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Abstract— Patient handling activities with awkward postures
expose healthcare providers to a high risk of overexertion
injury. The recognition of patient handling activities (PHA)
is the first step to reduce injury risk for caregivers. In this
paper, we propose a system to solve the problem, which
comprises an unobtrusive wearable device and a novel spatio-
temporal warping (STW) pattern recognition framework. The
wearable device, named Smart Insole 2.0, is equipped with a
rich set of sensors and can capture the information of patient
handling activities. The STW pattern recognition framework
fully exploits the spatial and temporal characteristics of plantar
pressure, to quantify the similarity for the purpose of activity
recognition. we perform a pilot study with eight subjects,
including eight common activities in a nursing room. The
experimental results show the overall classification accuracy
achieves 91.7%. Meanwhile, the qualitative profile and load
level can also be classified with accuracies of 98.3% and 92.5%,
respectively.

I. INTRODUCTION

Nurses and nursing assistants are among the top five
occupations with the highest injury rates and U.S. hospitals
report 6.8 work-related injuries per 100 full-time employees,
higher than construction and manufacturing workers [1].
These rates likely under-represent the true injury incidence
as 24% of nurses and nursing assistants have reported using
sick leave to recover from their work [2] and 8 of 10 nurses
report frequent pain during work [3].

The recognition of workplace conditions, particularly
physical exposures experienced by the worker, is the first
step to reduce injury risk of healthcare providers. Traditional
approaches to exposure assessment often rely on visual
inspection performed by an observer. Because of limitations
of an individual observer, sampling methods are applied such
that only a few workers are typically observed and only
for a relatively short duration [4]. Wearable sensors, such
as inertial measurement units (IMUs), have been investi-
gated for overcoming the limitations of observational ap-
proaches. Most of the current workplace sensor applications
have focused on posture analysis, task classification, basic
physiological monitoring, or a computerized application of
traditional observational tools. In nursing, wearable sensors
have been used to recognize activities important for staffing
decisions and documentation of nursing workload, tracking
hygiene, and monitoring patient care activities such as blood
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draws and medication distribution. However, to monitor
complex patient handling activities, multiple IMU sensors
on different body locations are often needed [5], which is
inconvenient for long-term use and may even disrupt the
normal work flow in the nursing room. Furthermore, from
the patient’s perspective, it is critical to consider privacy, and
ordinary sensing tools, such as a camera, cannot be adopted
in this application scenario.

In this paper, we propose a solution for automated patient
handling activity (PHA) recognition. The solution comprises
a Smart Insole 2.0 and a spatio-temporal warping (STW)
pattern recognition framework. Smart Insole 2.0 utilizes an
advanced electronic textile (eTextile) fabric sensor technique
providing accurate plantar pressure measurement in both
ambulatory and static status. Furthermore, it is cost-effective
and unobtrusive in use. The STW pattern recognition frame-
work is proposed to quantify the similarity among different
PHAs by exploiting the plantar pressure attributes in spatial
and temporal domains. We perform a pilot study with eight
subjects to examine eight common activities in nursing
room. The experimental results show our method succeeds
in qualitative profile recognition, PHA recognition, and load
estimation with the overall classification accuracy of 98.3%,
91.7% and 92.5%, respectively.

II. RELATED WORK AND SYSTEM OVERVIEW

To date, there are several commercial-off-the-shelf (COTS)
in-shoe devices available in the market. Pedar in-shoe sys-
tem [6] embeds single or multiple piezoelectric sensors into
the shoe for real-time monitoring. F-Scan from Tekscan [7] is
also able to provide plantar pressure assessment. In academic
society, “GaitShoe” [8] and “Hermes” [9] are developed to
measure foot pressure as well.

Our proposed system for PHA recognition consists of two
modules including Smart Insole 2.0 and the STW framework.
The diagram of this system design is shown in Fig. 1. In this
design, Smart Insole 2.0 is developed acting as a sensor to
collect plantar pressure during various PHAs unobtrusively.
The STW framework contains an STW signal processing part
and an STW-based kNN classifier, which together contribute
to the similarity measurement for disparate PHAs classifica-
tion. The computing of the STW framework is implemented
in the smartphone.

III. UNOBTRUSIVE WEARABLE SENSOR: SMART INSOLE
2.0

In this section, we will introduce a novel wearable sensor
for activity monitoring: Smart Insole 2.0. This smart device
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Fig. 1.
activities and injury risk estimation are the input and output of the system.

is upgraded from an early version of Smart Insole [10]. In
Smart Insole 2.0, the functionality and usability have been
enhanced by the design of longer battery life [11] and smaller
form factor.

A. Hardware

The printed circuit board (PCB) design of Smart Insole
2.0 control system is shown in Fig. 2(a), in which each
component is covered by a rectangle with different colors.
The integrated modules are (1) the MCU and BLE module,
(2) the 9-axis inertial motion sensor, (3) the micro-USB
connector, (4) the battery module, and (5) the 48 to 1 channel
MUX.

1) Textile Pressure Array: The textile pressure sensor
array is used to obtain the high-solution pressure map under
feet. It is based on advanced conductive textile fabric sensor
technique [12] and can be efficiently integrated in Smart
Insole 2.0 system.

2) Inertial Motion Sensor: The accelerometer and gy-
roscope are inertial sensors which measure the movement
information of the subject. The magnetometer is used as
the baseline when the inertial sensors (accelerometer and
gyroscope) are being calibrated.

3) Micro Control Unit and Bluetooth: The MCU and
Bluetooth are implemented by a single device CC2541 from
Texas Instruments. The CC2541 combines a radio frequency
(RF) transceiver with an enhanced 8051 MCU. The sampling
rate can be adaptive for specific applications, up to 100
samples per second (Hz).

4) Battery and Micro-USB Connector: The battery is the
power supply of the system. The micro-USB connector is
used for charging battery, programming CC2541, and online
debugging.

5) Package and Ergonomic Design: Smart Insole 2.0 is
lightweight (< 2 o0z.), thin, and convenient to use. It does not
need calibration and only requires minimal setup procedures.
The package of Smart Insole 2.0 is shown in Fig. 2(b). Smart
Insole 2.0 is similar to a normal insole without any extra
cable, antenna, or adhesive equipment.

B. Software and Visualization

A GUI application (App) on smartphone has been devel-
oped to record, visualize, and analyze the data from Smart
Insole 2.0. The data are transmitted to the smartphone from
Smart Insole 2.0 via Bluetooth, and stored in the memory of
the smartphone. The visualization of plantar pressure from
the GUI App is shown in Fig. 2(c).

The diagram of overall system design including Smart Insole 2.0 and the spatio-temporal warping pattern recognition framework. Caregivers

(a) The PCB design.

(b) The prototype. (c) The GUI App.

Fig. 2. The control system, prototype and GUI App of Smart Insole 2.0.

IV. SPATIO-TEMPORAL WARPING FRAMEWORK

Different body postures of patient handling have distinct
foot pressure distributions, as shown in Fig. 3. In the tempo-
ral domain, the plantar pressure can be modeled as a bunch
of time series along the period of patient handling. In the
spatial domain, the plantar pressure is distributed in different
locations including toe, metatarsal, and heel area. Based
on the spatio-temporal characteristic of plantar pressure, we
propose the STW for similarity measurement.

A. Spatio-Temporal Warping Distance

In spatial domain, suppose there are N, training samples,
each with a value of pressure p7*. And NNy, testing samples,

each with a value of pressure p}. The cost = [c;i] of
matching normalized pressure is defined as the Euclidean
distance between each training-testing pair. Our task is to
find a flow, F' = [f;x], that matches the normalized pressure
from the testing samples to the training samples with the
least cost:

Ny Npr
minZchkfjk, (D
j=1k=1
subject to
Ny, Ny,
NP =Y P i =0,1<j <Ny, L <k < Ny, (2)
j=1 k=1

Npr

Npr
S Fik <P << N > fik Spf 1<k < Ny
k=1 j=1

3)
Then, the spatial distance is obtained as:
Npr <~ Npr
D= Zj:l >kl Cik Sk 4
= Ny N “)
Zj:l Zk:l it
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Fig. 3. Two patient handling activities and corresponding peak plantar
pressure distributions.

Fig. 4. Eight different PHAs performed in experiments including: (a) Bend
to lift an item from floor level; (b) Stand while lifting patients leg; Stand
while rolling patient; (c) Stand while lifting patient from wheelchair; (d)
Stand while rolling patient; (e) Sit normally; (f) Walk normally; (g) Walk
while pushing wheelchair forward; h) Walk with both hands carrying a chair.

In temporal domain, we align the time series data, which
are similar but locally out of phase, in a non-linear manner
by warping the time axis iteratively until an optimal match
between the two sequences is found, formulated as:

cd(n,m —1)

cd(n—1,m) ,

cd(n—1,m—1)
1<n<N,1<m<M.

d(n,m) =D (n, i
cd(n,m) (n,m) 4+ min 5)

where cd(n, m) is the current minimum cumulative distance
for D(n,m) descripted in Eq. (4), and the initial setting is
¢d(0,0) = 0,¢d(0,m) = ed(n,0) = co. After that, the STW
distance can be found as:

T = Jed (N, M), ©)

Note that k& nearest neighbors embedding with the STW
distance 7" forms the PHA classifier.

V. EVALUATION
A. Experimental Setup

We ran a series of experiments to evaluate the performance
of our proposed STW framework for PHA recognition. The
dataset is collected by Smart Insole 2.0 from eight subjects
including seven male and one female. The weights of all
participants are from 58 — 85 kg and heights from 160 —
185 cm. Each subject performed eight different PHAs, as
described in Fig. 4.

TABLE I

CONFUSION TABLE OF RECOGNITION ON CATEGORIZED ACTIVITIES

CONFUSION TABLE OF RECOGNITION ON CATEGORIZED LOAD LEVELS

Stand Sit Walk
@b, cd) | (@ | (g h | 1ol | Recl
Stand
@, b, ¢, d) 319 0 1 320 99.7%
Sit (e) 0 80 0 80 100%
‘Walk
1 2 241 .
(, g, h) 0 0 30 0 95.8%
Total 329 80 231
Precision 97.0% 100% 99.6%
TABLE 111

Heavy

Light

No

(¢,d, h) | (a, b, g | (ef) Total | Recall
Heavy
(c,d, b | 2B 2 5 240 | 88.8%
Light 1 I . ™ o
(a, b, g
o 0 4 156 160 | 97.5%
(e, f)
Total 224 249 167
Precision | 95.1% 89.6% 93.4%

B. Quantitative Evaluation in a Controlled Study

In this quantitative evaluation, each subject is required to
perform 10 trials on each activity. Therefore, the sample size
equals to 640 in our case.

1) Accuracy Evaluation: The quantitative evaluation per-
formance is measured by classification accuracy. The accu-
racy (ACC) is defined as:

TP+ TN
P+ N

where TP represents the true positive, TN represents the
true negative, P represents the positive, and N represents
the negative. In injury risk estimation, qualitative profile
recognition, PHA recognition, and load estimation are three
key parameters [13]. PHA recognition is used for estimating
injury probability for each PHA. Qualitative profile recog-
nition and load estimation are used in estimating workload
and load in performing PHA, respectively.

a) Qualitative Profile Recognition: In qualitative pro-
file recognition, all the aforementioned eight PHAs are
categorized into three qualitative profiles, as described in
Table II, which facilitates the workload estimation. Based
on the percentages of all-body activities (i.e., walk related),
upper-body activities (i.e., standing related), and break (i.e.,
sitting) in a working period, we can infer the intensity level
of the workload. Both recall and precision achieve more
than 95.8% as shown in Table II. The overall accuracy is
98.3%, which shows high performance of qualitative profile
recognition.

b) PHA Recognition: The goal of PHA recognition is
to accurately classify each PHA defined in Fig. 4. Table I
shows the confusion table with respect to PHA classification
using 48 pressure sensors. The overall accuracy is 91.7%. We
notice the activity walk with both hands carrying a chair
has the lowest recall rate 81.3%, which is often confused

ACC (%) = x 100%, 7)
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TABLE I
CONFUSION TABLE OF RECOGNITION ON EIGHT PHAS USING 48 PRESSURE SENSORS

a b c d e f g h Total | Recall

a 80 0 0 0 0 0 0 0 80 100%

b 0 72 6 2 0 0 0 0 80 90%

c 7 2 70 0 0 1 0 0 80 87.5%

d 0 5 2 73 0 0 0 0 80 91.3%

e 0 0 0 0 80 0 0 0 80 100%

f 3 0 0 0 0 76 1 0 80 95%

g 0 0 3 0 0 6 71 0 80 88.8%

h 1 0 3 0 0 4 7 65 80 81.3%

Total 91 79 84 75 80 87 79 65
Precision | 87.9% | 91.1% | 83.3% | 97.3% | 100% | 87.4% | 89.9% | 100%
' ' ' ====Ground Truth
Classified PHA || VI. CONCLUSION
h - ]
ol ] J_’_ | To accurately recognize the PHA, we first developed
fr 1 Smart Insole 2.0 to capture the plantar pressure change
< . . .

Ter 1 information caused by the PHA. An STW framework is
ar proposed to analyze the pressure data for classification.
Z‘ The experimental results showed that our framework can
al achieve 98.3%, 91.7%, and 92.5% recognition accuracy with
. : - - qualitative profile, PHA recognition, and load estimation,

10 15
Sequence Number

Fig. 5. A set of eight PHAs performed sequentially against ground truth.

with walk normally and walk while pushing wheelchair
forward. The reason of this is that all the three activities are
performed in walking status, in which the pressure obtained
from them all shows similar pseudo-periodic nature. The
remaining seven recall rates are above 87.5%. Specifically,
sit reaches 100% recall and 100% precision because of the
minimal fluctuation it exposed that differentiates it from
other activities. In terms of precision, stand while lifting
patient from wheelchair shows the lowest rate of 83.3%
because the data from other activities show similarity to the
data of stand while lifting patient from wheelchair leading
to mis-classification.

c¢) Load Estimation: The load estimation is to estimate
the load imposed on caregivers when they perform certain
PHA. The grouping criterion depends on the specific ongoing
activity. Note that we decide bend to lift an item from floor
level as light load because that item the subject picked up
indicates the specific weight of the object in our experiment.
Likewise, the confusion table with respect to load levels is
shown in Table III. The overall accuracy is 92.5%. Heavy
load has the lowest recall of 88.8%, in which 22 activities
are mis-classified as light load. Since these two load level
both involve forceful exertion, they may be confused with
each other.

C. Evaluation of a Longitudinal Pilot Study

We carried out a longitudinal study of continuous monitor-
ing through a number of aforementioned PHAs. More specif-
ically, each of the eight activities was performed sequentially
to test whether the proposed framework can classify them
correctly. Fig. 5 shows the evaluation result, where the
red dash line indicates the ground truth, and the blue line
indicates the actual classification outcome. We observed that
only two out of 24 activities are mis-classified.

respectively.
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