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Abstract— Sitting posture analysis is critical for daily appli-
cations in biomedical, education and healthcare fields. However,
it remains unclear how to monitor sitting posture economically
and comfortably. To this end, we presented an eTextile device,
called eCushion, in this paper, which can analyze the sitting
posture of human being accurately and non-invasively. First, we
discussed the implementation of eCushion and design challenges
of sensing data, such as scale, offset, rotation and crosstalk.
Then, several effective techniques have been proposed to im-
prove the recognition rate of sitting posture. Our experimental
results show that the recognition rate of our eCushion system
could achieve 92% for object-oriented cases and 79% for
general cases.

I. INTRODUCTION

Sitting is one of the nature postures of human beings.

Reported by CNN, most of people sit six hours per day

on average in daily lives. Nowadays, sitting posture analysis

becomes an important medical research topic due to its ex-

tensive applications with significant impact in many domains,

such as biomedical (rehabilitation evaluation in chronic dis-

eases) [1], health education (correct sitting posture for back

ache prevention) [2], human computer interface (real-time

sitting posture analysis for gaming) [3] and facilities design

(furniture fitness evaluation) [4].

In order to monitor the sitting posture accurately and

reliably, sensors are needed around the users to get the sitting

features. Intuitively, camera is the most straightforward and

comprehensive method. [5] deployed several cameras in a

work station to monitor the sitting postures of workers.

However, it always makes the users uncomfortable because

it records other unnecessary information related to personal

privacy at the same while. [6] uses pressure sensors [7]

to equip chairs for sitting posture analysis. Compared to

camera, pressure sensor is more economical and easier to

be utilized. However, this kind of sensors is commonly

manufactured out of piezoelectric materials such as quartz,

which is invasive or uncomfortable for daily use.

In the past few years, the researchers had designed kinds

of textile-based sensors, called eTextile, to measure pressure

[8], stretch [9], temperature [10] and humanity [11]. Contrary

to silicon or piezoelectric based sensors, eTextile is close

to normal wearable fabric in terms of price and feeling.

Therefore, it can be unobtrusively integrated into different

apparels for daily applications. [12] presented a garment

prototype using textile strain sensors to recognize upper

body postures. [13] introduced an interactive system using

a wearable textile sensor to monitor breathing patterns of

human beings. [14] built textile pressure sensor arrays in a

shoe for gait analysis.

However, the characteristics of eTextile are not ideal for

sensing. Usually, the sensing values suffer from several

instable factors such as noise, scaling, offset and crosstalk. E-

specially when it has been integrated into clothes or facilities,

other more uncertainties will appear to make the signal more

fuzzy. For instance, in our application, pressure distribution

is not only related to sitting posture, but also depends on

other factors such as the subject’s size, weight and sitting

orientation.

In this paper, we present an eTextile device, named e-

Cushion, for sitting posture monitoring. First, we analyze

the modeling of sensors and propose effective techniques

to compensate the crosstalk in sensor arrays. Furthermore,

we characterize sitting posture feature with pressure profile

sequence to get rid of other variations such as noise, scaling

and offset effects. Additionally, dynamic time warping based

algorithm is proposed for phase-insensitive time series signal

indexing. Our experimental results show that the recognition

rate of eCushion for sitting posture could achieve up to 92%.

The remainder of this paper is organized as follows.

Section II presents eCushion system. Section III introduces

sensor array design and challenging issues in sensing data.

Section IV describes the algorithm for uncertainty reduction

and pattern matching of signals. Experimental results are

shown in Section V, and the paper concludes in Section VI.

II. SYSTEM DESCRIPTION

eCushion is designed to use for both clinical trial in

the hospital and daily use at home where the user can be

remotely monitored. Therefore, the essential problem is how

to make the system convenient to access, straightforward to

operate and unobtrusive to deploy. Also, the system should

be low-cost and compatible with existing computer systems

found in hospitals or homes. Fig. 1 shows the implementation

of eCushion. It comprises of a textile sensor array, signal

sensing & transferring unit and a computation & display

terminal . A 16 by 16 textile sensor array, shown in Fig. 2,

is used to monitor the pressure distribution on cushion when

users are sitting on it. The footprint of the sensor is 5/8 inch

by 5/8 inch, and adjacent space is 1/8 inch. An Arduino-

based unit is in Fig. 1(b) to sample and transfer the sensing

data via bluetooth protocol. For sitting posture monitoring

application, the sample rate is set as 10Hz. Considering

the accessibility for mobile users, as shown in Fig. 1(c), a
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user-friendly Graphical User Interface (GUI) is developed

on smart phone which gives real-time feedback of sitting

pressure distribution and facilitates continuous monitoring of

the user sitting posture.

(a) Textile Sensor Array (b) Arduino + Bluetooth

(c) Smart Phone

Fig. 1. eCushion System

III. SENSOR ARRAY DESIGN

eTextile [15] is a fiber-based yarn which is coated with

piezoelectric polymer. And the initial resistor between the

top-bottom surfaces is high. When extra force is applied

on surface of the eTextile, the intra fibers will be squeezed

together and the throughout resistor becomes smaller. Note

that the resistor between any two points on the same side

can be treated as constantly infinite. Therefore, we can take

advantage of this characteristics and design a high-density

and low-cost pressure sensor array.

A. Sensor Array Architecture
One type of textile sensor sheet has been implemented

in [16]. In that structure, each sensor needs an independent

ADC channel to sample the data. For example, to build a

N by N sensor array, N2 I/O pins are required, which is

prohibitive for large-scale sensing problem. In eCushion, we

still use three stacked-layer structure to build the sensor,

where the middle layer is eTextile. Difference is that the top

layer and the bottom layer are normal fabric uniformly coated

with parallel conductive buses. As the structure shown Fig.

2(a), the conductive buses on the top layer are orthogonal

to those on the bottom. The intersection part is the sensing

unit. Fig. 2(b) shows the sensor implementation. The top

layer and bottom layer are coated with 16 buses respectively.

Therefore, the number of sensors located on this sheet is

256. Moreover, with the comparison in Fig. 2(c) the total

thickness is 1.5mm only, which enable eCushion flexible

and thin enough for noninvasive use. As shown in Fig. 2(a),

this N by N sensor structure only has 2N I/O pins. To

explain the operation of this sensor array, we will discuss

the corresponding sensor scanning method in the next part.

(a) Sensor Structure (b) Sensor Implementation

(c) Sensor Thickness

Fig. 2. Sensor Sheet

B. Scanning Method

The peripheral circuit shown in Fig. 3 is used to scan

the zebra pattern sensor array. Each conductive bus on the

bottom is connected to ADC via analog switch model S1

and to ground via an offset resistor R0; each conductive bus

on the top is connected to voltage supply via analog switch

model S2. Both S1 and S2 are controlled by microcontroller.

When one bus i on the top is selected by S2 to connect to

voltage supply, the reading of channel j in S1 is the value of

Sensor Vij . With peripheral circuit, the microcontroller can

access arbitrary sensor value in this array.

16

16

Vcc

S2S2

R0

D0 D1 D14 D15…
S1

Out A0 A1 A2 A3

ADCADC

Fig. 3. Peripheral Circuit for Sensor Scanning

C. Challenging of eTextile Sensing

When the users sitting and applying forces on the sensor

sheet, the eTextile output is not only depending on the sitting
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posture. In fact, the sensor value can be interfered by other

uncertain issues. Here, we list and study all the dominant

factors for signal distortion. Basically, there are four kinds

of uncertain issues, where offset and scale are called sheet to

sheet uncertainty, and crosstalk and rotation belong to within

sheet uncertainty.

1) Offset

In ideal case, the initial pressure on each sensor is

zero. However, due to the sandwiched structure, initial

noise pressure or offset value is unavoidable and its

value highly depends on the assemble method of the

sensor. Assemble variation will apply different initial

pressures from sheet to sheet. The tighter three layers

are sandwiched, the larger the offset is applied.

2) Scale

The characteristics of eTextile have large process

variation. When the same forces are applied to two

eTextile sheets respectively, the sensor outputs are

not necessarily the same. Therefore, it is impossible

to find one Look-up table to generally describe the

relationship between applied force and sensor output.

However, eTextile sensor is still promising because the

sensing repeatability and relativity are very stable.

3) Crosstalk

The crosstalk effect is one of the most tough issues

to deal with. Due to the limited space, the adjacent

sensors are mechanically coupled together. As shown

in Fig. 4, the thickness of the sensor sheet is uniform,

valued H1, when the pressure is free. Once some force

is applied on Sensor S3, its thickness will be reduced

to H2. In the mean while, the adjacent sensors also get

sequeezed: the sensor values of S2 and S4 get changed

along with S3. However, it is still promising to com-

pensate this effect since crosstalk effect is localized

among neighboring units based on the experiments.

Fig. 4. Crosstalk effect in sensor array

4) Rotation

Even if the user sits on eCushion with the same

gesture, the pressure map could still be largely dif-

ferent because of the sitting orientation. Fig. 5 shows

two pressure distributions with the same gesture but

different orientations. The pressure map in Fig. 5(a)

is similar to that in Fig. 5(b). However, it is highly

difficult to match them with each other using pattern

recognition techniques because ”rotation is always

something hard to handle compared to translation and

scaling” [17].

(a) Map One (b) Map Two

Fig. 5. Pressure map rotation

In this section, we presented the sensor design and im-

perfection of eTextile sensing. To achieve high recognition

rate, the above listed issues should be addressed effectively

before performing pattern recognition. In the next section,

we will introduce the proposed techniques to improve the

sensor data for accurate sitting posture recognition.

IV. SITTING POSTURE RECOGNITION

In this section, we will discuss sitting posture recog-

nition algorithm based on pressure distribution. [18] pro-

posed a template-based algorithm to distinguish postures,

but it cannot handle the scenario where the sensing da-

ta is imperfect. [11] used Naive Bayes Network [19] to

train the data and selected significantly featured sensors for

classification. However, this method highly depends on the

training data and cannot deal with the variational factors

such as different weights, sizes and sitting orientation. To

address the challenging issues of textile, we proposed an

optimization algorithm to compensate the signal for accurate

signal classification.

A. Data Preprocessing for Crosstalk

Crosstalk is a cluster-based effect and related to the whole

data, which should be first dealt with. Assuming that there

are n pressure sensors in eCushion, the crosstalk effect

among n sensors can be expressed as:

F1×nCn×n
.
= D1×n (1)

where D1×n denotes n sensing values, F1×n denotes

the force applied on n sensors, and Cn×n denotes F to D

transformation matrix including the crosstalk effect. It means

whenever fi applies on sensor i, the impact on sensor j,

denoted as Aij can be calculated by:

ficij = Aij (2)

Therefore, the value of sensor j, denoted as dj , can be

calculated as:

dj =
∑

Aij (3)

To investigate the crosstalk, we did preliminary experi-

ments. We applied unit force on single sensor i, denoted as
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Fei, and measured the output value from each senor Dei

which is 1× n vector. Based on Equ. 1, we get as follows:

Cn×n =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

De1

De2

·
·
·

Den

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

(4)

Based on experiments, we found transformation matrix

Cn×n is sparse, and all elements on the diagonal are non-

zero. Therefore, the inverse matric of Cn×n can be easily

calculated, called decoupling matrix C−1. We can obtain

pressure map without crosstalk by the following formula:

F1×n
.
= D1×nC

−1
n×n (5)

B. Data Representation

To facilitate the pattern recognition, it is significant to

choose an appropriate way for data representation. Rather

than dealing with pressure map (2D image) directly, we

convert it into pressure profile sequence (1D time series).

The procedure is as follows:

1) With pressure map canny edge detector is applied to

the pressure map to obtain a binary image.

2) Extracting the outline curve of the binary image.

3) Measuring the distance between every point and image

center which can be treated as the Y-axis of a sequen-

tial signal.

Fig. 6 shows the procedure of this conversion. With

sequential signal, some distortions, including offset and

scaling, could be easily eliminated through z-normalization:

x′
n =

xn − μ

σ
(6)

where μ is the signal expectation value, and σ is the signal

variance.

Moreover, sequential signal could leakage some existing

methods to deal with rotation problem in pressure map,

which will be detailed in the next subsection.

C. Signal Matching using Dynamic Time Warping

We use dynamic time warping as pattern recognition

methods to classify different sitting postures. The target-

ed sequential signals are extracted from the corresponding

pressure map while user is sitting on eCushion. Dynamic

time warping (DTW ) is a similarity evaluation for two time

series signals. Compared to Euclidean distance, DTW is

more robust, allowing similar shapes to be matched even if

they are out of phase [20].

Assuming there are two pressure profile sequences:

S = [s1, s2, s3, ··, si, ··, sn] (7)

T = [t1, t2, t3, ··, tj , ··, tm] (8)

To evaluate the similarity of these two sequences, DTW
constructs a n by m matric D, where dij = (si − tj)

2.

(a) Map (b) Boundary

(c) Distance

(d) Pressure Profile Sequence

Fig. 6. Data Representation Procedure

Each element dij denotes the similarity between si and

tj . DTW is to find a continuous and monotonic path W
from d11 to dmn with minimal cost. The time and space

complexity of DTW (S, T ) is Θ(mn). Fig. 7 shows an

example of DTW -based similarity evaluation between two

pressure profile sequences.

We use LB Keogh [21] to speed up the algorithm. Given

any 2r− length subsequence S′ = [si−r, si+r] in S, we can

find the upper bound of S′ is Ui, and the lower bound of S′
is Li. Therefore, DTW (S, T ) with LB Keogh is:

LB Keogh(S, T ) =

√√√√√∑
⎧⎨
⎩

(ti − Ui)
2

if ti > Ui

(ti − Li)
2

if ti < Li

0 otherwise
(9)

Notice that LB Keough will regress to Euclidean distance

when r is 1. This strategy dramatically speed up DTW-based

indexing [21].
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Fig. 7. A warping example of two pressure profile sequences

TABLE I

EXPERIMENTAL RESULTS

self training general training
accurate rate 92% 79%

V. EXPERIMENTS

A. Experimental Setup

To evaluate the accuracy of our eCushion system, we

performed a pilot on campus. There are ten objects, including

six male and four female.

Each participant sits on eCushion with seven predesigned

sitting postures for five rounds. These data are used as

training data. The seven postures are considered to classify,

including 1) situp, 2) forward, 3) backward, 4) left lean, 5)

right lean, 6) right foot over left and 7) left foot over right.

Fig. 8 shows an example to explain the procedure of data

acquisition and preprocessing. The figures on the top row

illustrates seven sitting postures. The middle row pictures

show the corresponding pressure map of each posture. Each

pressure map has total 256 pixels. The bottom sequences are

the extracted pressure profile sequences from pressure maps.

Each sequence is evaluated and classified with DTW.

B. Recognition Results

Two evaluation methods are performed in sitting posture

analysis. The first is the pattern recognition based on self

training data. As shown in Table I, the recognition rate on

self-training could achieve 92%. The second method is the

evaluation with general training data. This evaluation method

is more fair and objective. In Table I, it shows that the correc-

tion rate for posture classification is 79% by average. Our

experimental results illustrates that our designed eCushion

system could safely achieve a high classification rate.

VI. CONCLUSION AND FUTURE WORK

In this paper, we designed and implemented eCushion

for sitting posture monitoring. Towards several challenging

issues in eTextile sensor, including scaling, offset, crosstalk,

and rotation effects, we proposed an optimized strategy to

compensate the signal for accurate signal analysis. Exper-

iments show that eCushion could achieve a high sitting

posture recognition rate, 79% for general cases and 92% for

object-oriented cases. In the future, we will try to improve

the recognition rate for general case. Meanwhile, due to the

scalability of the eTextile device, we consider to further scale

up our system for other applications such as bedsheet for

sleeping monitoring and carpet for gait analysis.
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