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Abstract
Diabetic foot ulcers (DFUs) represent a signi�cant global
health challenge for the elderly with high mortality rates
and complications. While imaging technologies like NIRS
and hyperspectral imaging have improved wound assess-
ment in clinical settings, their cost, and large size limit their
use in the home and primary care. On the other hand, exist-
ingmobile solutions only capture secondary bio-markers like
color and wound size. This paper introduces SigmoidOxy
(or f(Oxy)), a novel smartphone-based perfusion tool for
DFU management. SigmoidOxy extracts oxygenation infor-
mation from standard RGB images captured by smartphone
cameras by applying hyperspectral reconstruction models to
infer oxygenation. We evaluate SigmoidOxy’s performance
using the SPECTRALPACA dataset [2] �nding an Average
Persons R of 0.72 and Average Mean Absolute Error of 0.239
when comparing sigmoid oxygenation signals and analyze
its sensitivity to ischemia in the DFUC2021 dataset [17].
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Figure 1: SigmoidOxy –A smartphone-based system for
DFU management: (a) SigmoidOxy processes an RGB
image of a foot to produce an oxygenation map; (b) A
schematic diagram showing the processing pipeline
from RGB image input through spectral construction
and concentration estimation to produce SigmoidOxy
output; (c) SigmoidOxy UI visualizing oxygenation at
a DFU site.

1 Introduction
Chronic wounds, particularly diabetic foot ulcers (DFU), af-
fect millions of individuals worldwide. Five-year mortality
rates for DFU exceed 25% in individuals who experience
complications [1]. Early detection, accurate assessment, and
regular monitoring of these wounds are vital. However, for
the elderly population, especially those with mobility issues,
which are common in individuals with chronic wounds, get-
ting to a clinic can be impractical, and home visits from
clinicians can be prohibitively expensive, leading to delayed
discovery of infections and complications in the healing pro-
cess [13].

Near Infrared Spectroscopy (NIRS) [12] and hyperspectral
imaging [11] in recent years have become the gold standard
for capturing and imaging physiological biomarkers that give
specialists insight into the condition of a wound on devices
for hospital and clinical use. However, even though these
cameras are highly promising for the clinical setting, they are
still bulky and extremely expensive, making them completely
inapplicable for home care and primary care settings. On

https://doi.org/10.1145/3636534.3698119
https://doi.org/10.1145/3636534.3698119
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3636534.3698119&domain=pdf&date_stamp=2024-12-04


ACM MobiCom ’24, November 18–22, 2024, Washington D.C., DC, USA Gherardi et al.

the other hand, researchers have been developing mobile
solutions for foot ulcer monitoring that, instead of working
to capture oxygenation and perfusion, examine secondary
characteristics of the wound, such as its color and diameter,
which can be ascertained from a simple RGB photograph.
However, since these are secondary characteristics, they do
not provide the same level of insight into wound health as
oxygenation would be able to.
Outside of diabetic foot ulcers, researchers have applied

Wiener Filters to reconstruct full hyperspectral images from
RGB images taken on smartphones [6, 7]. However, given
that this methodology for performing hyperspectral recon-
struction just boils down to linear matrix multiplication, ulti-
mately, it is unable to, by nature, introduce any information
not already present in a single RGB pixel in the input image.
More importantly, outside of mobile health, hyperspectral
reconstruction using deep learning is soon approaching the
point where it looks like it will be possible to perform recon-
struction under arbitrary lighting and with any smartphone
without requiring retraining [9]. And previously, dictionary
learning [5] has been used to simultaneously estimate light-
ing conditions and material re�ectance directly with larger
datasets now available that include re�ectance and RGB im-
age pairs. We believe that we will soon see deep learning
applied to this task. With this in mind, we propose a new
methodology based on modern image-to-image spectral re-
construction as described in recent literature [8] pertaining
to spectral reconstruction and demonstrate its use here while
addressing any implementation challenges we come across.

In this paper, we present SigmoidOxy, a novel smartphone-
based perfusion tool that extracts oxygenation information
directly from ordinary RGB images captured by smartphone
cameras and leverages this as a biomarker for wound perfu-
sion in actual captured DFU images.
Our major contributions are as follows:

(1) A smartphone-based perfusion tool for the assessment
of chronic wounds.

(2) A demonstration of modern hyperspectral reconstruc-
tion models being applied to determine oxygenation.

(3) A new biomarker for oxygenation that is robust to
outliers and pairs well with our system.

(4) A detailed evaluation of the performance of our ap-
proach on the SPECTRALPACA dataset [2] and a pre-
liminary analysis of its sensitivity to ischemia in the
DFUC2021 dataset [17].

(5) A user-friendly smartphone application designed for
elderly users and those with limited technical pro�-
ciency.

2 System Principle and Design
In this section, we outline and detail the architecture and
rationale behind each stage of our system which leverages
a pre-trained spectral reconstruction model and classical
re�ection spectroscopy techniques to extract oxygenation
information from ordinary RGB images and videos.

2.1 Background
Human skin is highly complex and contains many unique
chromophores, some of which may only be present in indi-
viduals of a certain ethnic background (e.g., skin tone) or
skin condition (e.g., smoking introduces a higher concen-
tration of carboxyhemoglobin). In addition to this skin is
multi-layer [16], and the resulting absorption/re�ectance
spectra integrates contributions from each layer di�erently
depending on its thickness and depth. The situation is fur-
ther complicated in cases where wounds are present, which
may contain additional chromophores depending on their
condition and di�erent layer compositions. All this ignores
any non-linear scattering e�ects as well.

2.2 Spectral Reconstruction
Due to the inherent variability of skin (especially wounded
skin) and skew in the distribution of key skin parameters
such as skin tone mixed with the di�culties of collecting
data from populations with chronic wounds (who struggle
with mobility issues and pain) and the expense of collecting
data with hyperspectral cameras. We do not believe that
constructing reconstruction models by training on datasets
involving only images of skin is the best way here to produce
results that exhibit low bias in this case.

For this and the reasons outlined in the introduction per-
taining to the direction the �eld is moving toward we apply
MST++ [3], a deep learning spectral reconstruction model
pre-trained on a wide set of images taken with a hyperspec-
tral camera under various scenarios (such as of plants and
environments, indoors and outdoors) such that it can recon-
struct a hyperspectral image generally.

2.3 Concentration Estimation
Once the skin spectra have been recovered using the model.
It’s straightforward and analytic to go from spectra to the
chromophores concentrations [4] if you already have the
chromophore spectral intrinsics [14, 15] and assume there
are no non-linear scattering e�ects or anything of the like.
The Beer-Lambert law relates re�ected/transmitted) (_) and
absorbed spectra�(_) to material concentrations in a sample.

�(_) = � ln) (_) = Y (_) · 2 · ; . (1)
As MST++ and other spectral reconstruction models do

not include the original/physically accurate scale for their
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transmittance/re�ectance spectra as even with a true hyper-
spectral camera this scale comes from calibration white and
dark calibration targets which are not available in this case.
This lack of scale causes numerical issues with the sharp
asymptote that ln has at 0. We note, however, that in the
range [ 1

20 , 1], there is no strong non-linear behavior, and
a linear approximation works well. So, we apply the approxi-
mation to the Beer-Lambert law and use that for our further
analysis, since by de�nition re�ectance values are bounded
between 0 and 1, and in only the darkest materials do they
fall below 1

20 .

�(_) ⇡ �) (_) ⇡ Y (_) · 2 · ; (2)

From here, we assume that skin only contains the 3 materi-
als we are concerned with hemoglobin, oxyhemoglobin, and
melanin (speci�cally eumelanin). Then using the molar ex-
tinction coe�cient for each of these materials (nHb, nHbO2, nM)
and the previously outlined physical law. Taking the optical
path-length l=1 as it would cancel out or become unimpor-
tant later anyway when we determine the oxygenation and
de�ning ? = �) . The spectral pixel can then be related to
the material concentrations as follows.

? (8, 9, _) =nHb (_) · 2Hb (8, 9) + nHbO2 (_) · 2HbO2 (8, 9)
+ nM (_) · 2M (8, 9)

(3)

Enumerating this equation for the 31 wavelengths (_)
outputted by the spectral reconstruction such that there
is now a system of 31 linear equations, then representing
the system as a matrix equation with E = [&Hb, &HbO2, &M],
c = [2Hb, 2HbO2, 2M] and we can obtain

p = Ec. (4)

For each pixel (i, j), Which can be solved for the concen-
trations vector c using linear least squares.

c =
⇣
E)E

⌘�1
E) p. (5)

2.4 Sigmoid Oxygenation
Once the concentration vector is obtained, the oxygenation
can be estimated. There are a few di�erent ways to de�ne tis-
sue oxygenation. It is most common to de�ne tissue oxygena-
tion saturation as the fraction of oxygenated hemoglobin
to all the hemoglobin present in the tissue. This, however,
does not work here in the same way as even in the case
of ground truth spectral data from spectral cameras, as we
found that it is common for one of the concentrations to be
negative. Therefore, in order to have a quantity that varies
as one would expect with the actual tissue oxygenation, we
must apply a di�erent feature.

Figure 2: Main Menu and Results User Interface.

f ($2) = 1 � f

✓����Hb$2

Hb

����
◆
. (6)

This feature, herein referred to as sigmoid oxygenation,
has a simple rationale. Since the non-transformed absolute
oxygenation feature

�� HbO2
Hb

�� seems to increase when the actual
tissue oxygenation is made to decrease, we must invert it.
To invert this quantity, we �rst apply the sigmoid function
to constrain the quantity to the range [0, 1], after which we
apply the 1 � G transformation to perform the inversion.

3 Application Development and Integration
3.1 User Interface Design
We implemented the Sigmoid-Oxy system as a smartphone
app with an intuitive user interface (UI) to facilitate easy
wound monitoring and assessment for patients. The app
leverages the smartphone’s camera and outlined algorithms
to perform hyperspectral reconstruction and analysis of foot
ulcers. The UI is structured to guide users through the assess-
ment process, provide clear results, and maintain a record of
historical data. To improve the user experience (UX) for the
elderly and those with limited technical pro�ciency, we pri-
oritize simplicity, accessibility, and guided work�ows in our
smartphone UI design. The UI is tailored towards the elderly,
featuring large fonts, buttons, and a lot of visual feedback
and animations. Users are walked through capturing and
segmenting images and then interpreting results from the
system (see Figure 2). Based on some simple analysis, the
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Figure 3: Segmentation and Diagnosis User Interface.

app provides a preliminary diagnosis and suggestions for
wound care (see Figure 3). The app o�ers immediate guidance
to users while emphasizing the importance of professional
medical advice.

3.2 Implementation
We use the Segment Anything Model (SAM) [10] for the
segmentation of photos of the foot to provide accuratewound
boundary detection. The segmentation process is interactive;
it allows the users to re�ne the selection if needed.We o�oad
the heavy image processing required for our SigmoidOxy
system to the cloud. Images taken with the smartphone are
uploaded to a cloud serivce where the whole pipiline is ran,
uponwhich the processed images are downloaded back to the
smartphone for presentation to the user, allowing for the use
of these capabilities on resource-constrained smartphones.

4 Evaluation
4.1 Oxygenation
To validate our system, we evaluated the quality of the gen-
erated sigmoid oxygenation signals and images against those
produced by a true hyperspectral camera. To do so, we lever-
age the SPECTRALPACA dataset consisting of hyperspectral
videos taken while a cu� was used to apply pressure to the
arm of participants. Pressure was applied in increments with
a release of pressure between each increment to allow tissue
oxygenation to return to a nominal value. The appropriate

Figure 4: Processed and Normalized Sigmoid Oxygena-
tion Signal between ground truth spectra and recon-
structed spectra for subject 05.

Figure 5: Image metric comparisons between ground
truth spectra and reconstructed spectra for the �rst
processed sigmoid oxygenation image in each subject
video.

regimen of preprocessing steps were applied to the raw hy-
perspectral images. First, each hyperspectral channel was
spatially/spectrally calibrated using images taken of a white
and dark target provided in the dataset. Then, using the chan-
nel’s quantum sensitivity matrix, the channels were trans-
formed into a 31-band spectral image with evenly spaced
bands from 460-640nm. Following that a corresponding RGB
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Figure 6: Mean Absolute Error metrics between ground
truth spectra and reconstructed spectra for the pro-
cessed and normalized sigmoid oxygenation signal in
each subject region of interest.

Figure 7: Pearson Rmetrics between ground truth spec-
tra and reconstructed spectra for the processed and
normalized sigmoid oxygenation signal in each subject
region of interest.

image was generated using the quantum sensitivity matrix
for a Samsung Galaxy smartphone rescaled to �t within 460-
640nm.

Figure 8: Distribution of Sigmoid Oxygenation values
for Ischemia Foot Ulcers versus Normal Foot Ulcers.

Figure 9: Distribution plot of Sigmoid Oxygenation
values for Infection Foot Ulcers versus Normal Foot
Ulcers.

Following that in order to adapt MST++ to work for RGB
images generatedwith spectral information in the 460-640nm
range (the original pretrained model is for 400-700nm RGB
image) we retrained the model using its original dataset for
460-640nm generated RGB images. The rest of the system
was left unmodi�ed, and the following comparisons are be-
tween the sigmoid oxygenations that result from applying
the rest of the system to the ground-truth hyperspectral
data and the hyperspectral images that are outputted from
MST++.
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The agreement was tested in two di�erent manners. First,
the sigmoid oxygenation videos were downsampled tempo-
rally 90x. Then, the regions of interest (there are four) that
were provided with the dataset were extracted framewise to
form a patch sequence/signal. A patchwise mean was taken
to form a 1D sigmoid oxygenation signal for each region
of interest (ROI) and Subject combination. Mean absolute
error and Pearson’s R were used to compare the resulting
signals, which were both normalized beforehand by subtract-
ing the mean, dividing by twice the standard deviation, and
adding one to produce a signal that ranges between [0, 2].
Figure 4 illustrates one such normalized pair of signals for
an ROI on subject 5. The MAE values are plotted in Figure 6,
and the Pearson’s R values are shown in Figure 7. To test
the image agreement, the �rst processed image from each
subject’s video was taken and then compared using PSNR
and SSIM metrics after a large ROI was selected to ensure
that the background (which was segmented) had minimal
in�uence on the metric values, the metric values are shown
in Figure 5.

4.2 DFU Evaluation
We then evaluated the performance of our system for dis-
tinguishing the presence of ischemia in actual images of
diabetic foot ulcers provided by the DFUC2021 dataset [17].
The DFUC2021 dataset consists of 15,683 DFU images and is
categorized into four classes: control (normal DFU), infection
only, ischemia only, and both infection and ischemia.
To evaluate the system’s ability to distinguish between

classes, the sigmoid oxygenation values derived from our sys-
tem were averaged imagewise to produce a single biomarker
for each image. A density histogram of oxygenation values
for ulcers with ischemia vs ulcers without any issues was
plotted in Figure 8 where a clear shift in the center of the
distribution can be seen. We also plotted a density histogram
for ulcers with infection vs ulcers with no issue in Figure 9,
but no shift was present (which makes sense as infection
doesn’t necessarily a�ect the blood supply of the wound).

5 Discussion
5.1 Lighting
While MST++ and the rest of our system appear to be some-
what robust to various lighting conditions, as evidenced by
our system producing a noticeable result in the case of the
diabetic foot ulcer dataset, which was taken with several
cameras under various indoor lighting conditions. The lack
of lighting compensation or control still represents a major
source of error for our system which we will be looking to
address in future works, either by developing mobile attach-
ments that provide even and spectrally neutral lighting or

providing developments in lighting invariant spectral recon-
struction techniques involving deep learning.

6 Conclusion
In this paper, we presented SigmoidOxy, a novel smartphone-
based perfusion tool for the analysis of diabetic foot ulcer
wounds. By leveraging modern spectral reconstruction, we
demonstrated a high-performance method to extract insight-
ful oxygenation information from standard RGB images cap-
tured by smartphone cameras. SigmoidOxy addresses a criti-
cal need in elderly care, where chronic wounds are challeng-
ing to manage. By providing an accurate, easy-to-use wound
assessment app on the smartphone, our system empowers
the elderly to monitor wound healing e�ectively at home.
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