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Abstract—Detecting human activity independent of intensity is 
essential in many applications, primarily in calculating metabolic 
equivalent rates (MET) and extracting human context awareness 
from on-body inertial sensors. Many classifiers that train on an 
activity at a subset of intensity levels fail to classify the same 
activity at other intensity levels. This demonstrates weakness 
in the underlying activity model. Training a classifier for an 
activity at every intensity level is also not practical. In this 
paper we tackle a novel intensity-independent activity recognition 
application where the class labels exhibit large variability, the 
data is of high dimensionality, and clustering algorithms are 
necessary. We propose a new robust Stochastic Approximation 
framework for enhanced classification of such data. Experiments 
are reported for each dataset using two clustering techniques, 
K-Means and Gaussian Mixture Models. The Stochastic Approx­
imation algorithm consistently outperforms other well-known 
classification schemes which validates the use of our proposed 
clustered data representation. 
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I. I N T R O D U C T I O N 

Wearable sensors, specifically inertial sensors, continue to 
be used in activity recognition systems and devices [1]. For 
example, volumes of literature have shown the value of using 
accelerometer-based activity monitors [2], [3]. However, most 
research either trains and tests activity at a single intensity 
level [4], or omits the intensity of the activity all together [5], 
[6]. Features collected on an activity categorized as running 
or walking will not only vary from one subject to the next, 
but will also vary with intensity. Yet when we physically see 
someone running or walking at any intensity level we can 
readily distinguish between the two, even though our eyes 
haven't seen running and walking at every possible intensity 
level. The challenge remains to train a classifier on a subset of 
activity intensity levels, and test on different intensity levels. 
Only when a classifier performs well in classifying an activity 
at new intensity levels can it be claimed to be robust, providing 
intensity-independent activity classification. 

Due to the large variance and overlap in the feature sets, 
it is quite challenging for a classification algorithm trained on 
one intensity level to distinguish walking and running at anoth­
er intensity level [7]. Due to large inter-subject variability, the 

nature of the data collected from an accelerometer at multiple 
intensities will be scattered with high variance, exhibiting over­
lapping categories across intensity levels. Figure 1 provides 
an illustration of the large variance in the features collected 
across subjects and intensity levels, where someone walking at 
2mph may present similar characteristics to someone walking 
at 4mph. 

Class models are typically generated using raw sample 
points within each class label (activity category), resulting in 
complex and computationally inefficient systems. Some use 
clustering to enhance computational efficiency. We attempt 
to generate an activity model that uses clustering combined 
with uncertainty within the clusters to learn a robust activity 
model that can classify the same activity at a range of intensity 
levels, resulting in a more efficient formulation. Our framework 
is compared against other well-known classification schemes 
such as SVM, kNN, and C4.5 Decision Trees. 

Walk 2mph * Walk 4mph 
Intensity (speed mph) 

Fig. 1. Overlap among features when walking at varying intensities 

In many health-related fields, interest in energy expenditure 
has sparked the need to analyze the intensity of human 
activity. Ainsworth et al. attempted to compile a compendium 
using regression models to map common physical activities to 
Metabolic Equivalent of Tasks (METs) [8]. However, Kozey et 
al. [9], show that linear regression models are inappropriate for 
accurately predicting METs from accelerometer data. Albinali 
et al. [4] argue that automatic detection of physical activity 
type prior to using activity regressions enhances the estimate 
of energy expenditure. Moreover, activity monitors that rely on 
such equations have no physically interpretable meaning of the 
activity being performed. In this paper we focus on identifying 
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a model for a physical activity type that is independent of 
intensity, which we believe will aid in understanding the 
underlying nature of a physical activity type. 

Vathsangam et al. [10] analyze walking at only two intensi­
ty levels, predicting energy expenditure from treadmill walking 
using hip-worn inertial sensors; applying regression techniques 
such as Least-Squares Regression (LSR), Bayesian Linear 
Regression (BLR) and Gaussian Process Regression (GPR), 
without classifying the activities. Ravi et al. [5] and Kwapisz et 
al. [11] reach subject-dependent classification accuracies above 
90%, however they did not focus on distinguishing the intensity 
of the activity. Tapia et al. [7] attempted to recognize physical 
activities and their intensity levels using a C4.5 Decision Tree 
classifier, yet achieved poor subject-independent accuracies of 
58.2%, and also did not train on a subset of activity intensity 
levels and test on another intensity. 

Miller et al. [12] has shown success using mixture models 
and EM-based algorithms for new class discovery with mixed 
labeled and unlabeled data sets. Sun et al. [13] attempt to 
classify EEG signals using Stochastic Approximation to update 
parameters of Bayesian classifiers on EEG signals. Compared 
to existing studies, our work differs accordingly: 

1) Intensity Independent classification: Our model-based 
approach attempts to represent activities holistically, 
and is capable of inferring other intensity levels from 
a subset of intensity levels. 

2) Stochastic Approximation framework: We utilize 
clustering algorithms and Stochastic Approximation 
to create a model for each activity, and then use a 
Stochastic Approximation nearest-neighbor heuristic 
for classification. 

This paper is organized as follows. In Section II we briefly 
review background on clustering algorithms and Stochastic 
Approximation. Then we describe our intensity-independent 
activity recognition framework in Section III. We present our 
experimental results and analysis in Section IV. Finally, we 
conclude and discuss future work in Section VI. 

II. PRELIMINARY 

A. Clustering and data representation 

Clustering has been widely used in pattern recognition 
applications [14] as a means of organizing data into groups or 
clusters based on a similarity metric. It is mainly applied to dis­
cover classes and structures of data in an unsupervised-based 
learning fashion. It is also an efficient method for representing 
data, allowing for fast retrieval, and dimensionality reduction. 
In this section we mainly cover two types of clustering 
algorithms that are further examined in the remainder of the 
paper: K-Means exclusive clustering, and a Gaussian Mixture 
Model (GMM) based probabilistic clustering algorithm. 

Let us assume we have n sample points labeled Xi £ Rm. 
Each Xi represents a vector of features collected on a sample. 
The K-Means clustering technique is one of the simplest 
and most popular unsupervised learning algorithms [15]. It 
attempts to find k clusters that partition the sample points. With 
initial random placement of k centroids pj £ Rrn, each point 
Xi is assigned to the closest centroid. Where x\ is now the data 

point that is assigned to cluster j . k centroids are iteratively 
recalculated and points reassigned such that the following sum 
of squared distances to the cluster centers is minimized: 

k n 

J(/ii,^2,---,/ifc) = J2J2^ ~ M 2 (!) 
J = l 1=1 

Training samples are tightly clustered around the centroids 
to serve as a compact representation for the training data. K-
Means is simple to implement, but does not necessarily find 
a global optimal solution based on the objective function. K-
Means is also known to be sensitive to the initial randomly 
selected cluster centers. 

The Gaussian Mixture Model (GMM) [16] is another wide­
ly used, model-based clustering technique. GMM's optimize 
the fit between data and a parametric distribution (like a 
Gaussian or Poisson distribution), where the entire data is 
modeled by a mixture of such distributions. Each category of 
activity Ai can be clustered into a set of learned Gaussian 
distributions where u)j is the prior probability of the j t h 

distribution, with mean [i.j, variance <r? and is represented by 
N(fij, trj). The probability p(xi) that a data point Xi belongs 
to a category Ai can be represented by a set of mixture models 
with varying distributions, and is defined by: 

k 

p(xi) = ^2^jN(xl\fj,J,cr^) (2) 
i= i 

Given a set of points X =< xi,X2,- ■ ■ ,xn >, drawn 
from an unknown distribution, we estimate the parameters of 
the GMM model 9 that fits the data (i.e. uv iV(^-,a?)). The 
solution is to maximize the likelihood p(X\9) of the data with 
regards to the model parameters: 

a,igma,xp(X\6) = a r g m a x L L ^ p ^ l ^ ) (3) 

The Expectation Maximization algorithm is used in prac­
tice to find the mixture of Gaussians that can model the data 
[16]. 

B. Stochastic Approximation 

Stochastic Approximation is a robust method used to solve 
objective functions while taking into account uncertainty or 
possible variation in the data [17]. It typically involves a non-
tractable convex optimization problem, where the objective or 
its derivatives are difficult to evaluate. 

We consider a matrix A £ Rmxn with the basic objective 
\\Ax — b\\, but also wish to take into account uncertainty. In 
many cases the number of unknowns is larger than the feature 
space, n > m, making it an underdetermined system. In our 
application, we use clustering algorithms to ensure that n < m, 
resulting in an overdetermined system. The mean of A is A, 
so it can be described as: 

A = A + U (4) 
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Fig. 2. Stochastic Approximation framework 

where U is a random matrix with zero mean. U describes the 
statistical variation of A and can be used to model uncertainty 
or large variation in the data matrix A, A natural objective is 
to minimize the expected value of Ax — b: 

min E\\Ax - b\\ (5) 

This is a general form of the stochastic robust approxima­
tion problem. Some variations of the statistical robust approxi­
mation problem are tractable, for example the statistical robust 
least squares problem, where we minimize the Euclidean norm 
of Ax - b: 

b\\l (6) min E\\Ax 
xeRn 

III. O U R F R A M E W O R K 

In this section we present our framework for intensity 
independent classification of activity. Figure 2 illustrates our 
framework comprising four important components: feature 
extraction, clustering based representation, Stochastic Activ­
ity Modeling (SAM), and Stochastic Approximation decision 
classification. The training phase begins by extracting features 
from the accelerometer time series data, which is then fed 
into a clustering based algorithm. The data is then grouped by 
activity into clusters, and the clusters' mean and variance are 
then combined to form a corresponding SAM. In the recogni­
tion phase, the sample test points are then compared against 
each activity category's SAM in a stochastic decision making 
component. We describe the details of these components in 
this section. 

This objective function has a closed form solution that can 
be expressed as follows: 

E\\Ax-b\\2
2 = E{A-b + Ux)T{Ax-b + Ux) 

= (Ax - b)T(Ax -b) + ExTUTUx (7) 
= \\Ax - b\\l + xTPx 

where P = E(UTU). This is exactly the form of a regularized 
least-squares problem [17]: 

min \\Ax-b\\l + \\P1x\\j 
xGR" 

And the solution is: 

= (ATA + p-lATb) 

(8) 

(9) 

A. Feature Extraction 

There are several studies that analyze varying features that 
are best utilized for human activity based on accelerometer 
data. Table I lists the main features that have been shown to 
be useful in classifying activity [5], [18], [19], [20]. Using each 
X, Y, Z acceleration axis generates a total of 45 features per 
segment, where a segment is a fixed time subdivision of the 
accelerometer data. Each segment results in a feature vector 
that belongs to one of N categories: A\, As,..., AN, where 
each activity category represents a specific activity type. 

TABLE I. FEATURE TABLE 

Mean 
Median 

Skewness 
Variance 

Standard Deviation 
Pairwise Correlation 

Mean Derivatives 
Interquartile Range 

Root Mean Square Zero Crossing Rate 
Mean Crossing Rate Kurtosis 



B. Applying Clustering Algorithms A. Data Collection 

In order to solve the least squares problem defined in 
Equation 8, we need to obtain the matrix Aj <G Rmxk for 
each activity. We collect all the samples from class A.t into k 
clusters X\, X2,, Xk using K-Means or the GMM clustering 
algorithm. We ensure that the generated number of clusters k 
is less than the number of features m in order to make sure 
we have an overdetermined system. Each cluster Xi can be 
represented by V{ + Ui, where Vj is the cluster center, and Ui 
is the random noise based on the distribution of cluster Xi. 

We tested both the K-Means and GMM clustering methods. 
From each generated cluster we extract the mean and variance, 
and combine them for each activity category Ai to form the 
Vi and Ui matrix, respectively. 

We collected data from twelve subjects, ranging in age 
from 20 to 28 years. Each subject wore the accelerometer 
embedded strap around their waist and performed several exer­
cises on a Merit Fitness 715T Plus treadmill: walking at three 
intensity levels, running at three intensity levels, and jumping 
jacks were performed to the side of the treadmill. Each activity 
was performed for five minutes, with five minutes of rest 
between each activity. When we were analyzing results from 
generic classifiers, we found the majority of misclassifications 
occurred between the running and walking activity types. For 
this reason our intensity independent model targets correct 
classification of walking and running. Table II provides the 
labels for each category. 

C. Stochastic Activity Modeling and Classification 

Once the data is clustered, we then combine all the clusters 
of each activity to form a SAM matrix Bi for each activity Ai. 
Each category contains k clusters which are generated from ni 
training samples, each having m features. 

B% = [VuV2)....,Vh...,Vk} + [U1,U2> 

Wll 
f 2 1 

Vm\ 

Wife 
Vlk 

V-m k, 

M i l 
U21 

« m l 

,uh...,uk] 
Wife 
U2k 

tlmk. 

(10) 

where Vij represents the center of the i feature of the j ■lh 

cluster, and Ui,j represents the variance of the i feature of the 
jthe c i U S ] ; e r Given segment 6, we want to make a decision as 
to which SAM Bi belongs. To do this we solve the following 
using Equation 8: 

min E\\BiX-b\\l 
= 1...N 

( I D 

Wl 
W2 
W3 

Walking 2.5mph 
Walking 3.5mph 
Walking 5mph 

Rl 
R2 
R3 

Running 4mph 
Running 5mph 
Running 6mph 

B. Classification Performance and Evaluation 

In order to discover the potential of our Stochastic Approx­
imation framework, we compared our classifier against other 
well-known classifiers. Each classifier was trained with eleven 
subjects and tested on one, using six class labels (or activity 
categories), performing Leave One Out Cross Validation by 
subject. Figure 3 shows the results for each classifier. Using 
the SVM, kNN and C4.5 Decision Tree (DT) classification 
algorithms we achieved F-measures (the harmonic mean of 
precision and recall) of 81.5%, 82.4% and 75.0% respectively. 
Our Stochastic Approximation framework with the GMM 
clustering algorithm yielded a 94% precision, 90% recall, and a 
92% F-measure. Under the K-Means clustering algorithm, the 
Stochastic Approximation classifier resulted in an F-measure 
of 85%, which remains superior to the other classification 
techniques. Based on these results we conclude that the S-
tochastic Approximation classification framework is better able 
to handle the large variation across activity types. 

In other words we iterate through each of the N SAMs and 
determine to which activity category b belongs by choosing 
the one with the minimum reconstruction error, which is 
similar to searching for the nearest-neighbor SAM. We validate 
the classification performance on collected data in an in-lab 
setting. 

IV. E X P E R I M E N T S A N D EVALUATION 

Our experiment involved participants performing a prede­
fined set of activities. Prior to performing any activity, the 
subject would wear a belt-like strap around the waist. A 
Gulf Coast Data Concepts X6-2 mini tri-axis accelerometer 
is embedded inside the belt, positioned on the right-side of 
the participants waist. It is capable of measuring acceleration 
with 12-bit resolution, setting the detection range at +/- 2g. 
The accelerometer was set to record readings at a frequency of 
80Hz. Features in Table I were extracted from the accelerom­
eter. In order to clearly identify the intensity level of walking 
and running, the experiments involved performing activity on 
a treadmill. 

100 

SVM KNN DT 
Classifier Type 

Stochastic* 

Fig. 3. The precision, recall and F-measure across multiple classifiers 
applied to walking and running at multiple intensity levels. The Stochastic 
Approximation Classifier with GMM clustering outperforms SVM, kNN, and 
C4.5 Decision Tree (DT). 

We also evaluate the stability of our classification algorithm 
by analyzing the variation during cross validation. Stability 



is another important measure that describes how closely a 
classifier evaluates results if given different data. Figure 4 
shows the classification variation for each of the classifiers. We 
can conclude that the Stochastic Approximation framework not 
only outperforms other classifiers in precision, recall and F-
measure results, but also produces stable results across multiple 
runs, resulting in low variance compared to other classifiers. 

^ ■ S V M 
4 BKNN 

^ D e c i s i o n Tree 
0 Stochastic _ , 

*• 3 I 2.7% 
g 2.5% ■ 2.5% 

Walk Run 
Activity Type 

Fig. 4. The variance across classifiers during cross validation shows that the 
Stochastic Approximation Classifier is a robust classifier with low variance. 

C. Stochastic nature of human activity 
When we separated each intensity level and activity type 

into its own category, training the classifier on six categories, 
the classifiers were trained on each intensity level, performing 
well on the test data. Table III shows high average precision 
and recall. While the classifier performs sufficiently well 
when trained on six categories, our primary goal has been 
to demonstrate the classifiers generalizability when trained on 
a subset of intensity levels. Table IV shows the results of 
nine classifiers, each trained on a different subset of intensity 
levels. We show the average category F-measure, which is the 
average F-measure across intensity levels (WalkA column is 
an average of Wl, W2, and W3, and the RUTIA column is 
an average of Rl, R2, and R3). Table IV also shows the F-
measure for the specific intensity independent activity excluded 
from the training set, e.g. the first row trained on Wl, W2 and 
Rl, R2 and tested on W3 and R3, as shown in the Walkx 
and RUTIT columns in Table IV. 

It is interesting to note that of the nine classifiers the one 
that performs the best is the one that trains on the extremes of 
each category, Wl, W3 and Rl, R3. This result is illustrated in 
the fifth row of Table IV, where the Stochastic Approximation 
Classifier is capable of extrapolating information of W2 from 
Wl and W3, and R2 from Rl and R3. Typically when a subject 
runs at 2mph, they are not really running at 2mph, but fluctuate 
in speeds slightly above and below 2mph, and this noise is 
represented in the SAM of the activity, since it takes into 
account the variance in the clusters. The SAM is capable of 
extrapolating information about adjacent intensity levels from 
the variance of the clustered data. This supports the belief that 
in order to train a classifier for a given physical activity, we 
may only need to train the Stochastic Approximation Classifier 
on a subset of intensity levels. 

The classifier with the worst performance was the one 
trained on Wl, W2 and Rl, R3, shown in row 2 of Table IV. 
This is due to the fact that there is much overlap between W3 
and R2, since they represent walking and running at 5mph, 

respectively. Testing on the run category R2 yields a slightly 
higher F-measure, 80.5% compared to 79.4% for W3. This 
shows the classifier is able to perform a little better on R2 
given it was trained on Rl and R3, however the higher intensity 
activity, W3, is more challenging to classify given the training 
of lesser intensity activities Wl and W2. 

We wanted to investigate the choice of clustering algorithm 
on the performance of our Stochastic Approximation frame­
work. We compared the outcomes of two clustering techniques, 
K-Means and GMM. It is interesting to note that in our ap­
plication using GMM outperforms K-Means on average. This 
happens because K-Means essentially represents each category 
by a cluster of centroids, while GMM represents each category 
by a cluster of distributions, each with a mean, variance and 
probability. Therefore, GMMs can better represent the model 
when the data is sparse with high variability. Table V provides 
the details of this comparison. 

TABLE V. COMPARING K-MEANS AND GMM CLUSTERING 
ALGORITHMS 

K-Means 
Precision 

89.2% 
Recall 
86.3% 

GMM 
Precision 

94.4% 
Recall 
93.7% 

V. CONCLUSION 

Tri-axis accelerometers are increasingly prevalent in wear­
able sensors to derive behavioral patterns and context from 
human motion. Subject independent activity classification us­
ing such accelerometers is critical in developing systems that 
are robust and scalable, and perform well in a real-world 
setting. However, for activities with varying intensity levels, 
one needs to also analyze the ability of a system to detect 
activity independent of intensity. We show promise in our S-
tochastic Approximation framework in its ability to extrapolate 
unknown intensity levels from a few known intensity levels. 
Our framework is capable of outperforming other well-known 
algorithms, and also performs better using a GMM clustering 
algorithm as opposed to a K-Means clustering algorithm. Our 
system will be useful in many healthcare applications including 
calculating energy expenditure and context awareness, as well 
as accurate classification in an activity-based environment. 

In the future, we can attempt to test our system on other 
intensity varying activities, such as bicycling and across more 
subjects. We would also like to test our classifier with other 
clustering algorithms: HMM and Fuzzy C-means along with 
hierarchical clustering. We also hope to test our framework on 
individuals running and walking at a greater range of intensity 
levels. 
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