
Towards Scalable and Efficient GPU-Enabled Slicing Acceleration in

Continuous 3D Printing

Aosen Wang1, Chi Zhou1, Zhanpeng Jin2 and Wenyao Xu1

1 State University of New York at Buffalo, NY, USA
2 State University of New York at Binghamton, NY, USA

{aosenwan, chizhou, wenyaoxu}@buffalo.edu, zjin@binghamton.edu

Abstract— Recently, continuous 3D printing, a revolutionary
branch of legacy additive manufacturing, has made its two-order
time efficiency breakthrough in industrial manufacturing. As it-
s manufacturing technique advances rapidly, the prefabrication
to slice the 3D object into image layers becomes potential to im-
pede further improvement of production efficiency. In this pa-
per, we present two scalable and efficient graphic processing u-
nit (GPU) enabled schemes, i.e., pixelwise parallel slicing and fully
parallel slicing, to accelerate the image-projection based slicing
algorithm in continuous 3D printing. Specifically, the pixelwise
approach utilizes the pixel-level parallelism and exploits the in-
shared-memory computing on GPU. The fully parallel method ag-
gressively expands the parallelism on both triangle mesh size and
slicing layers. The thread-level priority competing issue, resulting
from full parallelism, is addressed by a critical area using atom-
ic operation. Experiments with real 3D object benchmarks show
that our pixelwise parallel slicing can gain one order of magnitude
runtime reduction to CPU, and the fully parallel slicing achieves
two orders improvement. We also evaluate the scalability of both
proposed schemes.

I. INTRODUCTION

Continuous 3D printing [1] is an emerging technique in in-

dustrial manufacturing. The light polymerized shaping on im-

age projection empowers it dramatically fast speed to print 3D

objects. It lowers the production cost and reduces the mate-

rial waste by using liquid printing materials. The topology

correctness guarantee also makes complex 3D topology feasi-

ble, which is a challenge in legacy mechanical manufacturing.

However, as the rapid advances in manufacturing technique [2],

the prefabrication becomes a potential bottleneck for printing

efficiency.

Figure 1 illustrates the structure of a continuous 3D print-

er [1]. The system is divided into two sections: a “wet” part,

which is a Carbon3D machine, that performs the chemical, me-

chanical operations to fabricate a 3D object from a liquid ma-

terial; and a “dry” part, which consists of a computing unit

(e.g., a microcontroller, CPU or FPGA) that sends layer-image

based instructions to control the operations on the wet part. The

computing process on the dry part is called prefabrication. In

continuous 3D printing, prefabrication is an image-projection

based slicing algorithm extracting the layer information from

triangle mesh in a stereolithography format (STL) file [3]. This

procedure is a computation-intensive task, where the topolo-

gy information needs to be retrieved from a sea of distributed

triangles. In traditional 3D printing technologies (e.g., stere-

Fig. 1. The entire 3D printing procedure, including a dry part (prefabrication)

and a wet part (manufacturing).

olithography, inkjet 3D printing), the manufacturing process

on the wet part takes a large majority of production time. How-

ever, the Carbon3D printer dramatically improves the manu-

facturing efficiency, and the prefabrication on the dry part is

becoming the dominant factor in the production time. For ex-

ample, a complex multi-scale 3D object (e.g., a bionic vein de-

sign with a 7GByte STL file) only takes a few minutes to “print

out”, while it needs 3-4 hours in the prefabrication process.

In this paper, we present scalable and efficient GPU-based

schemes to accelerate the prefabrication of continuous 3D

printing. Specifically, we propose two designs, i.e., a pixelwise

parallel scheme and a fully parallel scheme, which explore the

parallelism enabled by general-purpose GPU (GPGPU) archi-

tecture to accelerate the slicing algorithm. The pixelwise paral-

lel slicing utilizes the image pixel level parallelism and unpack-

s the time-consuming computation in the fast shared memory,

effectively reducing the high-delay global memory accessing.

The fully parallel slicing further exploits the parallelism on tri-

angle mesh and layer size. An atomic operation based critical

area is applied to address the memory access conflict from the

multi-thread concurrency. The extensive experiments on pub-

lic 3D objects indicate that the pixelwise parallel slicing can

provide one order of magnitude runtime improvement, and the

fully parallel slicing even achieves two orders promotion in the

prefabrication of continuous 3D printing. We also evaluate the

scalability of proposed approaches.

The remainder of this paper is organized as follows: Sec-

tion II introduces the background and preliminaries of the slic-

ing algorithm in continuous 3D printing and GPGPU architec-

tures. An analysis of slicing algorithm on CPU is presented in

Section III, and two proposed GPU-based slicing acceleration

978-1-5090-1558-0/17/$31.00 ©2017 IEEE

7C-1

623

strategies are illustrated in Section IV. The experiments and e-

valuation are discussed in Section V. Section VI elaborates the

related work. Section VII is the conclusion of the paper and

our future work.

II. BACKGROUND

A. Slicing Algorithm for Continuous 3D Printing

The image-projection based slicing method [4, 5] is mainly

adopted in continuous 3D printing. Figure 2 shows an illus-

tration example of image-based slicing. The Android man is

placed in the 3D space. A cutting plane, perpendicular with

z-axis goes through the 3D design and generates its binary im-

age projection in the x-y plane. The black area indicates the

pixels inner the Android man body, while the white pixels are

outside, which will not be filled with materials. As the cutting

plane traverses all the possible z value allowed by manufactur-

ing accuracy, the real Android man is printed.

Fig. 2. An illustration example of image-projection based slicing algorithm.

B. GPGPU Architecture in CUDA

The GPGPU architecture [6] is a massively parallel thread-

ing processor to run general-purpose applications. Compute

unified device architecture (CUDA) [7] is a programming en-

vironment to manipulate the GPGPU architecture for intensive

computing. Figure 3 depicts the GPGPU architecture.

Fig. 3. GPGPU architecture in CUDA.

GPU is a cluster of multiprocessors, each of which consists

of many streaming processors (SP), registers and a shared on-

chip memory. All the streaming processors in a multiprocessor

have their own registers and share a memory with small ca-

pacity. All the threads generated in the same multiprocessor

can access the shared memory, which is much faster than the

on-board device memories. The key factor to improve the per-

formance of GPGPU architecture is to maximize the efficiency

of shared memory and registers to reduce runtime by increasing

active warp number.

III. ANALYSIS OF SLICING ALGORITHM

In this section, we analyze the structure and procedure of the

image-projection based slicing algorithm. As shown in Figure

4, the entire slicing algorithm can be divided into three cas-

caded functional components: ray-triangle intersection, trunk

sorting and layer extraction.

Fig. 4. Block diagram of image based slicing algorithm.

The ray-triangle intersection is to calculate the intersection

point between rays on image pixel centers and the triangles

from an STL file. For the convenience of extracting layer im-

age, the trunk sorting module sorts the out-of-order intersection

points by ascending order in the trunk of each pixel. Then the

binary pixel value is identified in the layer extraction module.

The detailed description of this sequential slicing algorithm is

listed in Algorithm 1.

Algorithm 1 Sequential Slicing Algorithm on CPU

Input: STL file fstl, projected image resolution W×H and layer

number L
Output: A series of binary image IMGk (1 ≤ k ≤ L)

1: (T , TriData)← ReadSTLFile(fstl);
2: //Ray-Triangle Intersection

3: IntersectArray← newArray3D(W,H,MAXD);

4: for each pixel pi on image do
5: (Px, Py)← AxisIdentify(pi);
6: for each triangle tri from STL do
7: IntersectArray← Intersect(Px,Py ,Plane(Tri));
8: end for
9: end for

10: //Trunk Sorting

11: for each pixel pi on image do
12: BubbleSort(trunk on pi from IntersectArray);

13: end for
14: //Layer Image Extraction

15: temp, tempold← zerosArray(W , H);

16: for each layer l do
17: tlayer ← LayerHeight(l);
18: for each pixel pi on image do
19: temp← updateInfor(tlayer , pi, tempold);

20: end for
21: IMGk, tempold← temp;

22: end for

The input of the slicing algorithm is a 3D object in an STL

file, where T is the triangle mesh size and TriData is the point

data. In the ray-triangle intersection step, it first creates a 3D

matrix IntersectArray to store the intersections with the size

of W×H×MAXD, where MAXD is a pre-defined trunk depth,

a small number practically. Note that the vector on each pixel
is called a trunk. We use a simple x-y bound test to choose

7C-1

624

the possible intersecting candidates. If the ray axis is inside

the circumscribed rectangle of the specific STL triangle, the

test result is true, otherwise, returns false. For the candidates,

we continue to check if the ray is falling in the triangle on the

x-y plane projection. We can compute the z-axis value of the

intersection by analytic geometry.

Now we have all the intersection points for the full resolution

of image projection. Since they are out of order in each trunk

due to the random triangle distribution in STL file, our next

step is to sort the intersection points by ascending order using

the bubble sorting [8] on each pixel ray, called trunk sorting.

Finally, we extract all layer images for manufacturing in con-

tinuous 3D printing. The binary value of each pixel is depen-

dent on the layer height and the intersection point position in

each trunk. For each intersection point whose z value is less

than the current layer height, if the normal vector is less than

zero along the z direction, we increase the corresponding pixel

with one unit, indicating that the ray has entered the inner space

of 3D object. Otherwise, we subtract one unit, indicating the

ray has gone through the 3D object. Therefore, we can obtain

the binary topology image of slicing. In this procedure, we use

incremental updating based on the previous layer extraction.

On the basis of the above analysis, there are several chal-

lenges to accelerate this slicing algorithm. First, the slicing

algorithm is sequential in nature, and three modules are cascad-

ed. It is difficult to implement it in a parallel fashion. Second,

due to the high data dependency, it is challenging to design an

efficient pipeline between trunk sorting and layer extraction.

Third, the computation flow in slicing is complicated, which

is not convenient to hardware implementation. In next section,

we explore the intra-module parallelism on GPGPU architec-

ture to accelerate the slicing algorithm.

IV. GPU-ENABLED PARALLEL SLICING

We present two GPU-enabled acceleration approaches, pix-

elwise parallel slicing (PPS) and fully parallel slicing (FPS).

A. Pixelwise Parallel Slicing

In this section, we explore the parallelism inside the slic-

ing algorithm of its GPU implementation. We observe that

the operations in all three modules are pixel-independent, i.e.,

the calculation can be executed independently without com-

plex neighborhood processing. Therefore, we propose a pixel-

wise parallel slicing, where we assign each pixel ray one spe-

cific thread and all the pixel-ray operations are executed by this

thread. Our design unpacks all computation tasks in shared

memory to reduce interaction with global memory. Figure 5

illustrates the detail of the pixelwise parallel slicing method.

Fig. 5. Block diagram of pixelwise parallel slicing.

The GPGPU architecture can support massive threads whose

number is equal to the image resolution W×H . We build a

one-to-one mapping from GPU threads to image pixels. Then

all the threads start to calculate the ray-triangle intersections.

On each pixel, the corresponding ray checks with STL triangles

possibly having the intersection. The intersections are stored in

the shared memory, where we limit the threads in a GPU block

no more than a certain number to ensure the enough space for

intersections. After ray-triangle calculation, all threads move to

the trunk sorting step. Due to the limited element size in each

trunk, each thread directly uses bubble sorting in the shared

memory, for the sake of efficient space complexity. Finally,

each thread computes binary pixel values for all the layers se-

rially and stores the layer image to the global memory.

B. Fully Parallel Slicing

The PPS method explores the pixel-centric parallelism due

to the independent intra-pixel operations. If we take a close

look at the slicing algorithm, we note that the PPS still has seri-

al computing components, such as the triangles enumerating in

ray-triangle intersection and layer increment in layer image ex-

traction. To utilize the massive thread concurrency of GPGPU

architecture and be compatible with a large-size slicing prob-

lem, we propose the fully parallel slicing method as Figure 6.

Fig. 6. Block diagram of fully parallel slicing.

Different from PPS, the goal of FPS is to unfold the seri-

al recycles to parallel process. The GPU uses three kernels to

calculate the three modules and layer extraction, because of d-

ifferent threads parallelism requirements. In the ray-triangle in-

tersection, we allocate W×H×T to cover all the combination

between each pixel ray and its corresponding triangle possibly

interacted. All the intersections are kept in the global memory.

This enables the possibility to solve slicing problem with large-

size models. However, this also induces the memory writing

conflict when storing intersections to the same trunk from dif-

ferent threads, which we will discuss in section B.1. The trunk

sorting is processed as the PPS procedure. In the layer extrac-

tion, we also parallelize the computing for every pixel in each

layer simultaneously by using W×H×L threads, where L is

the total layer number. The binary pixel value forms the layer

image in the global memory.

B.1 Atomic Operation based Critical Area

To address the issue of multi-thread memory writing conflic-

t, we adopt a customized critical area to solve the conflict, as

shown in Algorithm 2. The critical area is using “lock” to guar-

antee the operation order. Our implementation is particularly

designed for parallel programs, avoiding deadlock pitfalls. We

7C-1

625

Fig. 7. Flow chart comparison between pixelwise parallel slicing (PPS) and fully parallel slicing (FPS).

first initialize locks for each ray, i.e., the input Lock array is

of size W×H . In the multi-thread processing, we start with an

arbitrary thread with the number id. If the ray intersects with

the triangle, it needs to compete for the operation priority. If it

fails, the thread will wait for the next iteration to compete the

resource. Otherwise, the thread with the priority will lock the

trunk on the corresponding pixel, as Line 5 shows. The “atom-

icCAS(address, compare, val)” is an atomic API from CUDA,

which means if the value of address is equal to compare, the

value will be updated with val, otherwise, the value keeps the

same. Then, we stop the while loop in Line 10 and release the

lock in Line 11. This method can effectively solve the multiple

thread accessing conflict issue.

Algorithm 2 Atomic Operation based Critical Area

Input: Lock state array Lock and trunk size array CntSize
Output: Intersection points array IntersectArray.

1: for Each thread id do
2: if Intersect(Ray(id),Plane(Triangle(id))) then
3: run← true;

4: while run do
5: if atomicCAS(Lock[id],0,1)==0 then
6: cp← CntPos[id];

7: Update(IntersectArray);

8: CutPos[id]← cp + 1;

9: run← false;

10: atomicExch(Lock[id],0);

11: end if
12: end while
13: end if
14: end for

C. Comparison between PPS and FPS

We provide a detailed flow chart to compare the two pro-

posed GPU-based slicing implementations, as shown in Figure

7. We can observe the PPS has multiple iterations in the ray-

triangle intersection and layer image generation. In contrast,

the FPS is a direct processing flow without any iteration. On

the other hand, the PPS only creates one kernel to complete

all three tasks within the shared memory, while the FPS em-

ploys three kernels to complete the slicing procedure, resulting

in considerable interaction with the global memory.

Both methods have their own advantages to accelerate the

slicing process. The PPS can save the extra addressing compu-

tation, because the threads number can be assigned to the pixel

position. Considering that all the tasks are completed in the

shared memory, PPS avoids the large global memory access-

ing delay. Moreover, there is no memory accessing conflict

among massive threads owing to the characteristics of the im-

age based slicing algorithm. The fully parallel slicing is an ag-

gressively parallel paradigm on the multi-threading platform,

which can drastically promote the efficiency of GPU. It em-

powers recycle-free processing for the image projection based

slicing algorithm. The thread-level accessing conflict can be

solved by the critical area with some resource and speed com-

promise. In the next section, we will evaluate the performance

of PPS and FPS through experiments.

V. EXPERIMENTS

In this section, we carry out a set of experiments to exam-

ine the efficiency and scalability of two GPU-based slicing ap-

proaches. We first describe the experimental setup. Then we

compare the run time of benchmarks under a typical param-

eter configuration. Scalability with different projected image

resolutions and layer numbers are also evaluated.

A. Experiment Setup

We choose four representative 3D objects as our benchmarks

to examine the performance of CPU and GPU implementation-

s, i.e., Club, Android, Ring and Bunny, whose 3D views are

shown in Figure 8. The four objects have an increasing trian-

gle mesh size by the order from Club to Bunny. The Club has

3290 triangles, Android has 10926, Ring has 33730 and Bun-

ny is with 69664 triangles. To obtain the detailed performance,

7C-1

626

we use cycle-accurate CPU and GPU simulators to testify the

performance of CPU implementation and our two GPU design-

s in the experiment. Specifically, we deploy Sniper [9] to run

the sequential image-projection based slicing algorithm. We

configure the CPU in Sniper as the typical Intel Xeon X5550,

which is a four-core general-purpose processor with 2.66 GHz

frequency. GPGPU-Sim [10] simulator is adopted to test the

performance of our PPS and FPS methods. It is configured as

a typical Nvidia GeForce GTX480, which has 480 streaming

processors with 700 MHz processing frequency. The both CPU

and GPU simulators have been calibrated with real processors.

For pixelwise parallel scheme on GPU, we set its block size e-

qual to the height of projected image and the grid size as image

width. While in fully parallel method, the block size is (16,

16) and grid size is also a two-dimension vector with equal ele-

ments, whose value is the square root of total threads over 256.

Fig. 8. 3D views of the four representative benchmarks.

B. Runtime Comparison

First, we evaluate the typical runtime comparison among the

four benchmarks. We choose the projected image resolution

as 256×128, and the total cutting layer number L is 100. We

collect the total cycles for three components separately in S-

niper. We directly run GPU applications under the CUDA en-

vironment and obtain the cycle statistics by GPGPU-Sim. The

comparison of total cycle results are plotted in Figure 9.

Fig. 9. Total time comparison of four benchmarks on CPU and GPU.

For clarity of the presentation, we use the logarithmic scale

to represent the total time. With the processing frequency of

the typical computing platforms, we can obtain the total run-

time estimation on a real processor. GPU-FPS achieves the best

performance in the three cases, promoting approximately two

orders improvement than CPU runtime. The pixelwise parallel

slicing gains about one order of magnitude speedup than CPU.

Its pixel-level parallelism and in-shared-memory processing re-

inforces it the huge advantage of acceleration compared with

CPU implementation. However, due to the partially serial pro-

cessing and not so strong processor architecture as CPU, it on-

ly obtains 13.77×, 13.73×, 17.18× and 20.44× speedups for

the four benchmarks, respectively. When it comes to the fully

parallel slicing, its recycle unfolding effectively makes GPG-

PU architecture running in its peak state for the large triangle

number and layer number. The FPS excavates the parallelism
of massive-threading architecture better, though it has a more
frequent global memory accessing pattern than the PPS case.
Eventually, it gains 132.64×, 141.51×, 180.92× and 184.15×
for the four benchmarks, about one order of magnitude superior

to the PPS case. We can also find the performance of both GPU

accelerations increase as the input triangle mesh size grows.

For the CPU case, the total cycles are not showing a rapid in-

creasing as the input triangle number increases. This is because

our possible intersection check can filter out a lot of simple

cases, whose axis in x-y plane cannot fall in the circumscribed

rectangle of the specific STL triangle. For the Android case,

its runtime is a little smaller than the Club. This is because the

regular space topology of Android reduces more intersection

candidates.

C. Scalability on Projected Image Resolution

Second, we examine the scalability of our GPU approaches

on different projected image resolutions. The image resolu-

tion is the only variable affecting the performance of all three

modules in the slicing algorithm. We choose three image res-

olutions, 128×64, 256×128, 512×256, and take all the four

benchmarks in this experiment. Sequential slicing algorith-

m is still running in sniper and our GPU slicing methods on

GPGPU-Sim. We illustrate the speedups of pixelwise parallel

slicing (GPU-PP) and fully parallel slicing (GPU-FP) to CPU

case in Figure 10.

Fig. 10. Speedups to CPU of benchmarks under different image resolutions.

All the cases are consistent with the typical case, where the

fully parallel slicing method gains about two orders improve-

ment and the pixelwise parallel slicing has more than one order

of magnitude performance. If we take a close look at Figure 10,

we find that the speedup has a decreasing trend as the resolu-

tion increases. The objects with larger size triangle mesh have

bigger speedup degradation. Moreover, the fully parallel slic-

ing decreases more than the pixelwise parallel slicing. In fully

parallel strategy, the GPU active warps tend to full-load work-

ing and the dramatically increasing tasks must wait for the idle

7C-1

627

warp. The pixelwise method has only image-resolution thread-

s, which can be handled well by GPU architecture without ac-

tive warp competing. This firmly demonstrated the scalability

of our two GPU implementations on image resolution.

D. Scalability on Layer Number

At last, we evaluate the scalability of our GPU acceleration

on different layer numbers. The layer number is a significant

factor to influence the efficiency of layer image extraction mod-

ule. We choose one benchmark Bunny and set the cutting lay-

ers as three levels: 10, 100 and 1000. The pixelwise parallel

slicing is difficult to provide accurate cycle information of sub-

modules due to one kernel integration. Therefore, we compare

the total cycles of sequential slicing on CPU and fully parallel

slicing on GPU. The run time statistics are listed in TABLE I.

TABLE I
The comparison between CPU and GPU on layer number.

Time (Million Cycles)
Layer Number

10 100 1000

CPU

Ray-Triangle 517.38 517.34 517.51

Trunk Sorting 12.06 11.99 12.08

Layer Extract 33.11 255.32 2459.17
Total 562.55 784.65 2988.76

GPU

Ray-Triangle 0.300 0.301 0.300

Trunk Sorting 0.020 0.020 0.020

Layer Extract 0.084 0.800 7.965
Total 0.404 1.121 8.285

Based on the clock frequency of CPU and GPU, we can cal-

culate the runtime speedups as 366.47×, 184.15× and 94.93×
for the three layer number levels, respectively. Our fully par-

allel slicing still achieves about 100× speedup under all cas-

es. When layer number is small, the ray-triangle intersection

takes up the majority runtime in both CPU and GPU cases.

As layer number increases, the layer extraction consumes more

time. CPU needs more time to sequentially calculate the image

extraction with the much larger resolution by traversing every

pixel. The numerous global memory accessing in the fully par-

allel GPU implementation degrades the speedup improvement.

Another observation is that the trunk sorting only has a subtle

weight in the total runtime, though we use basic bubble sort-

ing. Therefore, the GPU accelerations can still provide high

performance on the slicing task with increasing layer numbers.

VI. RELATED WORK

An early slicing algorithm working on an STL file was an

adaptive approach [11]. Then several work attempted to im-

prove the time efficiency by avoiding unnecessary operation

overhead. Chakraborty et al. developed a semi-analytical

method to enhance the efficiency of surface plane intersec-

tion calculation [12]. Sun et al. designed an adaptive slic-

ing scheme [13] to adapt the layer thickness based on curva-

ture information to promote the slicing efficiency. However,

all these attempts are working on contour-oriented methods,

while the continuous 3D printing processes projected image. S-

ince continuous printing concept is the latest breakthrough [1],

there is still no in-depth work to address its computation issue.

Therefore, there is an urgent need to have a slicing accelera-

tion scheme that can provide orders of magnitudes efficiency

improvement to keep pace with continuous 3D printing.

VII. CONCLUSION AND FUTURE WORK

In this work, we investigated the slicing algorithm acceler-

ation on GPGPU architecture for continuous 3D printing. We

first analyzed the sequential slicing algorithm on CPU. To ex-

plore the pixel-level parallelism and better usage of the pre-

cious shared memory and registers of GPU, we proposed a

pixelwise parallel slicing implementation. Optimizing the par-

allelism further, we proposed fully parallel slicing scheme. We

also used an atomic operation based critical area to solve the

memory accessing conflict among multiple threads concurren-

cy. The experiments indicated our pixelwise parallel slicing

can achieve one order runtime improvement and the fully par-

allel slicing even gains two orders performance promotion. The

scalability of the both GPU implementations is also verified.

In the future work, we consider designing new methods to

further accelerate the prefabrication based on the new hard-

ware platform. On the other hand, we also plan to explore the

pipeline property between the prefabrication and manufactur-

ing for better time efficiency in continuous 3D printing.

ACKNOWLEDGMENTS

This work is in part supported by National Science Founda-

tion grants CNS-1423061/1422417, ECCS-1462498/146247,

CNS-1564104/1564046 and CNS-1547167.

REFERENCES

[1] John R Tumbleston, David Shirvanyants, Nikita Ermoshkin, Rima Janusziewicz,
Ashley R Johnson, David Kelly, Kai Chen, Robert Pinschmidt, Jason P Rolland,
Alexander Ermoshkin, et al. Continuous liquid interface production of 3d objects.
Science, 347(6228):1349–1352, 2015.

[2] Fan Yang, Feng Lin, Chen Song, Chi Zhou, Zhanpeng Jin, and Wenyao Xu. Pbench:
a benchmark suite for characterizing 3d printing prefabrication. In Workload Char-
acterization (IISWC), 2016 IEEE International Symposium on, pages 1–10. IEEE,
2016.

[3] Eric Béchet, J-C Cuilliere, and François Trochu. Generation of a finite element mesh
from stereolithography (stl) files. Computer-Aided Design, 34(1):1–17, 2002.

[4] Chi Zhou, Yong Chen, Zhigang Yang, and Behrokh Khoshnevis. Digital material
fabrication using mask-image-projection-based stereolithography. Rapid Prototyp-
ing Journal, 19(3):153–165, 2013.

[5] Yong Chen and Charlie CL Wang. Layer depth-normal images for complex geome-
tries: Part one?accurate modeling and adaptive sampling. In ASME 2008 Interna-
tional Design Engineering Technical Conferences and Computers and Information
in Engineering Conference, pages 717–728. American Society of Mechanical Engi-
neers, 2008.

[6] Enhua Wu and Youquan Liu. Emerging technology about gpgpu. In Circuits and
Systems, 2008. APCCAS 2008. IEEE Asia Pacific Conference on, pages 618–622.
IEEE, 2008.

[7] John Nickolls, Ian Buck, Michael Garland, and Kevin Skadron. Scalable parallel
programming with cuda. Queue, 6(2):40–53, 2008.

[8] S Hutzler, D Weaire, and S Shah. Bubble sorting in a foam under forced drainage.
Philosophical magazine letters, 80(1):41–48, 2000.

[9] Trevor E Carlson, Wim Heirman, and Lieven Eeckhout. Sniper: exploring the level
of abstraction for scalable and accurate parallel multi-core simulation. In Proceed-
ings of 2011 International Conference for High Performance Computing, Network-
ing, Storage and Analysis, page 52. ACM, 2011.

[10] Ali Bakhoda, George L Yuan, Wilson WL Fung, Henry Wong, and Tor M Aamodt.
Analyzing cuda workloads using a detailed gpu simulator. In Performance Analysis
of Systems and Software, 2009. ISPASS 2009. IEEE International Symposium on,
pages 163–174. IEEE, 2009.

[11] C Kirschman and C Jara-Almonte. A parallel slicing algorithm for solid freeform
fabrication processes. Solid Freeform Fabrication Proceedings, Austin, TX, pages
26–33, 1992.

[12] Debapriya Chakraborty and Asimava Roy Choudhury. A semi-analytic approach for
direct slicing of free form surfaces for layered manufacturing. Rapid Prototyping
Journal, 13(4):256–264, 2007.

[13] SH Sun, HW Chiang, and MI Lee. Adaptive direct slicing of a commercial cad
model for use in rapid prototyping. The International Journal of Advanced Manu-
facturing Technology, 34(7-8):689–701, 2007.

7C-1

628

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.01)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

