increases from 0.59MB (Cerber) to 3.35MB (WannaCry). This

ACSAC 2020, December 7-11, 2020, Austin, USA

Tao Liu, Zihao Liu, Qi Liu, Wujie Wen, Wenyao Xu, and Ming Li

Table 6: Testing accuracy (< +1%) on selected STEGONET samples created by LSB Substitution and Resilience Training, with
highlighted significant accuracy reduction.

LSB SUBSTITUTION

Original | EquationDrug ZeusVM-decypted Cerber Ardamax NSIS Kelihos Mamba WannaCry Vikinghorde Artemis
Resnet50 75.2% 74.6% 75.7% 75.5% 75.8% 74.9% 74.5% 76.1% 75.6% 75.3% 74.7%
Medium DNNs Inceptionv3 78% 78.2% 77.9% 76.8% 76.3% 78% 77.2% 78.3% 78.2% 78.1% 77.3%
Densnet201 77% 77.3% 77.1% 76.5% 77.3% 75.9% 76.3% 77.6% 77% 76.4% 77.1%
Resnet18 70.7% 69.3% 71.2% 71.1% 70.2% 70.5% 71.6% 72.1% 71.3% 69.3% 61.3%
Googlenet 69.8% 68.4% 68.1% 70.3% 70.8% 69.7% 69.4% 68.7% 69% 58.1% 55.3%
Comp.VGG-16 70.5% 51.6% 32.1% 17.3% 7.5% 0.9% 0.1% 0.2% 0.1% 0.1% -
Small DNNs Comp.Alexnet 57% 31.2% 17.6% 0.2% 0.1% 0.1% 0.1% 0.1% 0.1% - -
Squeezenet 57.5% 0.7% 0.3% 0.2% 0.1% 0.1% 0.1% 0.2% 0.1% - -
Mobilenet 70.9% 0.2% 0.2% 0.1% 0.1% 0.2% 0.1% 0.2% 0.1% - -
RESILIENCE TRAINING
Original | EquationDrug ZeusVM-decypted Cerber Ardamax NSIS Kelihos Mamba WannaCry Vikinghorde Artemis
Resnet50 75.2% 75.2% 75.4% 74.8% 74.7% 75.1% 75.3% 74.6% 74.8% 75.5% 75.1%
Medium DNNs Inceptionv3 78% 78.3% 78.4% 78.2% 77.9% 78.4% 78.1% 77.6% 78.4% 77.8% 78.1%
Densnet201 77% 77.2% 76.7% 77.1% 76.9% 77.3% 76.5% 77.2% 77.3% 76.7% 76.4%
Resnet18 70.7% 71.1% 71.2% 70.9% 71% 70.4% 70.3% 70.9% 71.3% 68.2% 69.7%
Googlenet 69.8% 70.3% 69.2% 69.6% 71% 70.5% 69.3% 70.4% 70.2% 70.4% 68.2%
Comp.VGG-16 70.5% 68.3% 69.1% 71.2% 69.1% 68.4% 63.4% 56.1% 22.6% 6.7% -
Small DNNs Comp.Alexnet 57% 55.4% 56.7% 57.2% 54.1% 38.2% 34.3% 16.7% 3.9% - -
Squeezenet 57.5% 56.8% 54.3% 53.2% 48.3% 35.4% 29.6% 15.1% 4.1% - -
Mobilenet 70.9% 71.2% 68.5% 66.7% 54.4% 32.5% 29.1% 6.1% 0.7% - -

Table 7: Testing accuracy (< +1%) on selected STEGONET samples created by “searching and mapping” based technique, with
highlighted significant accuracy reduction.

VALUE-MAPPING

Original | EquationDrug ZeusVM-decypted Cerber Ardamax NSIS Kelihos Mamba WannaCry Vikinghorde Artemis
Resnet50 75.2% 74.8% 74.7% 75.1% 75.3% 74.6% 74.8% 74.6% 75.7% 75.5% 75.8%
. Inceptionv3 78% 78.3% 78.4% 78.2% 78% 77.2% 78.3% 78.4% 78.1% 77.6% 77.3%
Medium DNNs
Densnet201 77% 77.1% 76.9% 77.3% 76.5% 77.2% 76.5% 77.3% 75.9% 77.3% 76.7%
Resnet18 70.7% 71.1% 70.2% 70.5% 71.6% 72.1% 70.9% 71% 70.4% 70.3% 70.9%
Googlenet 69.8% 70.1% 68.3% 70.2% 68.1% 70.3% 69.8% 68.4% 68.1% 70.3% 70.8%
CompVGG-16 70.5% 71.3% 71% 68.3% 69.1% 71.2% 69.1% 69.2% 48.7% - -
Small DNNs Comp.Alexnet 57% 56.9% 56.7% 57.2% 54.1% - - - - - -
Squeezenet 57.5% 57.3% 56.9% 55.7% 56.8% 39.7% 43.2% 21.8% N N -
Mobilenet 70.9% 69.2% 71% 70.5% 70.3% 54.7% 48.6% 49.3% - - -
S1GN-MAPPING
Original | EquationDrug ZeusVM-decypted Cerber Ardamax NSIS Kelihos Mamba WannaCry Vikinghorde Artemis
Vgg19 (17.16MB) 71.1% 71.3% 71.2% 70.7% 71.2% 70.9% 71.1% 71.2% 71.1% 70.8% 71.3%
Large DNNs Vgg16 (16.45MB) 70.5% 71% 70.6% 69.9% 70.2% 71.1% 70.8% 70.2% 69.8% 69.7% 71%
Alexnet (7.27MB) 57% 57.2% 57.1% 56.7% 57.3% 57.2% 56.8% 56.9% 57.3% - -
Resnet101 (5.32MB) 77.1% 77.2% 77.4% 76.7% 76.3% 77% 77.3% 77.5% - - -
Resnet50 (3.05MB) 75.2% 74.8% 75.3% 75.1% 75.5% 75.4% 75.3% 74.9% N N -
. Inceptionv3 (2.84MB) 78% 77.4% 78.2% 78.1% 77.8% 78% 78.1% - - - -
Medium DNNs 1y et201 (2.38MB) 77% 77.3% 77.2% 764% 767% 771% 764% - - - -
Resnet18 (1.39MB) 70.7% 71.1% 70.8% 71% 71.2% 69.5% - - - - -
Googlenet (0.83MB) 69.8% 68.3% 70.2% 70.1% - - - - - - -
Comp VGG-16 (1.34MB) 70.5% 71.3% 71% 70.4% 69.6% - - - - - -
Small DNNs Comp.Alexnet (0.83MB) 57% 55.4% 56.7% 56.3% - - - - - -
Squeezenet (0.15MB) 57.5% - - - - - - - - - -
Mobilenet (0.5MB) 70.9% 68.3% - - - - - - - - -

Table 8: Detection rate reported on Metadefender [32].

Baselines Selected Malware Samples

Asprox Bladabindi Destover Kovter Stuxnet ZeusVM
Vanilla-malware 72.97% 75.68% 83.78% 62.16% 89.19% 91.89%
Stegomalware 8.11% 10.81% 13.51% 5.41% 0.00% 8.11%
*LSB substitution 0.00% 2.70% 2.70% 0.00% 0.00% 0.00%
*Sign-mapping 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

is because the embedding rate (defined as malware/model size)
exceeds the error-resilient capability of the DNN model. We ob-
serve that the upper bound of embedding rate for resilience training

without accuracy degradation is ~ 15%.

However, such an issue has been alleviated on the “searching
and mapping" based technique. As Table 7 shows, value-mapping
achieves higher testing accuracy than that of resilience training in
most cases. For example, for the large sample Mamba (2.3MB) within
Mobilenet (4.2MB), the testing accuracy of resilience training is
only 6.1% while that of value-mapping can be still as high as ~ 50%.
However, the “searching and mapping” based technique sometimes
suffers from its own limitation. For those highly compressed DNN
models like “Comp.Alexnet”, since model parameters are extremely
quantized (i.e., data precision reduction), value-mapping can be less

935

STEGONET: Turn Deep Neural Network into a Stegomalware

Stego-malware Resilience Training

YT T s a e 1
W‘ -,
4
208 il 208
151 3 ”’ ©
o [L 14
.% 06 'l —#— Primary Sets .g 06
‘2 Sample Pairs ‘g
ao04 |} s RS Analysis a 04
3] ‘ i 3 %
o I P Chi Square 2 ”
Fo2 , ~% +Fusion Fo2 /'
’ ‘ = = (Random Guess) e
[[
0 0.2 04 .06 0.8 0 0.2 04 .06 0.8
False Posnﬂle Rate False PosnR/e Rate
LSB Substitution (Sequential) Value-mapping
1 M g 1
g
208 208
© ©
o o4
L06 206
a 0.4 a 0.4
@ @
2 c
F0.2 Fo0.2
0 0:
. 4 0. . . .4 0. X 1
0 02 Falge PosnR/gRateo 8 ! 0 02 Falge PosnR/gRateO 8
LSB Substitution (Random) Sign-mapping
1 T 4 1 -
i - 7
208 * 208 £
k4 Conl
& .3 - 7 g /f”);,;
206 4 e 206 FEe
S -, = R4
Soa| / Pe- & 04 ;/
]] e E] e
o2 e o2 /,,‘5",
4 ‘ ?;/
0 0°¢
0 0.2 6 0 0.2

Falg'e4PositRie Ra\teo'8 Fal(sJ'eAPositR}S Rate0'8

Figure 6: ROC of Steganalysis Detection.

effective when mapping the binary payload to appropriate weight
parameters. The similar trend can be also found in sign-mapping.
The embedding rate is further reduced due to the limited number
of sign bits in DNN model (i.e., one per each parameter). However,
overall we observe that sign-mapping can always maintain the
original testing accuracy for all applicable cases, indicating the best
option to secure the evasiveness of STEGONET when possible.

6.1.2 Results of Anti-malware Detection. Table 8 compares
the anti-malware detection rate among four designs. For a fair com-
parison, we evaluate the LSB substitution and sign-mapping on
highly compressed Squeezenet (1.24MP), to ensure that the embed-
ding rate or bit per pixel (bpp) of stegomalware (1600x800=1.28 MP)
and the bit per parameter of created STEGONET sample are main-
tained at the same level (bpp~1).

As Table 8 shows, all vanilla-malware samples can be successfully
detected by Metadefender with high detection rates (i.e., 62.16% ~
91.89%). Compared with vanilla-malware, the anti-malware detec-
tion rate of stegomalware can be reduced by at least six times (i.e.,
from 83.78% to 13.51% on Destover). This means that a few heuristic
anti-malware engines can still detect the stegomalware, though
with a much lower rate. On the other hand, LSB substitution based
STEGONET samples are more evasive. Only 2 (i.e., 2.7% on Blad-
abindi and Destover) out of 185 test cases can be detected (likely
false positives). Moreover, the more sophisticated sign-mapping
achieves the least detection rate for all 37 anti-malware engines.

6.1.3 Results of Steganalysis Detection. Figure 6 further com-
pares the detection rates of different designs when adopting various

936

ACSAC 2020, December 7-11, 2020, Austin, USA

steganalysis methods. In particular, we test two variants of LSB
substitution-sequential and random, which embed payload binary
into the LSB of sequentially and randomly selected DNN parame-
ters, respectively. The area under curve (AUC) of receiver operating
characteristic (ROC) represents the detection rate. A smaller AUC
indicates better evasiveness.

As Figure 6 shows, most steganalysis methods can effectively
detect image-based stegomalware, e.g. a large AUC can be observed
from the idea ROC towards (0,1). Due to the similarity to stego-
malware, the simple LSB substitution based STEGONET, can be
also detected by steganalysis. However, all these methods show
degraded effectiveness (i.e., reduced AUC) comparing with image-
based stegomalware, as the structure of DNN model is much more
complex than that of image. As expected, Chi Square and Primary
Sets suffer from significant detection performance degradation (i.e.,
close to random guess) for the advanced random LSB substitution
in STEGONET. However, all the steganalysis methods, including
more powerful RS Analysis and Fusion, are incapable of detecting
three advanced STEGONET designs based on resilience training,
value-mapping and sign-mapping, with almost close to random
guess performance as shown in the right column of Figure 6.

6.2 Robustness

The robustness indicates the integrity of the injected payload that is
essential to execute the payload. However, the lightweight modifica-
tions such as parameter fine-tuning (a common approach in transfer
learning) can compromise the integrity of payload. Therefore, we
further evaluate the robustness of STEGONET.

Metrics and Methods. We target the integrity issue and apply
fine-tuning on STEGONET samples created with payload Kovter. The
bit-flipping rate of STEGONET sample after fine-tuning is selected
as metric to evaluate the robustness. A less bit-flipping rate in-
dicates the better robustness. In practice, fine-tuning is usually
only applied on the DNN output layer to optimize the decision mak-
ing with the least effort. For evaluation purpose, we analyze the
following three fine-tuning scenarios: 1) the default output-layer
only; 2) fully-connects only (stronger modification-parameters
of fully-connected layers); 3) full-net (strongest modification—
parameters across all DNN layers).

Results. As Table 9 shows, sign-mapping is the best option
for payload integrity protection on both Alexnet and compressed
Alexnet. It can guarantee the payload integrity without introducing
any bit-flipping for all fine-tune cases. This is because the sign
bit of the weights, especially for those important parameters with

Table 9: Payload bit-flipping rate after fine-tuning,.

Kovter on Alexnet
LSB Sub. Resilience Tr. Value-map. Sign-map.

Output-layer 8.26% 0.0% 0.0% 0.0%
Fully-connects 43.8% 36.4% 8.6% 0.0%
Full-net 50.2% 48.1% 35.5% 0.0%

Kovter on Compressed Alexnet
LSB Sub. Resilience Tr. Value-map. Sign-map.

Output-layer 6.72% 0.0% 0.0% 0.0%
Fully-connects 26.8% 18.2% 2.3% 0.0%
Full-net 37.1% 23.1% 16.7% 0.0%

ACSAC 2020, December 7-11, 2020, Austin, USA

=@ Logits trigger
Fine-tuned rank trigger

1000000

@ - Rank trigger
=3 Single-class trigger

©-9-9 vv"’-._

°.,

F,-score

3 5 7 9 11 13 15 17 19 21 23 25
Variation Strengths (Weak — Strong)

Figure 7: Reliability of different trigger designs.

large values, is defined at the training stage and rarely flips dur-
ing the fine tune despite the slight magnitude change. Resilience
training and value-mapping also demonstrate remarkable robust-
ness against default fine-tuning. In contrast, LSB Substitution is
the most sensitive method to all fine-tunings. We also observe that
all payload injection techniques applied to compressed Alexnet
can be better than that of uncompressed Alexnet. This is because
quantized parameters with reduced data precision in compressed
model may better prevent the value changes caused by fine-tuning
due to the parameter sharing.

6.3 Reliability

Reliability measures the performance of our trigger design against
input variations from physical-world.

Metrics and Methods. Our proposed rank trigger can be ad-
dressed as a specific rule based binary decision (i.e., to match the
“logits rank”). The trigger rate (or binary decision accuracy) can be
used to measure the performance with trigger event (i.e., specific
input images) selected as positive samples and normal inputs (i.e.,
benign images) selected as negative samples. Accordingly, we use
F-score as metric in our evaluation:

2) . {Precision = TP/TP+FP
Fi =

Recall = TP/TP+FN

Precision™! + Recall™! ©)
where TP (True positive) is a successful triggering with specific
input, FP (False positive) is an unsuccessful triggering with specific
input, and FN (False negative) is incorrectly triggered with normal
input. This metric can fairly reflect the trigger performance under
the imbalanced number of positive and negative samples (i.e., 1:10
in our method), and shows to what degree the attacker can “control”
the STEGONET from a statistical perspective.

To measure the reliability, we use 1000 benign images (selected
from 10 sub-class of Imagenet dataset) as negative samples, and cre-
ate 100 specific images as positive samples to trigger the STEGONET
on Alexnet. These 100 specific images are augmented from the
original “chessboard” (see Figure 5) by applying different types of
input variations across 25 different levels. We measure and compare
the Fj-score of different trigger designs on each variation level. A
higher F;-score indicates the better reliability.

Results. Figure 7 compares the reliability of four different trigger
designs, including proposed logits trigger, rank trigger and fine-
tuned rank trigger, as well as the classic single-class trigger used in
most works (e.g. backdoor). We choose 4 logits (out of total 10-class)

937

Tao Liu, Zihao Liu, Qi Liu, Wujie Wen, Wenyao Xu, and Ming Li

(@) Brightness ngle . (©) lmage Rotation

o
ariatio”

(a) Logits rank in rank trigger against different strong variations.

(b) Logits rank in fine-tuned rank trigger against different strong variations.

Figure 8: Observation on “logits rank” with different varia-
tion strengths.

to create our proposed trigger designs. The variation strengths are
quantified as 1 — 25.

As Figure 7 shows, our proposed fine-tuned rank trigger achieves
the best reliability among all designs, followed by rank trigger,
single-class trigger and logits trigger. With increased variation
strengths, the fine-tuned rank trigger can always maintain the
highest F;-score (= 1). The F;-score of rank trigger drops from ~ 1
to ~ 0.2 as the variation strengths increases from 10—25, which
indicates its lower reliability against stronger input variations. The
logits trigger shows the least reliability in all cases, as proved by its
sharply reduced F;-score, e.g. from 0.64 to ~ 0.1 (random guess).
Compared with three proposed trigger designs, the single-class
trigger is “stable” but not “reliable”. It can maintain the F;-score at
a certain level as the variation strength grows, however, its best
Fi-score is very low. This is because the single-class trigger, which is
widely adopted by existing backdoor attack, suffers from significant
False Negative errors in our design (i.e., negative samples or normal
inputs in the same class mistakenly triggers the malware). This result
also confirms that existing triggering mechanism, as a special case of
our logits rank trigger design with only a top one logits, cannot work
well in STEGONET.

7 CONCLUSION

As the fast-growing machine learning industry is subject to ever-
increasing security challenges, this work reveals a new type of
DNN based malware design, namely STEGONET, by employing DNN
model as a novel payload injection channel. We systematically study
the payload injection techniques such as LSB substitution, resis-
tance training, value mapping and sign mapping, as well triggering
techniques like logits trigger, rank trigger and fine-tuned rank trig-
ger. We also demonstrate the threat of STEGONET on Nvidia Jetson
TX2 testbed using the ideal dataset and the input from the physical-
world. Evaluations show that proposed techniques may effectively
and efficiently secure the stealthiness of malicious payloads and
evade existing anti-malware and steganalysis techniques. We also
discuss the possible defense solutions. In our future work, we will
continue to study and develop defense techniques for DNN based
computing system to mitigate the emerging STEGONET.

STEGONET: Turn Deep Neural Network into a Stegomalware

ACKNOWLEDGMENTS

This work is partially supported by the National Science Foundation
CNS-1801402 and CNS-2011260.

REFERENCES

[1] Amazon. 2018. Amazon Machine Learning. https://aws.amazon.com/machine-
learning/.

] Christopher M Bishop. 2006. Pattern recognition and machine learning. springer.
[3] Benedikt Boehm. 2014. Stegexpose-A tool for detecting LSB steganography.
https://github.com/b3dk7/StegExpose/. arXiv preprint arXiv:1410.6656 (2014).

[4] BVLC/caffe. 2018. DNN Model Zoo. https://github.com/BVLC/caffe/wiki/Model-
Zoo/.

[5] Abbas Cheddad, Joan Condell, Kevin Curran, and Paul Mc Kevitt. 2010. Digital
image steganography: Survey and analysis of current methods. Signal processing
90, 3 (2010), 727-752.

[6] Xinyun Chen, Chang Liu, Bo Li, Kimberly Lu, and Dawn Song. 2017. Targeted
backdoor attacks on deep learning systems using data poisoning. arXiv preprint
arXiv:1712.05526 (2017).

[7] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. 2009. Ima-
genet: A large-scale hierarchical image database. In Computer Vision and Pattern
Recognition, 2009. CVPR 2009. IEEE Conference on. IEEE, 248-255.

[8] Sorina Dumitrescu, Xiaolin Wu, and Nasir Memon. 2002. On steganalysis of
random LSB embedding in continuous-tone images. In Proceedings. International
Conference on Image Processing, Vol. 3. IEEE, 641-644.

[9] Sorina Dumitrescu, Xiaolin Wu, and Zhe Wang. 2002. Detection of LSB steganog-
raphy via sample pair analysis. In International Workshop on Information Hiding.
Springer, 355-372.

[10] Ivan Evtimov, Kevin Eykholt, Earlence Fernandes, Tadayoshi Kohno, Bo Li, Atul
Prakash, Amir Rahmati, and Dawn Song. 2017. Robust Physical-World Attacks
on Deep Learning Models. arXiv preprint arXiv:1707.08945 1 (2017).

[11] Jessica Fridrich, Miroslav Goljan, and Rui Du. 2001. Reliable detection of LSB
steganography in color and grayscale images. In Proceedings of the 2001 workshop
on Multimedia and security: new challenges. ACM, 27-30.

[12] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. 2016. Deep learning. MIT

press.

Ian J Goodfellow, Jonathon Shlens, and Christian Szegedy. 2014. Explaining and

harnessing adversarial examples. arXiv preprint arXiv:1412.6572 (2014).

[14] Google. 2018. Google Cloud Machine Learning. https://cloud.google.com/produ

cts/machine-learning/.

Tianyu Gu, Brendan Dolan-Gavitt, and Siddharth Garg. 2017. Badnets: Identifying

vulnerabilities in the machine learning model supply chain. arXiv preprint

arXiv:1708.06733 (2017).

[16] Song Han, Huizi Mao, and William J Dally. 2015. Deep compression: Compressing
deep neural networks with pruning, trained quantization and huffman coding.
arXiv preprint arXiv:1510.00149 (2015).

(13

[15

[17] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2016. Deep residual
learning for image recognition. In Proceedings of the IEEE conference on computer
vision and pattern recognition. 770-778.

[18] Geoffrey E Hinton and Ruslan R Salakhutdinov. 2006. Reducing the dimensional-
ity of data with neural networks. science 313, 5786 (2006), 504-507.

[19] Andrew G Howard, Menglong Zhu, Bo Chen, Dmitry Kalenichenko, Weijun

Wang, Tobias Weyand, Marco Andreetto, and Hartwig Adam. 2017. Mobilenets:

Efficient convolutional neural networks for mobile vision applications. arXiv

preprint arXiv:1704.04861 (2017).

Gao Huang, Zhuang Liu, Laurens Van Der Maaten, and Kilian Q Weinberger.

2017. Densely Connected Convolutional Networks.. In CVPR, Vol. 1. 3.

[21] Forrest N Iandola, Song Han, Matthew W Moskewicz, Khalid Ashraf, William J
Dally, and Kurt Keutzer. 2016. Squeezenet: Alexnet-level accuracy with 50x fewer

[20

938

™
2

)
&,

ACSAC 2020, December 7-11, 2020, Austin, USA

parameters and< 0.5 mb model size. arXiv preprint arXiv:1602.07360 (2016).
Facebook Inc. 2017. Open Neural Network Exchange (ONNX). https://onnx.ai/.
Matthew Jagielski, Alina Oprea, Battista Biggio, Chang Liu, Cristina Nita-Rotaru,
and Bo Li. 2018. Manipulating machine learning: Poisoning attacks and coun-
termeasures for regression learning. In 2018 IEEE Symposium on Security and
Privacy (SP). IEEE, 19-35.

Mehdi Kharrazi, Husrev T Sencar, and Nasir Memon. 2006. Improving steganalysis
by fusion techniques: A case study with image steganography. In Transactions
on Data Hiding and Multimedia Security I. Springer, 123-137.

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. 2012. Imagenet classifica-
tion with deep convolutional neural networks. In Advances in neural information
processing systems. 1097-1105.

Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. 2015. Deep learning. Nature
521, 7553 (2015), 436-444.

Bin Li, Junhui He, Jiwu Huang, and Yun Qing Shi. 2011. A survey on image
steganography and steganalysis. Journal of Information Hiding and Multimedia

Signal Processing 2, 2 (2011), 142-172.
Yinggqi Liu, Shiqing Ma, Yousra Aafer, Wen-Chuan Lee, Juan Zhai, Weihang Wang,

and Xiangyu Zhang. 2017. Trojaning Attack on Neural Networks. In Department
of Computer Science Technical Reports, Purdue University. Purdue e-Pubs, 1781.
Yuntao Liu, Yang Xie, and Ankur Srivastava. 2017. Neural trojans. In Computer
Design (ICCD), 2017 IEEE International Conference on. IEEE, 45-48.
MalwareWiki. 2018. Fork Bomb. http://malware.wikia.com/wiki/Fork_Bomb/.
D McMillen. 2017. Steganography: A safe haven for malware. https://securityin
telligence.com/steganography-a- safe-haven-for-malware/. (2017).
Metadefender. 2019. Multiple Security Engines. http://www.metadefender.com/.
Microsoft. 2018. Microsoft Azure Machine Learning. https://azure.microsoft.co
m/en-us/services/machine-learning/.

Yuval Nativ. 2015. theZoo aka Malware DB. http://thezoo.morirt.com/.

Nicolas Papernot, Patrick McDaniel, Somesh Jha, Matt Fredrikson, Z Berkay Celik,
and Ananthram Swami. 2016. The limitations of deep learning in adversarial
settings. In Security and Privacy (EuroS&P), 2016 IEEE European Symposium on.
IEEE, 372-387.

David Silver and Demis Hassabis. 2016. Alphago: Mastering the ancient game of
go with machine learning. Research Blog (2016).

Karen Simonyan and Andrew Zisserman. 2014. Very deep convolutional networks
for large-scale image recognition. arXiv preprint arXiv:1409.1556 (2014).
Congzheng Song, Thomas Ristenpart, and Vitaly Shmatikov. 2017. Machine
learning models that remember too much. In Proceedings of the 2017 ACM SIGSAC
Conference on Computer and Communications Security. ACM, 587-601.
Guillermo Suarez-Tangil, Juan E Tapiador, and Pedro Peris-Lopez. 2014. Stego-
malware: Playing hide and seek with malicious components in smartphone apps.
In International Conference on Information Security and Cryptology. Springer,
496-515.

Christian Szegedy. 2016. An overview of deep learning. AITP 2016 (2016).
Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott Reed, Dragomir
Anguelov, Dumitru Erhan, Vincent Vanhoucke, and Andrew Rabinovich. 2015.
Going deeper with convolutions. In Proceedings of the IEEE conference on computer
vision and pattern recognition. 1-9.

Christian Szegedy, Vincent Vanhoucke, Sergey Ioffe, Jon Shlens, and Zbigniew
Wojna. 2016. Rethinking the inception architecture for computer vision. In
Proceedings of the IEEE conference on computer vision and pattern recognition.
2818-2826.

Tensorflow. 2019. TensorFlow models are programs. https://github.com/tensorf
low/tensorflow/blob/master/SECURITY.md/.

Florian Tramer, Nicolas Papernot, Ian Goodfellow, Dan Boneh, and Patrick Mc-
Daniel. 2017. The Space of Transferable Adversarial Examples. arXiv preprint
arXiv:1704.03453 (2017).

Samir Vaidya. 2019. OpenStego. https://github.com/syvaidya/openstego/.
Andreas Westfeld and Andreas Pfitzmann. 1999. Attacks on steganographic
systems. In International workshop on information hiding. Springer, 61-76.

https://aws.amazon.com/machine-learning/
https://aws.amazon.com/machine-learning/
https://github.com/b3dk7/StegExpose/
https://github.com/BVLC/caffe/wiki/Model-Zoo/
https://github.com/BVLC/caffe/wiki/Model-Zoo/
https://cloud.google.com/products/machine-learning/
https://cloud.google.com/products/machine-learning/
https://onnx.ai/
http://malware.wikia.com/wiki/Fork_Bomb/
https://securityintelligence.com/steganography-a-safe-haven-for-malware/
https://securityintelligence.com/steganography-a-safe-haven-for-malware/
http://www.metadefender.com/
https://azure.microsoft.com/en-us/services/machine-learning/
https://azure.microsoft.com/en-us/services/machine-learning/
http://thezoo.morirt.com/
https://github.com/tensorflow/tensorflow/blob/master/SECURITY.md/
https://github.com/tensorflow/tensorflow/blob/master/SECURITY.md/
https://github.com/syvaidya/openstego/

	Abstract
	1 Introduction
	2 Background
	2.1 DNN Basics
	2.2 Emerging DNN Threat
	2.3 Stegomalware and Steganalysis

	3 Threat Model
	4 Create the StegoNet
	4.1 An Overview
	4.2 DNN Favorable Payload Injection
	4.3 DNN Logits based Trigger

	5 Prototype
	5.1 Implementation of StegoNet
	5.2 Demonstration

	6 Evaluation
	6.1 Evasiveness
	6.2 Robustness
	6.3 Reliability

	7 Conclusion
	Acknowledgments
	References

