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Abstract. Increasingly, caregiving to senior citizens and patients re-
quires monitoring of vital signs like heartbeat, respiration, and blood
pressure for an extended period. In this paper, we propose a multimodal
synchronized biological signal analysis using a deep neural network-based
model that may learn to classify different anomalous patterns. The pro-
posed cepstral-based peak fusion technique is designed to model the ro-
bust characterization of each biological signal by combining the list of
dominant peaks in the input signal and its corresponding cepstrum. This
works as an input to the following multimodal anomaly detection process
that not only enables accurate identification and localization of aberrant
signal patterns but also facilitates the proposed model to adopt an in-
dividual’s unique health characteristics over time. In this work, we use
Electrocardiogram (ECG), Femoral Pulse, Photoplethysmogram (PPG),
and Body Temperature to monitor an individual’s health condition. In
both publicly available datasets as well as our lab-based study with 10
participants, the proposed cepstral-based fusion module attains around
7 to 10% improvement over the baseline of time-domain analysis and the
proposed deep learning classifier reports an average accuracy of 95.5%
with 8 classes and 93% (improvement of 3%) with 17 classes.

Keywords: vital signal · peak fusion · anomaly detection

1 Introduction

Vital biological Signals, such as heart and respiratory rate, are some of the first-
level means to evaluate an individual’s physical health scenario. For example,
cardiac motion, which is a primary indicator of an individual’s well-being, is
often a unique identifier for each person as no two individuals have the same
size, anatomy, or position of heart. While there are scientific tools to estimate
basic health conditions from such biological signals, being bulky and hard to
use in nature, they are primarily used within a clinical environment, under the
supervision of a health professional. Hence, it is typical that these signs are only
checked rarely at the annual doctor’s visit or when the patient’s physical health
has already drastically deteriorated and symptoms are too prevalent to ignore.
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Fig. 1. The Proposed Multimodal Anomalous Pattern Recognition Framework

The situation becomes more complicated in a COVID-19 like pandemic scenario,
where common people around the world, specifically the elderly patients, who
are amongst the most vulnerable sections of the community, are trying hard to
stay away from the hospitals and clinics to ensure safety. So, the probability
of missing the regular health check process is now higher than ever. In fact, to
address the criticality, an intensive and expensive medical procedure often turns
out to be imperative or unavoidable. However, with early detection and regular
monitoring processes in place, such exorbitant events may be circumvented.

Unconstrained means to monitor these vital body signals have rapidly emerged
as a popular alternative to the conventional health check process in the last
decade [1–6]. However, these appliances require frequent charging and are mostly
wearable, making the patient uncomfortable (like causing skin irritation), specif-
ically the elderly population. Many times, they also find it awkward due to
the devices’ external visibility often compromising the privacy of their personal
health information. All these pose severe challenges in continual and accurate
data collection. A set of works employ unobtrusive devices, which can be easily
installed in frequently used furniture that often appears in closed body contact
with the patients [7–12]. However, the quality of the signal recorded using such
devices often may relies on the frequency of the direct contact between the device
surface and the patient’s body.

As such, an obvious way to inconspicuously monitor a person’s physical
health is to embed sensors into objects most frequented by an individual. Stud-
ies have shown that people usually spend most of their day doing activities that
require the person to be seated such as sitting while attending meetings, sitting
while eating, sitting in cars, sitting while watching television [13]. A set of recent
works [14–20] which mainly focus on building a hardware system like a chair,
often rely on measurements obtained from only one type of signal and thereby
have an access to only a limited amount of user’s health information. Addi-
tionally, frequently their prediction models derive aggregated decisions on the
user’s health condition without allowing enough personalization. On the other
hand, works [21–25] focusing primarily on its recognition sub-task tend to fail
in a real-life problem setting, where signals collected from the patients are often
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too noisy for these machine learning-based systems to make an accurate predic-
tion. Toward this, we aim to develop a generic signal processing and anomaly
detection framework that may be deployed both in obtrusive and unobtrusive
environments to measure and analyze vital signals of humans in real-time. While
the proposed algorithm is invariant to its deployment environment, the proposed
system has been installed within a SmartChair for real-life evaluation, as such
a chair-like setting is known to be a complex application setting in this problem
scenario. The extensive set of experiments demonstrate the effectiveness of the
proposed cepstral-based peak fusion module by reporting 7 to 10% improvement
over the baseline of a time-domain analysis. Furthermore, the proposed deep
anomaly detection reports an average accuracy of 95.3% with 8 classes and 93%
(improvement of 3%) with 17 classes.

An overview of the proposed method is illustrated in Figure 1. In our exper-
iments, we have used three vital body signals: respiratory rate, heart rate, and
femoral pulse [10, 18, 26–28]. The primary contributions of the proposed system
include:

1. Generic Machine Learning Based Framework that may analyze both uni-
and multi-modal signals within an integrated noise-tolerant framework. The
proposed algorithm develops a robust peak detection module by fusing peaks
in time and cepstral domain to identify an exhaustive and accurate peak
list, which works as an input to the proposed deep learning-based prediction
model to predict an individual’s personalized health pattern in an automated
manner.

2. Deep Anomaly Detection Strategy, which enables a continual deep learning-
based monitoring process to precisely localize the anomalies in the time
domain.

3. Real-life Demonstration in an Unobtrusive Experiment Setting, wherein the
proposed multimodal signal processing and analysis framework is deployed
with a SmartChair health monitoring system that may simultaneously cap-
ture different types of vital signals from different parts of the seat occupant’s
body (over a wide range of ages) without forcing an interruption in their daily
work schedule.

4. Extensive Evaluation and Comparative Study demonstrates an improved per-
formance both in the publicly available datasets as well as our real-life lab
experimental settings.

The rest of the paper is organized as follows: Section 2 briefly describes
related works. The proposed method is explained in Section 3. Section 4 and 5
respectively present the experimental results and conclusion.

2 Related Works

In this section, we will briefly describe a set of related research, which can be
categorized in parts: (1) Methods focusing on building an intelligent software
system, wherein authors assume that a good quality annotated data collection
is always available for training a sophisticated machine learning model and the
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quality of the signals captured during test time may also be considered to be
reasonably noise-free, and (2) Methods aiming to build a hardware system that
will collect the streaming data for further analysis using machine learning-based
methods.

2.1 Health Anomalous Pattern Recognition

Traditional machine learning methods, like Multi-Layer Perceptron (MLP) [29–
31], Support Vector Machine (SVM) [32–35], and K nearest neighbors (KNN)
[30, 31, 36, 37] have already been used extensively to analyze vital health sig-
nals. A set of recent works introduce deep learning models [38–43] for improved
performance. Deshmane and Madhe [44] have shown some impressive results on
ECG Based biometric human identification using the Convolutional Neural Net-
work model. In contrast to the traditional neural networks, Recurrent Neural
Network (RNN) can be used for processing sequential data (e.g., cardiac signal)
due to their internal state of memory and connection between the nodes. To
explore the temporal granular details, RNN and its variant Long Short Term
Memory (LSTM) [45–48] based models have also been introduced for the task.
Given the prior knowledge of adjustment between input and output, it can map
various sequences with sequences. However, in a practical scenario, specifically
in a home-based computationally constrained setting, it is challenging to apply
RNN-based methods for continual monitoring tasks, due to its scalability issues.
In contrast to these methods, to ensure computational tractability, we use a
small set of hand-crafted features to compute a compact feature descriptor that
is passed as an input to the subsequent neural network-based prediction module.
This not only helps attain a scalable prediction module but also ensures easy
adaptability to an individual’s personalized health signal patterns.

2.2 Vital Signal Sensing Modality

Vital signals like ECG have been widely used to determine the health condition
in many works[42, 49–51]. Kim et al. [52] studies of ECG measurement on the
toilet seat for ubiquitous health care. Wu et al. [53] use a capacitive coupling
ECG sensor to obtain the signal. While the signal capturing module for many
of these methods is unobtrusive in nature, they may still demand the seat occu-
pant’s attention to ensure a perfect connection between the body and the sensor
and accurate angular arrangement, which may cause interruption to the seat oc-
cupant’s daily routine. A set of recent works have installed multi-channel ECG
signals in a chair-based acquisition system to identify the motion artifacts [54].
Important to note that the system either requires the physiological activity in
the same fashion as the enrollment stage or periodical resampling of the train-
ing dataset [55]. Therefore, the signal capturing process fails to be sustainable
enough to ensure long-term usage.

Another set of works design the radio frequency (RF) methods [56] based
on the signal reflection, require an off-body reader with the antenna in the far
fields, while making the signal acquisition process for a single individual from
multiple points, more challenging. A few research have utilized femoral pulse as
a component of an active near-field coherent sensing (NCS) system [26, 57–59].
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However, the arterial blood pressure is dependent on individual’s personal char-
acteristics (e.g., age, height, gender), health conditions, and the administration
of vasoactive drugs on the patient. Therefore, it is important to have a person-
alized prediction model that may effectively utilize the femoral pulse as a vital
health signal to evaluate a patient’s health condition. In this paper, we use the
ECG, PPG, and SCG vital signals to evaluate the subject’s physical condition.
These specific vital signals are chosen as other possible signal resources such as
Phonocardiography and Echocardiography are either obtrusive or require high
expenses and are difficult to install on chairs.

3 Methodology

We design a generic machine learning-based classification model that performs
a comprehensive and synchronized vital health signal analysis both in a uni-
modal or multi-modal environment, wherein each mode may represent a signal
generated from a unique body part of the participant and make a comprehensive
prediction on the health condition of the individual. More specifically, given an
annotated data collection D = {(sj , yj)}j , where each vital body signal sj is

described using a m-mode (m ≥ 1) representation, i.e., sj = {xjl }ml=1 and the
corresponding label yj is the label for the signal sj . As shown in Figure 1, each
mode-specific signal is pre-processed via the proposed signal processing module
in parallel and later may get combined through feature fusion. In this section,
we will describe the process in detail.

3.1 Signal Preprocessing

Noise Filtering. In the real-life setting, the signals received via the sensors are
often noisy, due to the individual’s movements or shifts during measurements,
dampening and noise from clothing, and noise introduced by the sensor itself.
Therefore, any raw input signal is somewhat noisy. To address this challenge,
we perform an initial noise filtering using Butterworth filter [60] to process each
incoming signal to ensure an accurate prediction performance.

The Butterworth Filter is a filter that separates the high-frequency noise
from the signal, such that frequency values within the range of the frequency
boundaries are reflected in the signal without a significant amount of change.
Also, the impact of higher frequencies is reduced by a significant factor, which
is dependent on the filter order, in the filtered out signal. The sharpness of the
transition from stopband to passband is controlled by the order, a predefined
constant in our experiments. The low-pass Butterworth filter is designed as a
rational function, defined as follows:

|H(jω)|2 =
H0

(1 + ω/ω0)2n
, (1)

where H0 = 1 the maximum passband gain and ω0 = 1rad/sec. In our ex-
periments, we have filtered the signal with a cutoff at 2.5Hz and a fifth-order
Butterworth filter, i.e. we have n = 5. The filtered signal x is treated as an input
for further analysis. Unless mentioned otherwise, any reference of the signal x in
the latter part of the paper will assume it as a filtered signal. We use the Scipy
Python library [61] to implement the Butterworth filter.
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Peak Identification. In order to analyze the signal characteristic, the first
objective of this paper is to propose a robust peak detection scheme that may
identify an exhaustive peak list within a signal against the different types of
noise resources (e.g. non-stationary effects, low SNR, or several environmental
settings of the patient like high heart rate exhibited after exercise) with min-
imum false positives. In this work, we compute a moving average based on a
one-sided window proportional to the sampling frequency, where the propor-
tionality constant is constant and user-defined. In all our experiments, we have
chosen the proportionality factor as 0.75 and the sampling frequency as 100.
Within each window, any heart rate lying above moving average (where the sig-
nal demonstrates a sharp change in gradient) is considered as a peak. While this
approach works well in an ideal signal, in presence of a low SNR ratio, the preci-
sion performance may still deteriorate significantly resulting in the generation of
some false peaks or end up losing some significant peaks in the input signal. An
intuitive approach to mitigate the risk of false peak identification is to raise the
moving average threshold. However, selecting a universal threshold that would
work for all possible noisy signal settings, is difficult and may not be chosen au-
tomatically. Therefore, we employ an adaptive approach to dynamically set the
threshold by computing the standard deviation of RR intervals[62, 63]. In gen-
eral, the standard deviation of RR intervals is not large. Marking an extra peak
or misplacing a R peak may increase the standard deviation significantly, which
indicates the possibility of some false peak identification. Therefore, minimizing
RRSD will be key to finding a threshold that finds the most accurate number of
peaks. However, if RRSD is zero, then there can be two possibilities: either we
have a perfect signal or we are seeing the consequences of undetected noises. So,
to provide for the best solution, we choose a threshold from a predefined range
that would satisfy both min(RRSD) > 1 and RRSD > 1. We use Heartpy [64]
Python library function for the implementation task.

Peak Identification in the Cepstral Domain. Note that the peak detection
in the input signal x is similar to detecting pitch from an audio signal. However,
identifying peaks from x directly may not be sufficient in isolation, due to having
the chance of missing some important peaks. In fact, this may in turn impact
on deteriorating the following feature extraction task. Toward this end, for an
improved peak detection performance, we use Cepstrum of the signal x for a
granular-level peak analysis. As such, Cepstrum analysis, which is a nonlinear
signal processing technique, is typically used for pitch detection (similar in some
aspects to peak detection) in audio and speech. The real cepstrum of a signal x
[65] is calculated as follows:

cx(t) =
1

2π

∫ π

−π
ln|X(ω)|ejωt dω, (2)

where X(ω) is the Fourier transform of the sequence x(t). The proposed peak
detection scheme (as described in section 3.1) is employed to parallelly capture
a set of peaks in the cepstral domain representation cx of the input signal x.
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Fig. 2. Peak Fusion Process: An arrow displays the corresponding peak positions in
the input signal (displayed in graph at the top), and the Cepstrum signal (displayed
in graph at the bottom.

Note that in order to ensure an accurate heart rate prediction, we aim to
first identify the peaks in an input signal, which will later be used for identifying
several key features like beats-per-minute (BPM), Inter-beat-interval (IBI), Root
mean square of the successive differences (RMSSD), etc. We will discuss these
features more in section 3.2. As such in the cepstral domain, the magnitude of the
cepstral coefficient is naturally related to the periodicity of the signal, which is
the focus in heart rate estimation and higher values of the cepstrum coefficients
reflect increased Signal to Noise Ratio (SNR). A fusion of signal peaks at the
cepstrum domain is advantageous to produce a more exhaustive and accurate
peak list, which forms the basis of the following feature fusion module.

Peak Fusion Algorithm. The cepstrum signal cx is used as a derived represen-
tative for the original unimode input signal x. The proposed method uses both
cx and x to identify sets of peaks which are fused to obtain a more exhaustive
set of peaks in the signal x.

Given P as the set of identified peaks in x, as shown in Figure 5, for every
peak at Ci ∈ P with co-ordinate (ti, x(ti)) in the signal x, there is a set of peaks
in the corresponding time-domain neighborhood Nti around ti for the cepstrum
signal, cx. Intuitively multiple such peaks in cx within the close neighborhood
Ntiaround ti do not provide any new peak information. Therefore, while fusing
we eliminate all such redundant peaks within Nti retaining only the common
peak identified at Ci. This is the scenario, which we refer to as Remove Upward.
This process is repeated for all peaks in P, resulting in retaining only those peaks
in cx, which were not captured within any neighborhood Nti for any Ci ∈ P.
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The set of these remaining peaks in cx is denoted as Pcx . As illustrated in Figure
5, to capture these missing peaks within the fused peak list for x, we analyze a
close neighborhood Ntj around every remaining peak in Pcx . The time instant
tj within Ntj at which the signal magnitude cx[tj ] is maximum is mapped down
to identify an additional peak Dj with magnitude x[tj ] in x. This process is
referred to as Add Downward. The process is repeated for all elements of Pcx .
The combined peak list obtained at the end of a sequence of Remove Upward
followed by a sequence of Add Downward is treated as the fused peak list that
is used as the input to the following feature extraction module.

3.2 Multimodal Feature Extraction

Given the fused peak list obtained from the processed signal x, we derive sev-
eral handcrafted signals including RRSD; RMSSD; BPM; IBI; SDNN; SDSD;
NN20; NN50; PNN20; and PNN50 to represent the incoming signal in terms of
a compact feature descriptor fx ∈ Rd. RRSD can be computed as the standard
deviation between the RR intervals (difference in time between the R-peaks) of
a heart signal. RRSD can be computed as the standard deviation between the
RR intervals (difference in time between the R-peaks) of a heart signal. RMSSD
is defined as the root mean square of successive RR-Intervals and calculated by
squaring each RR-interval. Then, the resulting values are averaged before the
square root of the total is obtained. BPM can be calculated as the total number
of peaks divided by the amount of time passed. IBI, the inter beat interval, can be
calculated as the overall average of the RR Intervals. SDNN reflects the changes
in heart rate due to cycles longer than 5 minutes. SDNN can be measured by
computing the standard deviation of the time between the consecutive R-peaks.
SDSD can be computed as the standard deviation of the successive differences
between adjacent RR intervals. NN20 and NN50 can be computed by measur-
ing the number of successive RR intervals that differ by more than 20 and 50
milliseconds respectively. PNN20 and PNN50 can be obtained by dividing NN20
and NN50 by a total number of RR intervals respectively.

In a multimodal environment, feature descriptor collection {f jxl
}ml represent-

ing multiple unimode signals sj = {xjl }ml=1 is transformed into a fused feature
f = φ({f jxl

}ml ). In this work, we use vector concatenation function [66] as φ to
produce md dimensional fused feature f j .

3.3 Anomalous Pattern Recognition

Given an input signal x, we feed the feature vector fx (as defined above) into a
Neural Network model consisting of 3 fully connected (FC) layers with rectified
linear unit (ReLU) activation function. The activation of the last FC layer is
fed into a softmax layer to obtain the probabilistic category membership scores
for the incoming signal’s anomaly score. While adding more layers makes the
network more expressive, it simultaneously becomes harder to train due to in-
creased computational complexity, vanishing gradients, and model over-fitting.
The standard backpropagation algorithm is employed to update the fully con-
nected layer weight parameters. 4 The loss function L is defined as follows:

4 https://nrs.harvard.edu/URN-3:HUL.INSTREPOS:37364585
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Fig. 3. Peak Detection performance in the OHSU ECG signal dataset [67] (shown in
(a)) and our in-house dataset with 13 participants (shown in (b)).

L(W) = −
∑
y∈Y

∑|D|
j=1(1(yj = y))log(p(yj = y|sj ; W)

|D|
, (3)

where 1. is the indicator function, W represents the neural network weight
parameters and log(p(yj = y|sj ; W) computes the probabilistic score of the
sample xi for the class y ∈ Y. The learning task is formulated as solving the
minimization problem defined as: min

W
L(W).

4 Experiments

The proposed method is evaluated from two different perspectives: 1) accuracy
evaluation of the peak detection module and 2) the effectiveness of its two-class
neural network based prediction module, where the goal is to precisely identify
the ‘anomalous’ signal characteristics of a participant in near real-time. Different
datasets are used to evaluate the performance of the model.

4.1 Dataset

To evaluate the performance of our peak detection algorithm, which forms the
core of the subsequent prediction module, we use two datasets: the publicly
available Oregon Health and Science University (OHSU) ECG signal dataset
with 28 participants [67] and our in-house dataset with 13 participants. The
OHSU dataset has recorded its signals at a sampling rate of 200 Hz and at an
amplitude resolution of 4.88 muV. We have used only the health signals from 26
participants. As for the remaining 2 participants, the ECG signals were missing
at several time instants. Therefore, we have not used these 2 participants’ data.
In our in-house dataset collected via the prototype VitalChair (which has sensors
at different positions for recording signals from the seat occupant and details to
follow in Section 4.2), the synchronized Femoral pulse (FP), Wrist Pulse (WP),
and ECG signals are collected from 13 participants sitting at 7 different positions
in a chair for 30 seconds. Among the participants, 4 are high school students, 6
are healthy functioning adults, and 3 are senior adults who have gone through
heart surgeries in the past year. The system performs sensor fusion, analyzing
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the signal patterns to highlight potential anomalous patterns if any. Tests include
two scenarios: 1) heart rate of a person at ‘calm’ state, 2) excited state after 30
minutes of ‘after exercise’.

To evaluate the performance of the proposed neural network model that uses
a compact feature descriptor derived from the identified fused peak list as in-
put to predict the participant’s health condition, we use Mendeley ECG 1000
Fragments Dataset [25] and our in-house dataset. The Mendeley ECG 1000 Frag-
ments Dataset [25] is the publicly available dataset that we have used to evalu-
ate our framework. This dataset has data from 45 different patients in different
health conditions, which comprise of: 2 types of normal rhythms including a
pace-maker rhythm and a normal sinus rhythm; 15 types of cardiac dysfunctions
including Atrial premature beat, Atrial flutter, Atrial fibrillation, Supraventricu-
lar tachyarrhythmia, Pre-excitation (WPW), Premature ventricular contraction,
Ventricular bigeminy, Ventricular trigeminy, and Ventricular tachycardia. All the
recorded signals are documented at a sampling rate of 360 Hz and a gain of 2200
[adu / mV]. In our experiments we have used the above-mentioned 2 types of
normal rhythm signal collection as our ’normal’ class, which combined together
is referred to as Class 8, while all the other classes are treated as a specific type
of ’anomalous’ classes. The class population ratio between two types of classes
(i.e. ’normal’ and ’anomalous’) are highly skewed and the Class 8 population has
size 14, 000. So, we refrain from using any ’anomalous’ class with samples less
than 1, 000. Therefore, in our derived dataset, we have only samples from Class 8
forming the ’normal’ class population and 7 different ’anomalous’ classes. In our
binary prediction module, we reiterate the experiments several times. At each
session, Class 8 is used as the ’normal’ class and one of the remaining 7 classes
is treated as the ’anomalous’ class. Also to note that the signals in this collection
are typically high-sampled and the ratio of the anomaly to non-anomaly classes
is still very low. Therefore, to further balance the class population at every ex-
perimental session, 50 randomly selected sub-sampled signals (of length 500)
from the entire signal comprising of nearly 3600 samples, are randomly selected
to form the larger training collection. To maintain the balance we just randomly
select an equal-sized subset of sub-sampled normal signals to represent the Class
8 population.

Note that in Mendeley Dataset[25], there are 7 anomaly classes and 1 normal
class (namely, Class 1: Ventricular Bigeminy, Class 2: Ventricular Trigeminy,
Class 3: Supraventricular Tachyarrhythmia, Class 4: Atrial Fibrillation, Class
5: Left Bundle Branch Block Beat, Class 6: Atrial Premature Beat, Class 7:
Premature Ventricular Contraction, and Class 8: Normal Sinus Rhythm) and
the ratio of the anomalies to the normal classes is exceptionally low. For the
training and testing of the neural network, 50 randomly selected segments of
500 samples for every 3600 samples of the ECG signal were randomly selected.
This procedure of subsampling was performed to ensure that the neural network
produced by training on this data is not biased or overfitted due to the lack
of anomaly-class data. Furthermore, this act of subsampling allows the neural
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Fig. 4. Comparing the peak Detection performance using the processed signal x against
that achieved using Fused peak list by combining the peaks from x and the cepstrum
signal cx.

network to produce a more fine-grained interval in which the anomalies are
prevalent.

4.2 Prototype Implementation: VitalChair

The custom-built circuit used for the Vitalchair used in our experiments for real-
life study, consists of several capacitors, resistors, and photodiodes5. It includes
Arduino UNO; Breadboard; USB Cable; Power supplies; Jumper-wires (M/M,
M/F); 1.0 M/4,7M Ohm Resistors; Piezoelectric; DS18B20 1-wire waterproof
Temperature Sensors; Heart Rate pulse-sensors; different colored LEDs. To build
the software module, I have used Arduino IDE and Python. Multiple biological
signals including Electro-Cardiogram(ECG), Photoplethysmogram(PPG) from
the wrist, Femoral Pulse (FP) are recorded using its corresponding sensor placed
at different parts of the chair as illustrated in Figure 1. The resulting signal from
each sensor is passed onto an Arduino microcontroller attached to the bottom of
the chair to collect readings from each sensor. Data was acquired onto a server
connected to the Arduino over USB and analyzed using the Arduino software in
real-time. The outputs of the sensors at different positions on the SmartChair
are collected in a synchronized fashion for a comprehensive understanding of the
seat occupant’s overall wellbeing.

4.3 Performance Evaluation

Peak Detection Accuracy Metric. The results of the first type of experiments,
evaluating the peak detection module of the proposed method, use Accuracy as
the evaluation metric. Given g as the number of hand-picked peaks by an inde-
pendent evaluator and p is the number of system-identified peaks, we compute

5
https://cdn.shopify.com/s/files/1/0100/6632/files/PulseSensorAmpd−Schematic.pdf?1862089645030619491
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Fig. 5. A custom-built prototype of VitalChair, where vital signals are represented as:
WP= Wrist Pulse, FP= Femoral Pulse, ECG= Electro-Cardiogram signal, and Temp=
Body Temperature

the Accuracy = 1− |p−g|g The quantitative results obtained in the OHSU ECG

signal dataset and our in-house dataset are reported in Figure 3(a) and Figure
3(b) respectively. As observed in Figure 3(a), the average accuracy achieved by
the proposed prediction module over 28 participants is around 94.18%. Specifi-
cally for the participant id 26, the accuracy (approx 75%) is considerably lower
compared to the rest, which is due to the missing data at several time instants
that resulted in missing some significant peaks. The deteriorated peak detec-
tion performance propagated to influence the performance of the subsequent
prediction module.

Peak Detection Performance. In Figure 3(b), we notice that the accuracy of
the ‘calm’ state is usually greater than the after exercise accuracy. This is the
case because, after exercise, an individual’s heart rate increases significantly,
which causes many additional consecutive peak occurrences. However, the system
perceives this extra flow of peaks as noises and thus, some of the peaks are not
counted. This results in missing peaks that impact reducing the overall accuracy
of the prediction module. However, this high-frequency heart-rate period only
lasts for a couple of minutes and the individual (if indeed ’healthy’) quickly
regains their normal heart rate. To mitigate this noise impacted response, we
pause the prediction task during the initial minute, so that any alert regarding
the participant’s health condition is generated only if it has been more than a
minute since their seat occupancy.

As observed in Figure 4, combining peaks from the processed signal x and
the cepstrum signal cx have been useful to improve the resulting peak detection
performance of the proposed method by an average of 3%. In fact, in several
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Fig. 6. The performance of the proposed prediction module on the Mendeley dataset,
reported using class specific ROC Curves (in (a)) and the classification accuracy (in
(b)), wherein Class 1: Ventricular Bigeminy, Class 2: Ventricular Trigeminy, Class 3:
Supraventricular Tachyarrhythmia, Class 4: Atrial Fibrillation, Class 5: Left Bundle
Branch Block Beat, Class 6: Atrial Premature Beat, and Class 7: Premature Ventricular
Contraction with their AUC scores respectively as: 0.98, 0.98, 0.97, 0.95, 0.94, 0.95,
and 0.92.

instances (like participants 1, 8, 15, 22, and 23) the improvement reported was
around 7− 10%.

Anomaly Detection Performance metrics. The Classification Accuracy and Sen-
sitivity score are used as the compact evaluation metrics computed by relating
FP (False Positives), FN (False Negatives), TP (True Positives) and TN (True
Negatives) and defined as:

Classification Accuracy =

( N∑
i=1

TP + TN

TP + TN + FP + FN

)
.100%/N, (4)

Sensitivity =

( N∑
i=1

TP

TP + FN

)
.100%/N, (5)

where the scores are computed based on N -fold cross-validated test process, In
our experiments, we have used N = 5. We also report the performance details
using Area Under the Receiver Operating Curve, known as AUC score [68]. This
metric is significant as the population distribution across different classes varies
widely. While Classification Accuracy (or Sensitivity) may provide an overall
performance at a given experimental parameter setting, the AUC metric provides
greater insight on the class-specific performances of the proposed method. Also,
Sensitivity score is used to report the comparative performance of the proposed
method.

Anomaly Detection Performance Figure 6 reports the performance of the pro-
posed method using ROC Curves, AUC Scores as the total area under the ROC
curve, and the Classification Accuracy as the evaluation metrics [69]. As seen
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in the figure, note that, the average performance on all seven anomalous classes
is around 95.29%. While the performance on Class 5 is approximately 87.22%,
it is primarily attributed to the sparse signal (with also missing ECG values)
obtained from participants.

4.4 Comparative Study

The performance of the proposed method is compared against that of several
methods reported in [25], and the result is reported in Table 4.4. To attain
an equivalent experimental setting, for this experiment, we combine all the 17
cardiac disorders into an anomaly class, while the healthy signals form the second
class. As seen by comparing the results reported in the table, the proposed
method shows an improved performance by reporting 3% increased Sensitivity
score. An equivalent experiment is also performed using only 8 classes and as
shown in the table, the proposed method attains an impressive performance gain
of 2.5% compared to the best result reported on the data-set.

Methods Number of Classes Sensitivity Score

Linear Discriminant Classification [22] 5 93%

Domain Transfer SVM [21] 5 92%

Decision Level Fusion [23] 5 87%

Disease-Specific Feature Selection [24] 5 86%

Morphological and Dynamic Features of
ECG Signals [70]

5 86%

Evolutionary Neural System [25] 17 90%

Proposed Method 8 95.5%

Proposed Method 17 93%

Table 1. A comparative study on the binary classification task performed using the
Mendeley ECG 1000 Fragments Dataset [25].

Also in this scenario, it is also important to note that the performance varies
from class to class (please refer to Figure 6(b)). So, such course-level overall
performance evaluation may not be sufficiently insightful in terms of getting
sufficient insight on the effectiveness of the proposed model. For example, accu-
rate identification of samples from Class 5 samples is harder than that of Class
6. Moreover, the above-mentioned paper obtains the accuracy in an obtrusive
manner, which significantly reduces the amount of noise corrupting the signal.
Therefore, the applicability of these methods is limited in various real-life en-
vironments, where signals can only be received in an unobtrusive manner. In
contrast, the proposed method, which is generic and sufficiently robust to han-
dle the noisy signal inputs, and allows for sequential learning by continual signal
capturing process, is more effective and efficient. As described earlier, to further
investigate the robustness of the method, we perform experiments in a real-life
environment by deploying the software in the SmartChair, which collects signals
by placing sensors at different parts of the chair. Also, the method is evalu-
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ated at different levels of stress and physical activity state of the participants to
investigate the efficacy of the signal filtering and feature extraction methods.

5 Conclusion

In this paper, we have presented a framework that is able to accurately classify
multiple input signals like ECG, PPG, and Femoral Pulse from a specific individ-
ual into two categories: healthy or unhealthy. Having been able to continuously
monitor the patient’s vital signals, this system has several life-changing effects,
including the ability to identify pathology conditions before they can turn into
a serious threat to the human’s life or severe measures are required to cure them
such as amputations. To demonstrate our proposed model’s real-life feasibility,
we have physically implemented this framework into a chair. However, the pro-
posed method is sufficiently generic to be deployed into other frequently used
furniture items like beds, sofas, etc. We plan to extend this work to include other
means of extracting pathological information, like vocal signals, and synchronize
them all to make a smart home system that will be able to accurately classify
the disease-specific pathological condition the individual has using multi-modal
information.
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