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Abstract—ECG analysis is universal and important in mis-
cellaneous medical applications. However, high computation
complexity is a problem which has been shown in several levels
of conventional data mining algorithms for ECG analysis. In
this paper, we presented a novel manifold approach to visualize
and analyze the ECG signal. According to regularity of the
data, our algorithm can discover the intrinsic structure and
represent the streaming data with a 1-D manifold on a 2-
D space. Furthermore, the proposed algorithm can reliably
detect the anomaly in ECG streaming data. We evaluated the
performance of the algorithm with two different anomalies in
wearable applications: for the anomaly from heart disorders
such as apnea, arrythmia, our algorithm could achieve up to
90% recognition rate; for the anomaly from the ECG device,
our algorithm could detect the outlier with 100%.
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I. INTRODUCTION
Heart disease is one of dominant causes of death and its

research always gains lots of attention due to the difficulty
of detection, diagnosis, treatment and recovery. It is reported
that almost 1 million Americans die of heart disease each
year, which adds up to 42% of all deaths in 2010. With the
unhealthy food and habit in modern life, heart disease does
not just kill the elderly but becomes increasingly universal
in the young people. The American Heart Association con-
servatively predicted that the costs of heart disease in United
States will achieve 800 billion dollars a year by 2030.
Currently, the heart disease detection and diagnosis still

rely on the analysis of Electrocardiography (ECG). The
traditional ECG device has three to twelve electrodes, which
connect to different parts of human body. Each electrode
will measure the change of electrical voltage or current
caused by the heart beat over time. Therefore, heart activity
can be described by this kind of multi-dimensional time
series. Whenever the heart of the patient does not work
normally, there will be an anomaly reflected on the ECG
waves. Therefore, medical professionals can diagnose the
heart health status by ECG from the patients.
However, Electrocardiography is difficult to well-

understand without plenty of professional training and clin-
ical experiences. Currently, there are two major methods
to analyze ECG signals in terms of the granularity of the

observation. One is called local feature or fine-grained anal-
ysis. According to the signal shape, researchers partition the
one-period ECG wave into several local featured segments,
referred as P-QRS-T complexes model. Each segment has its
own specific shape and is significantly different from others.
Whenever one of the ECG segments becomes abnormal,
the medical professionals could analyze the abnormal part
and draw the medical conclusion according to the specific
anomaly. For example, the R-R interval on ECG from a pa-
tient with apnea is obviously different from that from normal
people. This local feature analysis is easy to observe and
understand, and has been widely used in ECG analysis. [1]
proposed a 1-D signal searching method to find the inquiry
pattern in ECG. [2] developed motif detection algorithm
to discover the repeated signal pattern for ECG anomaly
detection. [3] addressed the motif discovery and inquiry
searching on multivariate cases. The other method is called
global feature or course-grained analysis. Instead of looking
at the specific features on the local part of ECG, global
feature analysis tries to recognize the abnormal signals based
on the overall observation. For example, [4] described a
wavelet based method on ECG for heart disease diagnosis.
[5] formulated the ECG analysis problem as artificial neural
network (ANN) to extract the important features.
With the development of wearable medical techniques,

medical devices could be non-invasively deployed on the
patients without affecting their daily life. [6] presented a few
of wearable ECG devices for heart attack prevention. Instead
of that, cardiac arrests have to visit the hospital periodically
for heart examination, their ECGs can be measured with
portable devices by 24/7. However, due to the limited
power and computation ability on wearable devices, it is
impossible to deal with the ECG raw data directly for
analysis. [7] discussed the randomness and determinism in
ECG and pointed out that ECG might be an low-dimension
embedding in a high-dimensional spaces. Inspired by this
observation, we proposed a manifold based method to cluster
the different ECG signals or detect the anomaly. Different
from the discussed methods on the above, our method could
reduce the data dimensionality and process the data on a
lower dimension space. After the dimension reduction, the
computation overhead could be reduced dramatically. To the
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best of our knowledge, this is the first work to detect the
anomalies in ECG by exploiting its manifold structure.
The remaining paper is organized as follows. Section II

will describe background and related dimension reduction
technology. Section III will elaborate the proposed algorithm
in details. In Section IV, we will evaluate our method on real
ECG signals. Conclusion and future work will be discussed
in Section V.

II. BACKGROUND
A. Dimension Reduction Techniques
Dimension reduction techniques (DRT) has been widely

investigated in the past few decades. The main idea of DRT
is to represent the high-dimensional raw data on an intrinsic
low dimensional space. The application is either to decrease
the computational cost for raw data or visualize the raw data
in a human visible way. According to its methodological
theory, DRT can be categorized into multiple axes, such as
generative method v.s. discriminative method, linear method
v.s. non-linear method, global method v.s. local method.
Principle Component Analysis (PCA) is the most well-
known DRT, which extracts the global features of raw data to
linearly reduce the dimension in a generative way. Because
of the linearity of computation model, PCA is extremely
efficient and could be used in real-time applications. For
example, [8] proposed a PCA-based method to identify the
human beings via their ECG signals.
Another famous DRT is Locally Linear Embedding (LLE)

[9]. Contrary to PCA, LLE tries to preserve the data structure
in a non-linear method according to local features of raw
data. Compared to PCA, the significant advantage of LLE
is that it could discover the non-linear underlying structure,
such as manifold, in the data. For example, LLE is able to
unfold S-Roll [9] without destroying its original structure.
LLE also has lots of applications in the real world, such
as face recognition , speech recognition and human move-
ment classification, where the raw data are manifold and
embedded in high-dimensional spaces. Furthermore, LLE is
a kind of unsupervised techniques, and no training process
is needed to unveil the intrinsic data structure.

B. Intrinsic Low Dimension Embedding of ECG
Real ECG data are high-dimensional and seem difficult to

analyze and predict due to the high complexity and internal
uncertainty. [7] discussed the determinism and randomness
of ECG signals and proved that ECG could embed in a
two-dimensional time-delay embedding space. As illustrated
in Fig. 1, ECG can be segmented into several parts (A-
G), and each part will be mapping onto a set of points in
two-dimensional space. For example, as shown in Fig. 1,
periods similar to Part A on the left figure will be mapped as
stochastic points in Region A on the right figure. Afterwards,
these points constitute a trajectory as a 1-D manifold in 2-D
X-Y coordinates. We can see that, in spite of that the forming

trajectory is fuzzy, its boundary and trend are deterministic
and predictable. Based on this observation, we proposed
LLE based recognition algorithm to discover the intrinsic
non-linear structure of ECG for anomaly detection.

Figure 1. Manifold Structure of ECG (by courtesy of [7])

III. MANIFOLD BASED ANOMALY DETECTION
In this section, we will present a manifold based approach

to ECG anomaly detection. Fig. 2 shows the steps of the al-
gorithm in flow chart. There are three phases in the proposed
algorithm: segmentation and feature extraction, manifold
structure discovering and mapping, anomaly detection and
recognition. In the remaining part of this section, we will
elaborate each steps in the algorithm.
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Figure 2. The Flow of Manifold Approach to Detection Anomaly: Fig.
2(a) presents the ECG with anomalies, in which the blue rectangular marks
the normal part, and the red rectangular marks the abnormal part. Fig. 2(b)
shows the intrinsic 2-D manifold representation of the ECG. Fig. 2(c) is
recognition results of our proposed algorithm.

A. Segmentation and Feature Selection
In the time series processing, there are two popular

methods to segment the signal waves. One is fixed window
cell size, and the data will be segmented equally with a
fixed length. The other is period based cut, and the segment
lengths are not necessary to be the same. In order to preserve
the original structure of ECG, we will segment ECG with
its distinct periodical feature, R-R interval.
Because of the variational lengths of R-R intervals, the

similarity evaluation can not be easily integrated on most
of manifold learning frameworks. There are some related
research work on ECG local feature selection, such as P-
Wave, QRS. For the sake of computation efficiency, we
perform feature extraction on each segment with the statis-
tical features on every sampling channel. In this paper, we
choose six statistical features to represent the nature of ECG,
including arithmetic mean, standard deviation, derivative
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mean, derivative variance, correlation mean, correlation
variance [10]. In this way, each segment of sampling data
from multiple channel will be transformed as a sequence:

X = {x11, x12, x13, x14, x15, x16, ...,

, ..., xn1, xn2, xn3, xn4, xn5, xn6};
(1)

where n is the number of electrical electrodes of ECG
device. For instance, if the device has 7 electrodes, the
feature number of each segment will be 42.

B. Manifold Structure and Mapping
Our method to map the sequence X to a low dimen-

sion space is based on LLE framework [9]. LLE is an
unsupervised algorithm and could reconstruct the data non-
linearly while preserving the locality. After the computation,
the similar segments will be clustered automatically in
a manifold form on the new low dimensional space. In
general, there are three steps in the algorithm, which will
be discussed in the following part.
1) K Nearest Neighbor Searching: The first step is to

search K-nearest neighbors for each segment. All the nearest
neighbors along with the basic segment will be grouped
together. In the searching process, we use Euclidean distance
to evaluate the similarity between segments. There are two
ways to determine group size K in the searching procedure.
One is using fixed integer. For example, we search the
5 nearest points and identify them as the neighbors. The
other way is to identify the neighborhood by a threshold
value in distance metrics. In this method, any point within
a given radius will be recognized as the neighbor. Normally
the topology of embedding will be well-preserved over a
range of neighborhood size. We will discuss the algorithm
performance variation in terms of group size K value
selection in the experimental section.
2) Weighted Reconstruction With Nearest Neighbors: The

second step is to fit each segment with its nearest neighbors.
Assume that an arbitrary segment x with K nearest neighbors
xi, and its reconstruction error e can be formulated as:

e = ‖x−

K∑

i=1

wi ∗ xi‖ (2)

where wi denotes the reconstruction weight from the com-
ponent xi. The optimization process is to minimize the
reconstruction error of all segments by setting the weight wi

values. There are two attributes of the problem to ensure it
well-imposed: 1) exclusiveness: the weight wi of x is zero if
xi is not in the nearest neighbor list of x; 2)normalization:
the sum of the weights of nearest neighbors should be 1.
Therefore, we can rewrite the problem in the following
format:

E =
N∑

j=1

‖xj −
N∑

i=i

wij ∗ xij‖ (3)

We can see that Eq.3 represents the reconstruction prob-
lem as a closed least square form, in which the weight wij

could be solved efficiently [9].
3) Low Dimensional Embedding Construction: The third

step is to construct the corresponding embedding in a low
dimensional space. Based on the calculation results from the
second step, the intrinsic geometrical structure of segments
is characterized by wij . There is an assumption that the
neighborhood relation in the high dimension space should
be preserved in the low dimensional embedding manifold,
and the nearest neighbor group should be with the same set,
and the corresponding reconstruction weights wij will not
get changed either. Based on this assumption, the embedding
construction is to search the low dimensional representation
y of x by minimizing the following error E′:

E′ =

N∑

j=1

‖yj −

N∑

i=i

wij ∗ yij‖ (4)

where the weights wij are the computation results from
Section III-B2, and the objects yj are the low dimensional
manifold. We can also notice that Eq. 4 is in a quadratic
form and the embedding optimization process is comparably
efficient to finish. Furthermore, all the manifold points yi
will be computed globally and simultaneously, and no local
optima will affect the construction result.
Eq. 3 indicates that low dimension construction is only

based on the locality of the high dimension data. This means
that the computed manifold yi can be translated with an
arbitrary displacement without affecting Eq.4. Moreover,
LLE states the computed manifold yi can be rotated by
an arbitrary angle without affecting Eq.4. This geometric
attribute can be represented and formulated in the following
two equations:

N∑

i=1

yi = 0 (5)

1

N

N∑

i=1

yi · yi = 1 (6)

Therefore, manifold construction problem becomes an
eigenvalue problem [9], in which we select the matrix rank
to have the desired manifold dimension.

C. Anomaly Detection and Recognition
With the computing results from Section III-B, ECG

segments have been mapped on a low dimensional manifold
with a significant boundary. Fig. 3 shows an example of
manifold construction results. The data here are from a
patient with arrhythmia. The blue dots denote the regular
ECG segments, and the red dots denote the abnormal ECG
parts. The figure illustrates the blue dots constitute a 1-D
manifold (the yellow trajectory), and red dots distribute in
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all the space without any close form. We can envision that
a trivial nearest neighbor (NN) search is possible to detect
anomaly if the annotated set is large enough. However, any
unknown point should be compared with every annotated
regular segment with some threshold value. It is obvious that
NN will become extremely low-efficient if the data scale is
too large. Furthermore, the accuracy is not guaranteed due to
the irregularity of manifold shape. In this phase, instead of
dealing with raw data, we presented the manifold trajectory
with dominated points (DP) to increase the efficiency of
NN search. The algorithm is presented in Algorithm 1.
Therefore, the searching space could be reduced. Note
that our proposed algorithm is universal for any kind of
manifolds, and the trajectory is not necessary to be a closed
form.

Figure 3. ECG Manifold with Regular Segments and Anomalies

IV. EVALUATION
In this section, we discuss the performance of our pro-

posed manifold approach to ECG anomaly detection. For in-
tegrity of the evaluation, we wish to perform the experiments
comprehensively. In terms of ECG anomaly, there are two
common resources to generate. The first is patient anomaly,
where the abnormal ECG segments are from patients with
unhealthy status, such as apnea, arrythmia. The second
is device anomaly, where the abnormal ECG signals are
from the improper use of ECG devices. For example, the
electrodes of ECG device might be poorly even incorrectly
attached on the body. Especially, the second cause is more
common in wearable medical applications. We will address
these two issues in the remaining part.

A. Evaluation on Patient Anomaly
To fairly evaluate the results of anomaly caused by heart

disease, we use the online public ECG arrythmia database
from PhysioBank Archive Index [11] as the benchmark. In
this dataset, ECG is sampled with three channels, and all
the segments in ECG have been annotated with normal or
anomaly as the ground truth. According to the availability
of the data, we use the benchmarks from eight patients with
arrythmia for the experiments.
For the sake of comprehensive evaluation, we try different

setups of group size K which is introduced in Section
III-B1, and investigate the impact of group size K on the
algorithm performance. Based on the fundamental of LLE,

Algorithm 1 Anomaly Detection
1: /* Step 1: Data Annotation and Setup */
2: Manifold regular segments Y = (y1, y2, · · · , yn) from
Section III-B;

3: Define a threshold value T for importance evaluation;
4: Define the data set Z to save generated DP;
5:
6: /* Step 2: DP Generation */
7: index = 1;
8: for i = 1 to n do
9: if yi > yi−1 and yi > yi+1 then
10: if yi/yindex > T then
11: make yindex ∈ Z;
12: increase index;
13: end if
14: end if
15: if yi < yi−1 and yi < yi+1 then
16: if yi/yindex > T then
17: make yindex ∈ ZDP ;
18: increase index;
19: end if
20: end if
21: end for
22:
23: /* Step 3: NN Comparison with DP */
24: Recognize unknown input χ an anomaly or not;
25: while i ≤ dim(Z) do
26: if dist(χ, zi) ≥ max(|zi − zi−1|, |zi − zi+1|) then
27: χ belongs to anomaly;
28: end if
29: end while

we understand that if K value is too small, the manifold
construction in Section III-B3 has insufficient searching
freedom; if K value is too large (more than the input
dimensionality), the locality of raw data described in Section
III-B2 will loose the unique definition [9]. Given the fact that
the input dimensionality is 72, we evaluate the algorithm
with K from 5 to 70, and the integer interval is 5. Fig. 4
shows the influence of K setup for the anomaly detection.
From the experimental result (see Fig. 4), we can observe
that the recognition rate will reach the maximal between 20
to 25, which is higher than 90% recognition rate.

B. Evaluation on Device Anomaly
To learn the device anomaly, we performed pilot study

in the lab with ECG device. The pilot study includes
three subjects to evaluate the algorithm performance on
anomaly caused by incorrect deployment of ECG electrodes.
We simulated the misuse condition, and the experimental
procedure is in this way: firstly, the subject wears the ECG
device in the correct way, and we record the measurements
as the ground truth. And then one of the electrodes will
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Figure 4. The Relation Curve with K Value and Recognition Rate

be poorly connected to the subject, and the corresponding
measurements are labeled as abnormal data. For each sec-
tion, the duration is about 3 minutes. And we iterated the
experiments with each subject for five times.
Fig. 5 shows the two ECGs. The first is from correct

measurements, and ECG is normally recorded. The second
is from incorrect measurement, and the shape of ECG looks
abnormal and random. When we performed the manifold
embedding, these data were reconstructed under 2-D co-
ordinates. From Fig. 5, we can see that the data from
green dots (correct measurements) are clustered together
with a trajectory and far away from red dots (incorrect
measurements). The experimental result shows that this
kind of outliers (red dots) can be well-distinguished by our
algorithm with 100% rate.

Figure 5. The Relation Curve with K Value and Recognition Rate

V. CONCLUSION AND FUTURE WORK

In this paper, we introduced a manifold based approach
to ECG anomaly detection. By taking the advantage of the
regularity of ECG, the proposed method could explore the
intrinsic signal structure and represent the ECG segments
on a low dimensional space. The normal ECG segments
will constitute a manifold, and the anomaly could be de-
tected automatically. The experimental result shows that
the proposed algorithm achieves high recognition rate for
anomaly detection from two different resources: abnormal
heart status (arrhythmia) and incorrect manipulation of ECG
device (such as weak contact). In the future work, we
plan to run clinical studies in the hospital to evaluate the
performance of the algorithm. Also, in the view of promising
experimental results, we could consider other applications

with this proposed technique, such as disordered motif
detection, patient identification.
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