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Abstract—Hearing impairment is an increasing global public
health concern, yet traditional diagnostic methods are often
inaccessible due to their high cost and complexity. This paper
introduces a low-cost digital tool for objectively screening hearing
disorders, utilizing a novel approach that leverages involuntary
pupil dilation in response to sound as a comprehensive measure
of auditory processing. The tool is designed for maximum user
accessibility, featuring an intuitive interface, a detailed user man-
ual, and cost-effective, high-precision sensors. A prototype has
been successfully tested in a laboratory setting, demonstrating not
only the system’s potential for early detection and management
of hearing impairments, particularly hyperacusis, but also its
reliability and accuracy in capturing subtle auditory responses.

Index Terms—auditory-pupillary response; hearing screening;
cost-effectiveness; objective biomarkers.

I. INTRODUCTION

Hearing loss is a significant global challenge, affecting
approximately 1.57 billion individuals (20.3% of the global
population) in 2019, with 430.4 million suffering from moder-
ate to complete hearing loss. By 2050, this number is expected
to rise by 56.1%, reaching 2.45 billion [1], [2]. This highlights
the need for innovative diagnostic approaches.

Traditional hearing disorder diagnosis methods, like pure-
tone audiometry, present barriers in cost, complexity, and
accessibility, requiring specialized clinics and expensive equip-
ment. Additionally, the lengthy nature of these tests deters busy
individuals and burdens the elderly, highlighting the need for
more accessible and user-friendly solutions [3]-[5].

Digital health technologies, such as mobile health applica-
tions and tele-audiology, offer promising solutions by leverag-
ing smartphone capabilities and video conferencing for hearing
assessments. Although their accuracy can be variable, these
technologies improve accessibility and patient-friendliness,
addressing barriers in traditional methods [6]—[9].

Our research hypothesizes that auditory function, partic-
ularly tinnitus and hyperacusis, can be effectively assessed
through the pupillary dilation response (PDR) to auditory
stimuli. The PDR, indicated by pupil size changes in response
to sounds, may serve as a biomarker for these conditions
[10], [11], offering insights into auditory system sensitivity,
especially for hyperacusis. This approach aims to enhance
auditory health assessment beyond traditional methods.

Central to our research is developing an innovative auditory
evaluation system utilizing PDR for detailed analysis of tinni-
tus and hyperacusis. A machine learning model aims to extract
precise biomarkers from PDR data, enhancing diagnostic ac-
curacy. Leveraging cost-effective technologies and advanced
machine learning, this approach seeks to transform the diag-
nosis and understanding of these conditions, particularly in
resource-limited settings. Validating our PDR-focused system
across diverse diagnostic scenarios remains a key challenge.

In summary, our research introduces a novel, low-cost
digital tool for hearing disorder screening, leveraging the
pupillary dilation response (PDR) as an objective biomarker.
We demonstrate the tool’s effectiveness in a controlled lab
environment, showcasing its potential for accessible and early
detection of auditory impairments.

II. DESIGN CONSIDERATION

Nonvolitional Response in Auditory Assessment: Audi-
tory Pupillary Response (APR) is a reliable, nonvolitional
indicator of sound detection and discrimination. Studies [10],
[11] suggest that APR has the potential to reflect auditory
sensitivity in complex scenarios, making it a promising tool
for those who struggle with traditional assessments, such as
the elderly or individuals with cognitive or motor impairments.

Target Users and Application Scenarios: The system
uses involuntary pupil response as a measurement indicator.
This makes the test accessible to the elderly, children, and
those with motor response impairments [10], [11]. In terms of
application scenarios, the system plans to provide reference
data for high-precision medical auditory testing and offers
individuals concise and rapid hearing assessment reports.

Convenience and User-Friendliness: The system interface
is user-friendly, with an intuitive layout and clear, easily
readable labels. The user manual includes clear instructions
and precautions for operation. This aims to make the system
accessible to a wide range of users.

Cost-Effectiveness and Accuracy: The system uses cost-
effective high-performance sensors, ensuring affordability
without compromising on quality. The headphones and audi-
tory stimuli used are professionally calibrated with specialized
equipment, guaranteeing the accuracy of the auditory tests.
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III. SYSTEM DESIGN

A. System Overview

Figure 1 shows the modular design of our auditory screening
system. The software coordinates stimuli delivery and captures
pupil response data simultaneously. After data acquisition,
analysis ensures robust interpretation. The process starts with
the subject receiving auditory or visual stimuli via headphones
or display. Sensors capture involuntary responses, like pupil
size changes detected by an IR camera, which are key in our
assessment. The Control Panel synchronizes stimuli and data
flow. During analysis, algorithms process the data to build a
comprehensive profile of the subject’s auditory health.
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Fig. 2: Hardware graph

B. Hardware Design

Figure 2 details the primary hardware components of our
system. These include a Raspberry Pi board [12], linked to
an infrared camera with two infrared LED lights, and a USB
sound card. The setup also features a 24-inch computer screen
and an earphone. The Raspberry Pi serves as the central
processing unit, recording raw data during tests. Its wireless
connectivity simplifies setup, and storing and playing audio
files directly on the Raspberry Pi ensures consistent auditory
stimuli across different computers without recalibration.

An infrared camera and two infrared LED lights capture
clear pupil images, particularly when pupil and iris colors
are similar, allowing for precise measurements. A USB sound
card is used to avoid background noise from direct headphone
connections to the Raspberry Pi. A screen displays participant
instructions, while earphones give auditory stimuli. The Chin

Rest stabilizes the participant’s head, ensuring accurate pupil
data. The system is managed by a computer running data
collection and analysis software.

Our hardware design introduces a cost-effective alternative
to conventional eye-tracking systems, which, while offering
high precision and extensive after-sales service with a high
degree of customization, comes with a substantial price tag,
typically over $10,000 [13]. In contrast, our system is de-
signed to be economically viable, with a total cost of around
$900, offers an intuitive user experience and includes analysis
and processing components. Furthermore, its high component
reusability makes it accessible to a wider research community
and promotes sustainability.

‘The auditory function of the paticnt appears to be normal. No further
action ired at this time.

part of rouine health check-ups.

Fig. 3: UI (a) Real-time Pupil Tracking Image; (b) Parameter
List; (c) Real-time Data Graph (d) Test Settings and Controls;
(e) Feature Graphs for a Single Trial; (f) Radar Chart; (g)
Feature Table; (h) Text Report.

C. Software Design

1) Interface Design

The software interface is designed to optimize the testing
and analysis of the Auditory Pupillary Response (APR). The
system’s primary functions are categorized into three main
areas: APR real-time display, APR testing setup, and APR
analysis.

APR Real-time display: It displays real-time pupil screen-
ing (Fig. 3a). It also provides real-time tracking parameters,
such as camera fps, pupil diameter, pupil center etc. (Fig. 3b)
Additionally, users can click to view real-time plots of these
parameters (Fig. 3c).

APR Testing Setup: Users can enter patient information,
select sound files, and configure baseline time and the number
of repetitions (Fig. 3d). Once the settings are confirmed,
recording can begin.

APR Testing Result: It includes a feature graph showing
detailed pupil responses for single trials, which helps analyze
response patterns (Fig. 3e). Additionally, a radar chart visual-
izes key features such as peak time, valley time, etc., enabling
quick comparison of different features (Fig. 3f). The feature
table offers precise numerical values of various pupil response
features for quantitative analysis (Fig. 3g). The text report will
give an auditory evaluation summarization. (Fig. 3h).

2) Scoring Features The raw data from our hearing
screening protocol is systematically captured in a structured
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Fig. 4: (a) Illustration of excitation and recovery phase. (b)
Response lag. (c) Peak magnitudes. (d) Valley magnitudes. (e)
AUC (Area under the curve). (f) Recovery time. (g) Baseline.

tabular dataset, which serves as the foundation for our scoring
algorithms. This data enables the extraction of key features
that form the basis of our objective scoring system.

The pupil response testing system employs a sophisticated,
multi-stage data analysis process, designed to accurately cap-
ture the dynamics of pupil response. Initially, the system uses
the ’Pupil Detectors’ library [14] to extract the pupil area
from eye images. Median-based filtering establishes a dynamic
threshold for enhancing data consistency, followed by the
removal of invalid data points caused by blinks. Users can
then manually refine the data through an interactive interface.
The final dataset is averaged to provide an accurate profile of
the pupil’s behavior.

The system also incorporates randomized intervals between
individual tests, varying from 2 to 4 seconds, to mitigate
the anticipatory behavior of the subjects, ensuring that the
responses are as natural and unbiased as possible. This precise
data processing, combined with randomized testing intervals,
guarantees a high level of accuracy and reliability in capturing
pupil response dynamics under varying conditions.

Our data processing effectively filters out anomalies such as
blinks and misclassifications, ensuring that only reliable and
representative measurements are retained. This phase distills
essential metrics from the smoothed and averaged dataset,
embodying pivotal facets of the pupillary reflex narrative.

Figure 4 illustrates these key metrics, highlighting the nuanced
dynamics of the pupillary response.

IV. EVALUATION

A. Design and recruitment of subjects

We conducted a cross-sectional, analytical proof-of-concept
study with two groups. The first group consisted of nine
patients (n=9, 7M/2F, mean age 37.9 years), diagnosed with
moderate to severe hyperacusis, who were evaluated at the
Audiology and Speech-Language Pathology Clinic, University
at Buffalo. The second group included six healthy partici-
pants (n=6, 3M/3F, mean age 32.6 years), recruited through
university bulletin board flyers. During the experiment, each
participant’s left eye was monitored using a 60 frames per
second (fps) camera, while two auditory stimuli (“chewing”
and “engine” sounds) were presented 10 times each. The
experiment was conducted in a soundproof room to ensure
precise data collection.

B. Statistical analysis

Due to the limited number of Hyperacusis patients we
could recruit, the results of the continuous variables were
expressed as the mean with a 95% confidence interval, while
qualitative variables were reported as absolute frequency and
percentage. A total of 310 trials were selected from an initial
450 trials by removing those with unexpected movements from
participants. The comparison of continuous variables between
the Hyperacusis Participant and Healthy Participant groups
was conducted using the independent t-test. All analyses
were performed with a significance level set at p < 0.05.
Continuous variables were normalized using Min-Max scaling
before analysis, and summary statistics, along with p-values.

C. Experimental results

PR Measurement Hyperacusis (n=9) Healthy (n=6) p-value
Response Lag (s) 0.078 (0.059-0.097) 0.096 (0.069-0.123) 0.275
Peak Time (s) 0.219 (0.193-0.245) 0.263 (0.225-0.301) 0.051
Peak Value 0.331 (0.319-0.342) 0.321 (0.306-0.336) 0.331
Valley Time (s) 0.223 (0.198-0.248) 0.334 (0.291-0.377)  0.000
Valley Value 0.403 (0.393-0.413) 0.376 (0.356-0.395) 0.019
AUC 0.333 (0.323-0.344) 0.309 (0.291-0.327) 0.018
Recovery Time (s) 0.969 (0.955-0.984) 0.993 (0.989-0.996) 0.010

TABLE I: Comparison of Pupil Response Measurements Be-
tween Hyperacusis and Healthy Participants

Table I shows the comparison of measurements between
hyperacusis and healthy participants for various auditory stim-
uli. Statistical analysis revealed significant differences in pupil
response metrics between the two groups. Hyperacusis patients
exhibited shorter response lags and prolonged recovery times,
indicating heightened sensitivity to auditory stimuli. Their
peak times were consistently faster compared to the control
group, suggesting that hyperacusis patients react more quickly
to auditory stimuli. Additionally, the higher peak percentages
reflect greater pupil dilation, which signifies a stronger physi-
ological response and heightened sensitivity. The valley times,
which represent the duration until the pupil returns to baseline
size, were longer for patients, indicating prolonged reactivity
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to the stimulus. Furthermore, the area under the curve (AUC)
was significantly higher in patients, suggesting a larger and
more sustained overall response.

These findings underscore the tool’s potential for distin-
guishing between normal and impaired auditory function,
particularly in identifying heightened and prolonged sensitivity
in hyperacusis patients. Given the small sample size and
individual differences among hyperacusis patients and normal
test subjects, the current data is not entirely ideal.

To illustrate the potential differences more clearly, we
selected a typical patient and a normal test subject for de-
tailed comparison, as shown in Figure 5. The selected patient
exhibited a much shorter response lag and faster peak time,
indicating a more immediate and intense reaction. The higher
peak and valley percentages, along with a larger AUC, suggest
a more pronounced and sustained physiological response in
the patient compared to the normal subject. These individual
comparisons further highlight the distinct sensitivity patterns
in hyperacusis patients.

Chewing Stimulus
125.0%

—— Hyperacusis

120.0% Healthy

115.0%
110.0%

105.0%

'8 100.0% /\\/

Pupil Area Change (%)

95.0%

90.0%

0 2 4 6 8 10
Time (seconds)
(a) Pupil Response to Chewing Stimuli in Hyperacusis vs. Healthy.

Engine Stimulus
125.0%

—— Hyperacusis

120.0% Healthy

115.0%
110.0%
105.0%

100.0%

Pupil Area Change (%)

95.0%

90.0%

o 2 4 6 8 10
Time (seconds)

(b) Pupil Response to Enging Stimuli in Hyperacusis vs. Healthy.

Fig. 5: Pupil Response according to Hyperacusis vs Healthy
group and sound type. Mean (central solid line) and IQR
(Middle 50% range) are shown for each group.

V. CONCLUSION

Our study introduces a pioneering approach to auditory
assessment by utilizing a cost-effective digital tool that an-
alyzes auditory-pupillary responses. The effectiveness of this
tool is supported by our experimental findings, which reveal a
significant correlation between auditory stimuli and physiolog-
ical responses. Specifically, hyperacusis patients demonstrate

heightened and prolonged sensitivity to various auditory stim-
uli compared to individuals with normal hearing. However, the
current study’s sample size is relatively small, and individual
differences exist between hyperacusis patients and normal-
hearing individuals. These variations highlight the need for
further research with larger sample sizes to validate the tool’s
effectiveness comprehensively.

Future iterations of the system will enhance feature extrac-
tion and Pupil extraction precision. By optimizing algorithms
and standardizing procedures, we anticipate significant im-
provements in pupil detection accuracy, thereby reducing the
need for manual intervention and facilitating more accurate
feature analysis. This groundwork lays the foundation for
rapid, reliable, and accessible auditory assessments, particu-
larly benefiting individuals with limited access to healthcare.
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