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Abstract—Human activity recognition using wearable body
sensors is playing a significant role in ubiquitous and mo-
bile computing. One of the issues related to this wearable
technology is that the captured activity signals are highly
dependent on the location where the sensors are worn on the
human body. Existing research work either extracts location
information from certain activity signals or takes advantage of
the sensor location information as a priori to achieve better
activity recognition performance. In this paper, we present
a compressed sensing-based approach to co-recognize human
activity and sensor location in a single framework. To validate
the effectiveness of our approach, we did a pilot study for the
task of recognizing 14 human activities and 7 on body-locations.
On average, our approach achieves an 87.72% classification
accuracy (the mean of precision and recall).
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I. INTRODUCTION

Understanding human activities and behaviors [1] is a key

topic in ubiquitous computing research because of its wide

range of applications in human computer interaction, securi-

ty surveillance, sports engineering, and intelligent assistance

for elderly people. Among all the technologies, camera is

the mostly used sensing device to capture human activity.

However, one of its key drawbacks is that cameras have to

be deployed in infrastructure. In such case, people may get

out of track if they are beyond the reach of the cameras.

In recent years, the advance of the MEMS technologies

makes inertial sensors becoming popular for human activity

sensing and tracking since they can be integrated into per-

sonal devices, such as smart phones, watches, and apparels.

Figure 1 illustrates a number of examples of on-body sensing

devices integrated with inertial sensors. It should be noticed

that these sensors could be worn at any location on the

human body. Therefore, the activity signals captured by the

inertial sensors are highly dependent on the sensor location.

In other words, it is highly possible that the signals may look

totally different when a person performs the same activity

but with sensors at different locations.

Based on this observation, researchers have developed

techniques to either extract location information from the

captured activity signals or take advantage of the sensor

location information as a priori to achieve better activity

recognition performance. For example, the authors in [2]

have developed a SVM-based approach to identify the sensor

location on the human body when people walk. In [3],

the authors customized the activity recognition algorithm to

specific sensor locations to boost the performance of the

recognizer. Among these existing techniques, the common

point is that they treat sensor localization and activity

recognition as two separate problems. However, we argue

that the sensor location information and the activity signals

are intertwined and could be solved as one single problem.

In this paper, we have developed solution to co-recognize

human activity and sensor location in a single framework,

which we believe is more efficient and powerful than utiliz-

ing two separate algorithms for the same. Specifically, our

framework is built on top of the compressed sensing theory

which reconstructs the signal with limited or incomplete

samples if the signal has sparsity in some transformation

domain [4]. We first prove that human activity signals

captured by the wearable inertial sensors are indeed sparse.

Then we take advantage of this sparsity information to

classify activity signals and recognize where the sensor is

located on the human body. Based on our experiment, our

method can recognize 14 activities and 7 on-body locations

with 87.72% recognition accuracy on average.

1

2

3

4

5

Figure 1. Examples of on-body inertial sensing devices for human activity
monitoring and recognition: 1) Nike+; 2) BodyMedia; 3) Healthset; 4) Basis
Band; 5) Fitbit.
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The remainder of this paper is organized as follows. In

Section II we briefly introduce the theory of compressed

sensing and review some existing work on human activity

recognition based on compressed sensing. Then, we describe

our human activity and sensor location co-recognition frame-

work in Section III. The experimental results and analysis

are presented in Section IV. Finally, we outline the future

work and conclude the paper in Section V.

II. PRELIMINARY AND RELATED WORK

A. Compressed Sensing and �1 Minimization

Compressed sensing is a ground-breaking signal process-

ing theorem developed in recent years. It has been widely

applied in many research domains such as communication,

image processing and computer graphics due to its capability

of accurate signal reconstruction with lower sampling rate

claimed by Nyquist-Shannon sampling theorem [5].

Suppose that x ∈ R
n is a vector of unknown variables,

y ∈ R
m is the available measurements we have, and A ∈

R
m×n is the data matrix to describe the relation between x

and y. Then, we have:

y = Ax (1)

In many real-world applications, the number of unknowns

is more than the number of measurements (n > m). In such

cases, Eq.1 represents an underdetermined system, and x
can not be uniquely reconstructed from the data matrix A
and the measurements y. However, in situations where x is

sparse enough, we can reconstruct x with the �0 sparsity

formulation as follows:

minx∈Rn ‖ x ‖�0
s.t. y = Ax

(2)

Eq.2 is a determined system and has stable solution. How-

ever, Eq.2 is intractable because it is an NP-hard problem

[6]. The traditional heuristic to approximate the sparsity �0
is to use the minimal energy �2:

minx∈Rn ‖ x ‖�2
s.t. y = Ax

(3)

It is well-known that �2 is a least square formation and

can be efficiently solved. However, the energy minimization

�2 is not necessarily equivalent to the sparsity �0 in most

cases. In 2006, authors in [5] proved that the solution of

Eq.2 is highly probably the same with the �1 minimization:

minx∈Rn ‖ x ‖�1
s.t. y = Ax

(4)

It has been proved that this �1 minimization can be

formulated as a convex optimization problem [4]. In such

case, the optimization problem is well-posed and could be

solved in polynomial time.

B. Compressed Sensing for Pattern Recognition

One important application of compressed sensing is pat-

tern recognition and classification. In recent years, it has

been applied successfully to many pattern recognition prob-

lems including face recognition, speech recognition, and iris

recognition. The formulation of compressed sensing-based

classification strategy is relatively straight forward. Consider

a pattern recognition problem with K different classes. Each

class k has nk training samples, each having m attributes.

In total, there are n =
∑K

i=1 ni training samples. We can

collect all these training samples to form a matrix A with

m rows and n columns as follows:

A = [A1, A2, · · ·, Ai, · · ·, Ak]
= [a11, a12, ..., a1n1 , a21, a22, ..., a2n2 , · · ·,
, · · ·, ai1, ai2, ..., aini

, · · ·, ak1, ak2, ..., aknk
]

(5)

where aij is the j-th training sample from class i.
Following Eq.1, any given unknown input y ∈ R

m can

be represented as a linear span of training sample matrix

A ∈ R
m×n as:

y = x1a11 + x2a12 + · · ·+ xnaknk
(6)

Under such formulation, the class membership of y, which

is encoded as the sparsest solution of the underdetermined

system given in Eq.1 can be resolved by solving Eq.4.

C. Related Work

There are some research work on using compressed

sensing for human activity recognition. In [7], the authors

used 8 motion sensing motes distributed on the human body

to recognize 12 different human activities. In [8], the authors

adopted a similar strategy to recognize human activities

captured by camera videos. Compared to the existing studies,

our work differ in the following aspects:

1) Sensing technology: Instead of using cameras, we

use inertial sensors (accelerometer and gyroscope)

attached on the human body to collect activity signals.

2) Sensing strategy: Rather than distributing multiple

sensor nodes to cover the entire body like what [7]

did, we only use one single sensor node on the body

to recognize human activity. We believe this sensing

strategy is less obtrusive and can be applied to a much

wider range of real-world applications.

3) Sensor location: The work of [7] requires to fix the

sensor nodes to some specific locations. Any misplace-

ment of the sensor nodes will make the recognition

fail. In comparison, our method does not have this

limitation and enables the co-recognition of human

activity and sensor location in one single step.

III. OUR FRAMEWORK

In this section, we present our proposed framework for

co-recognizing human activity and on-body sensor location.
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Figure 2. The three important components of our compressed sensing-based framework

As shown in Figure 2, our framework consists of three im-

portant components: feature extraction, sparse representation

via �1 minimization, and Bayesian sparse representation-

based classification. We will describe the details of all these

components in this section.

A. Feature Extraction

There are many previous studies focusing on exploring

the best features that can be extracted from human activity

signals. Table I lists the features we consider in this work.

We use these features because they have been proved to be

useful in classifying human activities and some other related

pattern recognition problems by existing studies [9].

Mean Median Standard Deviation
Variance Root Mean Square Mean Derivatives
Skewness Kurtosis Interquartile Range

Zero Crossing Rate Mean Crossing Rate Pairwise Correlation

Table I
FEATURES USED IN THIS WORK

B. Sparse Representation via �1 Minimization

We follow the formulation described in Section II to con-

struct the data matrix A. Specifically, we collect nij samples

from activity i and sensor location j. For each sample,

we extract features described in the previous subsection to

form a feature vector a. Then a feature matrix Aij can be

constructed as:

Aij = [a1, a2, · · ·, an]; (7)

In this way, we build the data matrix A covering all K
activities and L locations as:

A = [A11, A12, · · ·, AKL]; (8)

As explained in Section II, for any given test sample y
from unknown activity and location, it can be represented

in terms of the matrix A as:

y = A11x11 +A12x12 + · · ·+AKLxkl (9)

where x = [x11, x12, · · ·, xkl] is the sparse representation

of y w.r.t. matrix A, and the coefficient xij is referred as

feature index for feature matrix Aij . In such case, x can be

resolved via the �1 minimization formulated in Eq.4.

C. Bayesian Sparse Representation-Based Classification

Given the sparse representation x of the test sample y,

we can identify its activity class membership i and location

class membership j altogether by computing the residual

values between y and each feature matrix Aij defined as:

residualij = ‖y −Aijxij‖2 (10)

The lower the residual value is, the more similar y is to

feature matrix Aij . Therefore, y is classified as the activity

class C and sensor location class S that produces the

smallest residual:

{C, S} = argmin
ij

residualij (11)

Let P (i, j|C, S) be the probability of the test sample y is

classified as activity i and sensor location j when the true

activity class is C and true sensor location class is S. Since

the residual value is a measure of the similarity between y
and the feature matrix Aij , the lower the residual is, the

higher the probability that the classified activity class i and

location class j will be the same as the true activity class

C and true location class S. Therefore, we can model the

probability P (i, j|C, S) using the residual values as:

P (i, j|C, S) = 1− residualij
∑K

i=1

∑L
j=1 residualij

(12)

Based on the sum rule of the probability theory, the

probability of y classified as activity i when the true activity

class is C can be derived by summing up the probability at

each sensor location:

P (i|C) = 1−
∑L

j=1 residualij
∑K

i=1

∑L
j=1 residualij

(13)

And the test sample y is classified as activity class C∗ that

has the highest probability:

C∗ = argmax
i

P (i|C) (14)

Similarly, the probability of y classified as location j when

the true location class is S is calculated by summing up the

probability over all activity classes:

P (j|S) = 1−
∑K

i=1 residualij
∑K

i=1

∑L
j=1 residualij

(15)
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And the test sample y is classified as sensor location class

S∗ that has the highest probability:

S∗ = argmax
j

P (j|S) (16)

IV. EXPERIMENTS AND EVALUATION

A. Dataset

We run a pilot study in the laboratory environment to

evaluate the performance of our proposed approach. The

sensing device we used integrates a three axis accelerometer

and a two axis gyroscope. Features listed in Table I are

extracted from both of these sensors. In total, we have 64
features. We collected the data from 3 male subjects whose

ages are 25, 28, and 33 respectively. Each subject performed

14 activities, each for 10 trials. The activities include: 1)

Stand to Sit ; 2) Sit to Stand ; 3) Sit to Lie ; 4) Lie to Sit

; 5) Bend to Grasp ; 6) Rising from Bending; 7) Kneeling

Right; 8) Rising from Kneeling; 9) Look Back; 10) Return

from look back; 11) Turn Clockwise; 12) Step Forward; 13)

Step Backward; and 14) Jumping. Meanwhile, the subjects

were asked to wear the sensing device at 7 different locations

during their performance. These locations are: a) Waist; b)

Right Wrist; c) Left Wrist; d) Right Arm; e) Left Thigh;

f) Right Ankle; and g) Left Ankle. Therefore, we have 98
combinations of activity and sensor location in total.

B. Sparsity of Human Activity

Based on the discussion in Section II-A, compressed

sensing can perform accurate recognition and classification

based on one important prerequisite: the representation x
of y should be a sparse vector in the space spanned by
the training samples A. Unfortunately, few works prove the

sparsity of their problem before using compressed sensing

theorem, either theoretically or empirically. For the sake of

avoiding blind decisions, we did the preliminary experiments

to investigate the sparsity of human activities.

Without the loss of generality, we randomly selected

30 samples from single activity, and each sample has 30
randomly selected features. In this way, we can form sample

a sample matrix A1 ∈ R
30×30. We also built A2 ∈ R

30×30

with 3 human activities and A3 ∈ R
30×30 with 9 activities.

Note that in all these sample matrices, column space consists

of samples, and row space is based on features. Similar to

[10], we generated a Gaussian random matrix G ∈ R
30×30

and performed the singular value decomposition on A1, A2,

A3 and G respectively to evaluate the sparsity of human

activity. All their singular value profiles are illustrated in

Figure 3. It indicates that compared to G, A1, A2 and A3 are

low-rank since their SVD profiles have significant downtrend

compared to G. Knowing that all statistical features in

Section III are independent, low-rank should be caused by

column space, which means sample space is overcomplete.

Therefore, we empirically proved that training samples A
has sparsity. Specifically, comparing A1 with A2 and A3,

we can see that sample space with the same activity class

has the stronger sparsity.
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Figure 3. The log-scale singular values of the sample matrix A1, A2 and
A3. We also use Gaussian Random matrix G for comparison.

C. Classification Performance Evaluation

In this section, we evaluate the classification performance

of our framework. Our evaluation is based on three metrics:

(1) the classification accuracy of co-recognition of activity

and sensor location based on Eq.11; (2) the classification

accuracy of activity based on Eq.14; and (3) the classification

accuracy of sensor location based on Eq.16. For evaluation,

we adopt a 10-fold cross validation strategy. Specifically, we

divide the whole dataset into 10 folds. At one time, 5 folds

are used to build the data matrix A and the remaining 5
folds for testing.

Table II shows the evaluation results in terms of the above

three metrics. As shown, metric (1) achieves an 87.42%
precision and an 87.93% recall value. For metric (2) and

(3), it is interesting to see that with Bayesian fusion, the

classification performance gets improved. Specifically, for

activity recognition, the precision and recall reach 88.79%
and 89.21%. For location recognition, both the precision and

the recall are higher than 96%.

Table II
CLASSIFICATION PERFORMANCE EVALUATED BY THREE METRICS

Activity&Location (%) Activity (%) Location (%)
metric (1) metric (2) metric (3)

Precision 87.42 ± 1.43 88.79 ± 1.25 96.02 ± 0.43
Recall 87.93 ± 1.10 89.21 ± 1.02 96.24 ± 0.38

To take a closer look at the classification results, Table III

and IV show two confusion tables with respect to activity

classification (metric (2)) and sensor location classification

(metric (3)), respectively. In Table III, we notice that activity

7) Kneeling Right and activity 8) Rising from Kneeling get

confused to each other the most. Although these two activi-

ties are like a pair of inverse processes and visibly different
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Table III
CONFUSION TABLE OF RECOGNITION ON 14 HUMAN ACTIVITIES

1 2 3 4 5 6 7 8 9 10 11 12 13 14 Total Recall
1 79 1 0 1 0 0 0 0 0 0 0 1 0 2 84 94%
2 3 79 0 0 0 0 0 0 0 2 0 0 0 0 84 94%
3 1 1 74 8 0 0 0 0 0 0 0 0 0 0 84 88%
4 2 2 3 72 0 1 2 0 0 0 2 0 0 0 84 86%
5 0 0 0 1 78 0 0 0 0 1 0 0 1 2 84 93%
6 0 0 0 0 0 78 0 0 1 1 2 1 0 1 84 93%
7 0 0 0 0 0 0 72 8 0 0 2 1 1 0 84 86%
8 0 0 0 0 1 0 8 67 0 0 1 4 2 1 84 80%
9 0 0 0 0 1 0 0 0 78 2 3 0 0 0 84 93%

10 1 0 0 0 0 2 0 0 4 76 1 0 0 0 84 90%
11 1 0 0 0 0 0 2 0 1 2 71 2 5 0 84 85%
12 0 0 0 2 0 0 4 0 0 0 1 74 3 0 84 88%
13 0 0 0 0 0 0 2 4 1 2 0 9 66 0 84 79%
14 0 0 0 0 0 0 0 0 0 0 0 0 0 84 84 100%

Total 87 83 77 84 80 81 100 79 85 86 83 92 78 90
Precision 91% 95% 96% 86% 98% 96% 72% 85% 92% 88% 86% 80% 85% 93%

Table IV
CONFUSION TABLE OF RECOGNITION ON 7 ON-BODY SENSOR LOCATIONS

a b c d e f g Total Recall
a 166 1 0 0 1 0 0 168 99%
b 0 163 2 1 1 1 0 168 97%
c 2 1 158 0 4 1 2 168 94%
d 0 0 1 163 3 1 0 168 97%
e 4 0 0 0 154 10 0 168 92%
f 2 1 1 0 5 157 2 168 93%
g 0 0 0 0 0 0 168 168 100%

Total 174 166 162 164 168 170 172
Precision 95% 98% 98% 99% 92% 92% 98%

from each other in time domain, our algorithm describes

the human activity signal in a statistical way and gets rid

of the temporal information in the data. Therefore, inverse

processes could share lots of common features in space
domain. As for sensor location classification, as illustrated

in Table IV, most of the precision and recall are more than

98%. However, location e) Left Thigh and location f) Right
Ankle get confused with each other the most. Specifically ,

the corresponding accuracy is around 92%. It indicates that

the selected features described in Section III can not reliably

distinguish the two cases. We could consider this issue to

enhance the algorithm performance in the future work .

D. Comparison Between �1 and �2

As stated in Section II, �1 is a better heuristic for

sparsity pursuit than �2. As our last experiment, we want to

empirically validate this point and compare the classification

performance between �1 and �2 optimization strategies. As

an example, Figure 4 shows the solutions from both �1
and �2 optimization with one test sample from activity 7
(kneeling right) at location d (right arm). As illustrated, the

solution from �1 is quiet sparse. Moreover, the maximal

spike marked by the red circle is associated with the training

samples belonging to the same activity class and sensor

location class. In comparison, the solution from �2 spreads

out. The spikes are dense and distributed over all activity

and sensor location classes.

Figure 5 illustrates the corresponding residual values

between the test sample and all 98 classes defined by Eq.10

for both �1 and �2. As shown, the class membership of

the test sample can be easily told by the minimal residual

(pointed by the red arrow) for �1 optimization strategy. For

�2, although the minimal residual also corresponds to the

true class, the difference between the minimal residual and

the residual values of other classes is not significant.

Finally, we compare the classification performance be-

tween �1 and �2. Table V shows the results in terms of

the recognition rates. As shown, �1 outperforms �2 across

all three metrics consistently in terms of both recognition

accuracy and stability. It is worth to emphasize that the

enhancement from �1 compared to �2 has strong scalability:

the larger the scale is, the more gain it has. Based on the ob-

servation in Figure 4, it is not surprised that �1 outperforms

�2 overwhelmingly in terms of both accuracy and stability.

Specifically, the co-recognition classification accuracy could

be improved by 20.75% with �1 optimization. Correspond-

ingly, the gain of stability from �1 optimization is 3.17X by

average.
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Figure 4. Solutions of �1 and �2 Optimization Strategies

Figure 5. Residuals of 98 Classes of �1 and �2 Optimization Strategies

V. CONCLUSION

Inspired by the sparsity of human activity signal, we

adopted the emerging compressed sensing theorem and

proposed a novel framework to co-recognize human ac-

tivity and sensor location in wearable sensor networks.

The experimental results showed that our proposed method

can achieve more than 87% recognition accuracy with 14
different activities and 7 on-body locations. Moreover, we

also showed that the data presentation via �1 outperformed

�2 in terms of both accuracy and robustness. Considering

the promising results in the pilot study, we will consider to

run the experiments with the large-scale group and evaluate

more activities and sensor locations in the future work.

Table V
CLASSIFICATION PERFORMANCE COMPARISON OF �1 AND �2

Activity&Location Activity Location
metric (1) metric (2) metric (3)

mean std mean std mean std
�1 87.72 1.26 89.00 1.13 96.13 0.41
�2 72.65 5.46 80.94 4.28 85.32 1.31

�1−�2
�1

20.75% 3.17X 9.95% 2.78X 11.25% 2.20X
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