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ABSTRACT
In autonomous driving, millimeter wave (mmWave) radar has been
widely adopted for object detection because of its robustness and re-
liability under variousweather and lighting conditions. For radar ob-
ject detection, deep neural networks (DNNs) are becoming increas-
ingly important because they are more robust and accurate, and
can provide rich semantic information about the detected objects,
which is critical for autonomous vehicles (AVs) to make decisions.
However, recent studies have shown that DNNs are vulnerable to
adversarial attacks. Despite the rapid development of DNN-based
radar object detection models, there have been no studies on their
vulnerability to adversarial attacks. Although some spoofing attack
methods are proposed to attack the radar sensor by actively trans-
mitting specific signals using some special devices, these attacks
require sub-nanosecond-level synchronization between the devices
and the radar and are very costly, which limits their practicability
in real world. In addition, these attack methods can not effectively
attack DNN-based radar object detection. To address the above
problems, in this paper, we investigate the possibility of using a
few adversarial objects to attack the DNN-based radar object de-
tection models through passive reflection. These objects can be
easily fabricated using 3D printing and metal foils at low cost. By
placing these adversarial objects at some specific locations on a
target vehicle, we can easily fool the victim AV’s radar object detec-
tion model. The experimental results demonstrate that the attacker
can achieve the attack goal by using only two adversarial objects
and conceal them as car signs, which have good stealthiness and
flexibility. To the best of our knowledge, this is the first study on
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the passive-reflection-based attacks against the DNN-based radar
object detection models using low-cost, readily-available and easily
concealable geometric shaped objects.
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1 INTRODUCTION
Autonomous driving has been advocated as a future trend and
many autonomous vehicles (AVs) have been deployed on public
roads. The perception system, especially the object detection system,
plays a critical role in helping the AVs make driving decisions
and ensure road safety. As one of the most important sensors in
AV’s perception system, radar can work in harsh conditions such
as severe weather and lighting conditions, which makes it more
robust and reliable than camera and LiDAR. Autonomous vehicles
typically use frequency modulated continuous wave (FMCW) radar
that transmits millimeter-wave (mmWave) signals and receives the
echo signals to detect objects on the roads.

To deal with the received mmWave signals, many signal pro-
cessing operations such as Fast Fourier Transform (FFT) have been
developed [59]. Although the outputs of these FFT operations can
provide some raw measurements on the information (e.g., distances
and angles) of potential objects, these raw radar measurements can
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be too noisy to be directly used for object detection in autonomous
driving [9, 26, 41]. To deal with these problems and provide more
robust and accurate detection results, deep neural networks have
been used after the FFT pre-processing step to extract useful fea-
tures for object detection. These DNN-based radar object detection
models have been widely used in autonomous driving applications,
and can make the detection results more accurate and more robust
to noisy signals [6, 31, 68, 74, 75]. In addition, they can provide
rich semantic information, such as the objects class labels (e.g.,
car, pedestrian or motorcycle), which is critical for AVs’ decision
making [12, 27, 75]. However, recent studies have demonstrated
that DNNs can be fooled by adversarial attacks [30, 54], where an
attacker can significantly change the outputs by slightly perturbing
the model’s input. Despite the rapid development of the DNN-based
radar object detection models and their critical role in guaranteeing
the safety of autonomous vehicles, there have been no studies so
far on their vulnerability to adversarial attacks.

Although there have been a few studies showing that the
mmWave radar sensors can be spoofed by attackers to manipu-
late the outputs of raw radar measurements [20, 39, 49, 69], these
attacks rely on some special devices to actively transmit specific sig-
nals to the victim AV’s radar. It is usually difficult to perform such
attacks in practice because they either require some special devices
to be placed at a specific distance to the victim radar, or require
sub-nanosecond-level synchronization between the devices and the
victim radar. Besides, the specially designed spoofing devices make
the attacks very costly. In addition, our investigation shows that
although these spoofing attack methods can change the outputs of
raw radar measurements after FFT, they can not effectively fool the
succeeding DNN models to eventually change the outputs of radar
object detection models.

To address the above problems, in this paper, we investigate the
possibility of using some adversarial objects to attack the DNN-
based radar detection models through passive reflection. Our in-
vestigation shows that the amplitudes of the radar echo signals
generated by different spots on a target vehicle are important for
DNN-based radar detection models to learn the features of the
target. If we can manipulate the amplitudes of the echo signals
generated by different spots on the target, we can fool the radar
detection model and change its detection result on the target. To-
wards this end, we leverage the characteristics of mmWave signal
reflection on a metal surface and design a novel structure of ad-
versarial objects, named as TileMask, which can be customized
into specific geometric shape to generate desired signals in specific
amplitudes through passive reflection. Figure 1 shows an example
for the proposed adversarial objects. Each adversarial object is com-
posed of a base and multiple reflective surfaces, called reflective
tiles. These tiles are made of reflective materials such as metal foils,
and different tiles are in different orientations (different angles of
inclination \𝑠 ). The intuition behind this design is that, the ampli-
tude of the echo signal generated by each metal tile is determined
by the inclination angle \𝑠 of the tile. By sticking some adversarial
objects at some specific locations on a target vehicle and designing
the value of \𝑠 (or 𝑑) for each tile, we can change the amplitudes
of echo signals generated by the covered areas on the target and
manipulate the superimposed signal received by the radar. This

can further affect the features learned by the radar object detection
models to make it failed to detect the target.

Figure 1: An example of adversarial objects.

Figure 2 shows an example that can be used to illustrate the pro-
posed attack. The victim AV drives on a road and there is a target
vehicle in front of it. The target vehicle could be parked on the
road by the attacker intentionally. The attacker first generates the
adversarial objects, and then sticks them at the derived locations
on the target vehicle before the attack. As the victim AV drives
towards the target vehicle, its radar perception system is fooled
and fails to detect the target vehicle, which may lead to a rear-end
collision. The proposed adversarial object can be easily fabricated at
low cost. The base of the object can be fabricated using 3D printing
techniques and the metal foils can be made as metal tiles, which
do not require any other special materials. The average cost of
fabricating the adversarial object is only $10. This example shows
the proposed attack can be easily performed in practice. In addition,
since mmWave signals can penetrate some thin papers or fabrics,
the attacker can cover the adversarial objects with some advertise-
ment posters to conceal them as car signs, as shown in Figure 2.
In this way, the adversarial objects are hard to be recognized as
malicious objects, making the attack more stealthy.

Figure 2: An example of the attack.

In the proposed attack, a challenging problem is how to generate
the adversarial objects that are not only effective at achieving the
attack goal but also in small sizes to make the attack stealthy and
cost-efficient. To address this problem, we first characterize the
adversarial objects with some parameters including the number
of the adversarial objects, the locations and sizes of these objects,
and the orientations of the tiles that compose these objects. Then
we formulate an optimization problem to generate the desired ad-
versarial objects. Since the number of the adversarial objects is a
discrete value, it is hard to directly solve this optimization problem.
To handle this challenge, we propose a two-step framework that
can iteratively update the orientations of the tiles and the adversar-
ial objects’ number, locations, and sizes. In addition, our proposed
attack framework can achieve environment independent attack
where the generated adversarial objects can achieve the attack goal
in various background environments.
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Experiments are conducted in both the physical world and dig-
ital world. In the physical world experiments, we show that the
attacker can use two adversarial objects concealed as car signs to
continuously hide the target vehicle as the victim AV is approaching
the target. The generated adversarial objects can achieve 93% attack
success rate. And the experimental results demonstrate that the de-
rived adversarial objects are environment independent. To the best
of our knowledge, this is the first study on the passive-reflection-
based attacks against the DNN-based radar object detection models
using low-cost, readily-available and easily-concealable geometric
shaped objects.

2 PRELIMINARY
2.1 DNN-based Radar Object Detection
DNN-based radar object detectionmodels have beenwidely used for
the perception systems in autonomous driving, and have achieved
state-of-the-art performance. These models aim to understand the
driving environments by transmitting mmWave FMCW signals and
extracting features from the received signals. For state-of-the-art
radar detection models, the common pipeline is summarized in
Figure 3.

Figure 3: Radar object detection pipeline.

The radar first transmits the FMCW signal, which is a kind of con-
tinuous wave whose frequency increases uniformly with time. Then
the echo signals are received and processed into Intermediate Fre-
quency (IF) signals at the receiver, bymeasuring the difference of the
instantaneous frequency of the received signal and transmitted sig-
nal, as shown in Figure 3. Suppose there is only one small object at
a distance of 𝑑∗ and angle-of-arrival (AOA) 𝑎∗ from the radar trans-
mitter, the IF signal at the𝑘-th antenna of the receiver can be approx-
imated as [52]: 𝑠 (𝑡, 𝑘) ≈ 𝑃𝑟 exp(− 𝑗2𝜋 (𝛾 (2𝑑∗/𝑐)𝑡 + 𝑘𝛿𝑎 cos𝑎∗/_)),
where 𝑃𝑟 is the amplitude of the IF signal, 𝛾 is the slope of the
chirp signal, and 𝛿𝑎 is the spacing between adjacent antennas of the
receiver. 2𝑑∗/𝑐 represents the propagation delay between the object
and the radar, and 𝑘𝛿𝑎 cos𝑎∗/_ represents the relative propagation
delay between the receiver’s antennas. The detection model prepro-
cesses the obtained IF signals to generate the range-azimuth map 𝑋
through two successive steps: range-FFT and angle-FFT. Range-FFT
is applied on the IF signal at each antenna of the receiver along the
time domain to estimate the range of the object, and angle-FFT is ap-
plied on the output of range-FFT along the receiver’s 𝑘-th antenna
to estimate the angle-of-arrival of the object. After the above two
steps, the IF signals at multiple antennas of the receiver can be trans-
formed to a range-azimuth map: 𝑋 (𝑑, 𝑎) ≈ 𝑃𝑟𝛿 (𝑑 − 𝑑∗)𝛿 (𝑎 − 𝑎∗),
where 𝛿 () is the Dirac delta function.

The above formulas describe an ideal case where a small enough
object can be treated as a single reflective spot (surface). In the
physical world, a target object can be divided into a large number

of small reflective surfaces and they all contribute to the final IF
signal. The final IF signal 𝑆 at the 𝑘-th antenna of the receiver can
be formed as the summation of the IF signals from every small
surface 𝑖:

𝑆 (𝑡, 𝑘 ) ≈
∑︁
𝑖

𝑃𝑟𝑖 exp(− 𝑗2𝜋 (𝛾 (2𝑑∗
𝑖 /𝑐 )𝑡 + 𝑘𝛿𝑎 cos𝑎∗𝑖 /_) ), (1)

where 𝑑∗
𝑖
and 𝑎∗

𝑖
are the range and AOA of each surface 𝑖 . 𝑃𝑟𝑖 is the

amplitude of the IF signal generated by each surface 𝑖 . The final
range-azimuth map 𝑋 is derived by applying the two successive
FFT on the final IF signal 𝑆 . According to Eq. (1), the amplitude 𝑃𝑟𝑖
of the IF signal from each surface determines the final IF signal and
affects the range-azimuth map.

The range-azimuthmap provides rich information about the driv-
ing environments and can be processed by convolutional neural
networks (CNNs). It is widely adopted as the input of DNN-based
radar object detection models. The detection model normally takes
multiple range-azimuthmaps𝑋 at consecutive timestamps as the in-
put to encode the velocity information. The detection model learns
the features from the input range-azimuth maps and outputs a set
of detection result candidates. Each candidate contains the confi-
dence score of each class and its location (distance and angle). The
candidates whose confidence scores are smaller than a threshold
are removed and the remaining candidates are merged to get the
final detection results. The class of each detected object is the class
that has the maximum confidence score.

2.2 Vulnerability of DNNs
DNNs have been demonstrated to be vulnerable to adversarial
attacks where an attacker can fool the DNNs to generate wrong
outputs by making small perturbations to their inputs [19, 30, 53].
Suppose 𝑀 denotes a deep learning model. In adversarial attacks,
an attacker aims to slightly modify the original input 𝑋 to 𝑋 ′ so
that the model’s output is significantly different from the ground
truth 𝑦∗, i.e., 𝑀 (𝑋 ′) ≠ 𝑦∗. The modification to the original input
can be achieved either in digital world by perturbing the input data
directly [48, 51, 55, 56, 79] or in physical world by modifying the
physical environment [13, 16, 44, 61, 73, 81]. The attacker usually
derives the modification by solving an optimization problem.

3 MOTIVATIONS OF TILEMASK
According to Eq. (1), the input of the DNN-based radar detection
model is equivalent to the summation of IF signals generated by
every spot (small reflective surface 𝑖) on the target vehicle. Our
investigation shows that the amplitudes of the IF signal (i.e., 𝑃𝑟𝑖 )
generated by each surface 𝑖 on the target are important for the DNN-
based radar detection to learning the features. And the 𝑃𝑟𝑖 values
of some specific surfaces on the target are especially important,
which we will demonstrate in Section 7. 𝑃𝑟𝑖 is determined by the
amplitude of the echo signal reflected from the surface 𝑖 to the
radar receiver. Thus, we can manipulate the amplitudes of echo
signals generated by these specific surfaces to change the features
learned by the radar detection model, making it can not detect the
target. To manipulate the amplitude of the echo signals, an intuitive
approach is to use some special materials [38] as the skin of the
target vehicle, similar to the ideas in some military applications [8].
However, this approach is limited in its cost and practicability.
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(a) Weak reflection to receiver (b) Strong reflection to receiver
Figure 4: Different \𝑠 values result in different mmWave
reflection on the metal tile.
These materials can be expensive and hard to obtain, which makes
the attack very costly. In addition, the reflection ratio (albedo) of a
specific material is always the same. To achieve the attack goal, the
attacker may need to make different spots on the target generate
different amplitudes of echo signals, so the attacker has to use
many types of special materials to cover the vehicle. This can be
challenging in practice and may require complex manufacturing
processes. The above challenges raise an important question: Is
there an easier and low-cost way to manipulate the amplitudes of
echo signals from the target?

mmWave signal reflection on a single metal tile. To answer
this question, we leverage the characteristics of mmWave signal re-
flection on metal surfaces. Specifically, we found that the amplitude
of the echo signal reflected from a metal surface to the radar re-
ceiver is determined by the surface’s orientation, and the mmWave
signals can barely penetrate the metal surface. If we stick a metal
surface on the target vehicle, the original echo signal generated by
the covered area on the target are replaced by the signal generated
by the metal surface. And if we change the orientation of the metal
surface, we can change the echo signal into different amplitudes.
To stick a metal surface on the target with a specific orientation, we
design a special structure of object. As shown in Figure 4, the object
is composed of a base (grey color) and a metal tile (pink color). Each
tile is a small metal rectangle surface. The value 𝑑 is the difference
between the length of edge C and D. If the length of edge A, B and
C is fixed, the geometric parameter 𝑑 determines the orientation
(inclination angle \𝑠 ) of the metal tile.

Next, we will discuss how the angle \𝑠 of the metal tile affects
the amplitude of its echo signal to the radar receiver. Figure 4
shows the examples of the mmWave reflection on the metal tile
in this structure. Theoretically, to calculate the reflected signal
from one tile, we need to consider every single spot on the tile and
superimpose the signals reflected from each spot. This is obviously
infeasible. In practice, we study only the signal reflected from the
geometric center of each tile (as shown in Figure 4). Given the
small size of the tile (3cm * 3cm) compared with its distance to
the radar, the signals from the other spots should have similar
amplitudes and angles with respect to the tile surface. Thus, the
amplitude of the superimposed signal reflected by one tile can be
modeled as the product of the amplitude of the signal from the
tile center and the area of the tile. The superimposed signal has
the same direction as the signal from the tile center. To obtain a
more accurate approximation of the superimposed signal, we can
further divide the tile into smaller grids and study the signal from
the geometric center of each grid. The more grids we divide, the

better approximation can be achieved, and on the other hand, the
more computations have to be done.

Based on the above approach, we then calculate the reflected
signal on the metal tile. A perfect reflector would reflect the incident
signals from the same direction into a single outgoing direction
(referred as mirror-like reflection). However, the metal tile is not
perfect in practice. It is usually modeled as a quasi-specular reflector,
where the reflected signals on the tile surface are diffused in many
directions [11, 40, 47, 66]. The amplitudes of the signals reflected to
different directions are usually different, and their distribution can
be modeled as the Gaussian distribution [40]. We use 𝑟 to denote
the direction where the reflected signal has the strongest amplitude.
Suppose the amplitude of the transmitted signal is 𝐴𝑖 , then the
amplitude of the echo signal reflected back to the receiver can be
modeled as:

𝐴𝑟 = 𝜖𝐴𝑖 exp(−\2/2𝜎2), (2)

where 𝜖 is a constant that is determined by the reflection ratio of
the tile’s material and the area of the tile, 𝜎 is a constant that is
determined by the tile’s material, and \ denotes the angle between
the direction 𝑟 and the direction to the receiver. Obviously, when
the locations of transmitter, receiver, and the tile are fixed, the angle
\ is determined by the inclination angle \𝑠 of the tile.

Thus, the amplitude of the echo signal reflected back to the
receiver (i.e., 𝐴𝑟 ) is determined by the inclination angle \𝑠 of the
metal tile. By changing the value of𝑑 , we can change the value of \𝑠 ,
and further manipulate the amplitude of the echo signal generated
by the tile. Figure 4 shows two examples of mmWave reflection
under different values of𝑑 and \𝑠 . The angle \ in Figure 4b is smaller
than that in Figure 4a, which results in larger amplitude of echo
signal to the receiver, according to Eq. (2).

Design of the adversarial object. To change the learned fea-
tures of the radar detection system, we need to change the ampli-
tudes of the echo signals generated by different spots on the target
vehicle into some specific values, and these values for different
spots could be different. Thus, we use the above structure as a basic
unit and design the adversarial object in Figure 1. Each unit has a
different value of 𝑑 and \𝑠 , which makes all the metal tiles form into
a specific surface pattern. By sticking some adversarial objects on
the target vehicle at some specific locations and carefully designing
the value of \𝑠 in each unit, we can manipulate the amplitudes
of echo signals generated by different spots on the target vehicle,
which can significantly change the learned features of radar detec-
tion systems. Ideally, to achieve the best attack performance, we
hope to make every spot on the adversarial object to generate a
specific amplitude of signal. This requires the size of each metal
surface (edge A and B) to be very small. However, smaller value
of edge A and B would increase the difficulty of 3D-printing the
object. Based on the above considerations, we empirically set edge
A and B to 3cm. The edge C has no effect on our attack, so we
empirically set it to 0.5𝑐𝑚. 3D printing techniques can be used to
print the bases of all the units into one piece, and each metal tile is
made of a stainless steel foil, as shown in Figure 1. The material of
the base almost has no impact on the mmWave reflection because
the mmWave signal can barely penetrate the metal tiles. In our
experiments, we use polylactic acid (PLA) to print the base.
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Figure 5: Adversarial objects with different surface patterns
placed on different locations on target vehicle.

Figure 6: Real dimension of
𝑋 (𝑑, 𝑎 = 0).

Figure 7: Learned features
visualized by t-SNE.

Preliminary evaluation.We conduct a preliminary study to
demonstrate the possibility of using our designed adversarial ob-
jects to perform the attack. As shown in Figure 5, we fabricate two
adversarial objects with different surface patterns and stick each
object at four different locations on a car. We use a TI AWR1843
board attached with a DCA1000 board as the mmWave radar, and
place it at 6𝑚 behind the car to collect the IF signals. The victim
radar detection model is RODNet [75]. We obtain the inputs of the
radar detection model (i.e., range-azimuth maps 𝑋 (𝑑, 𝑎)) from the
collected signals in the eight examples in Figure 5, denoted as P1l,
P1m, P1r, P1u, P2l, P2m, P2r, and P2u. We also obtain the input
of radar detection model when no object is placed on the car, de-
noted as Car. Figure 6 visualizes the values of the real dimension of
𝑋 (𝑑, 𝑎 = 0) in the nine examples. We can see the values of P1l, P1m,
P1r, P1u, P2l, P2m, P2r, and P2u are quite different from that of Car.
Also, the values of P1l, P1m, P1r, P1u, P2l, P2m, P2r, and P2u are
quite different from each other. These show that adversarial objects
with different surface patterns at different locations can change
the inputs of the radar detection model to different values. In Fig-
ure 7, we use t-distributed stochastic neighbor embedding [71] to
visualize the feature points learned by the radar detection model
given the inputs in Figure 6. We can see that these different inputs
can result in different learned features of the radar detection model.
Thus, placing the proposed adversarial object can affect the input
of radar detection models and further affect the features learned
by the radar detection model. By designing the surface patterns
and locations of the objects, it is possible to use them to change the
output of the radar detection model.

4 PROBLEM SETTING
Attack goal and threat model. This paper focuses on the scenario
where the AVs are equipped with mmWave radar and use DNN-
based radar object detection models to detect objects (e.g., vehicles
or pedestrians) on the roads. Specifically, we assume that the victim
AV drives on a road and there is a vehicle in front of it (target vehi-
cle). The goal of the attack is to continuously hide the target vehicle
from the radar perception system of the victim AV, e.g., make the

(a) Example 1 (b) Example 2
Figure 8: Examples of the attack.

victim AV not able to detect the target vehicle in its collected radar
frames as it drives towards the target vehicle. This type of attack
may cause catastrophic consequences such as rear-end collisions.
We assume that the attacker can generate and stick the adversarial
objects on the target vehicle. For example, the attacker could use
their own cars to launch the attack by intentionally parking a car
on the road and sticking the adversarial objects on it (Figure 8b). Be-
sides, the attacker could secretly stick the objects on someone else’s
car when the driver parks on the roadside temporarily, stops at a
traffic light, or even before the driver starts a trip (Figure 8a). The
attacker may have many types of motivations to launch this kind
of attack, such as causing traffic accidents for insurance frauds,
unfair competition between autonomous driving companies, or
hurting the drivers and passengers in the vehicles. We consider a
practical and challenging setting where the attacker can not obtain
the original radar data collected by the victim AV. Besides, we con-
sider a white-box setting and assume that the attacker has the full
knowledge of the victim radar object detection system, which is
also adopted in existing radar attack methods [20, 39, 49, 69]. This
is reasonable because some autonomous driving companies launch
open-source autonomous driving platforms [2, 4]. The attacker can
also purchase the same model of AV as the victim AV and obtain
such information through reverse engineering. The attack works as
follows: the attacker first simulates the possible driving conditions
of the victim AV in some random environments and generate the
adversarial objects in an offline manner; then he stick the adver-
sarial objects on the target vehicle to perform the attack, and he
does not need to take any further actions after that. The adversarial
objects can continuously hide the target vehicle from the victim AV
as it drives forward in real-time, even under various background
environments.

Problem definition. To achieve the attack goal, the attacker
needs to generate the adversarial objects and their locations by max-
imizing the attack effectiveness. In addition, to make these adversar-
ial objects easy to fabricate, cost-efficient and stealthy, the attacker
needs to minimize the total area of these objects and average angle
\𝑠 of all tiles. Suppose the number of the adversarial objects used
by the attacker is 𝑁 . The sizes of these objects are denoted by 𝑃𝑠 =
{𝑃𝑠,𝑛 |𝑛 = 1, 2, ..., 𝑁 }, where 𝑝𝑠,𝑛 = {ℎ𝑛,𝑤𝑛} denotes the size of the
𝑛-th adversarial object, and {ℎ𝑛,𝑤𝑛} represents the height ℎ𝑛 and
width𝑤𝑛 of this object. We use 𝑃𝑙 = {𝑃𝑙,𝑛 |𝑛 = 1, 2, ..., 𝑁 } to denote
the locations of the adversarial objects. 𝑃𝑙,𝑛 = {𝑥𝑛, 𝑦𝑛, 𝑧𝑛} is the
location of the 𝑛-th adversarial object, and {𝑥𝑛, 𝑦𝑛, 𝑧𝑛} represents
the xyz-coordinates of this object. In addition, the surface patterns
of the adversarial objects are denoted by 𝑃𝑎 = {𝑃𝑎,𝑛 |𝑛 = 1, 2, ..., 𝑁 },
and 𝑃𝑎,𝑛 denotes the set that contains every tile’s angle (i.e., \𝑠 )
in the 𝑛-th object. Then we formulate the problem of deriving the
adversarial objects as the following optimization problem:
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min
𝑁,𝑃

𝑀 (𝑋 ′
𝑒 ) + 𝛼𝐿𝑎𝑟𝑒𝑎 + 𝛽𝐿𝑝𝑎𝑡𝑡𝑒𝑟𝑛

s.t. 𝑋 ′
𝑒 = 𝐹 (𝑆 ′𝑒 ),

𝑆 ′𝑒 = 𝑇𝑉 ,𝑒 (𝑁, 𝑃𝑠 , 𝑃𝑙 , 𝑃𝑎 ),

(3)

where 𝑃 = {𝑃𝑠 , 𝑃𝑙 , 𝑃𝑎} and 𝑀 (𝑋 ′
𝑒 ) denotes the output detection

confidence of the target vehicle in its corresponding class given
the input range-azimuth map 𝑋 ′

𝑒 . 𝐹 (𝑆 ′𝑒 ) denotes the two successive
FFT on the obtained IF signal 𝑆 ′𝑒 . 𝑆 ′𝑒 is derived by the function 𝑇𝑉 ,𝑒 ,
which models the obtained IF signal given the target vehicle 𝑉
in the environment 𝑒 . 𝐿𝑎𝑟𝑒𝑎 is the total area of the 𝑁 adversarial
objects, and 𝐿𝑝𝑎𝑡𝑡𝑒𝑟𝑛 is the average value of {𝑃𝑎,𝑛}𝑁𝑛=1, minimizing
which makes the adversarial objects easy to fabricate, cost-efficient
and stealthy. 𝛼 and 𝛽 are used to adjust the trade-off between the
three terms in the objective function.

5 METHODOLOGY
To solve the above optimization problem, we first need to obtain
the function 𝑇𝑉 ,𝑒 () that models the IF signal at the radar. However,
in practice, the final IF signal are not only generated by the echo
signals reflected from the target vehicle and adversarial objects
(foreground objects) but also generated by the echo signals reflected
from other objects in the surrounding environment. It is difficult
and time-consuming to simulate the echo signals from various
surrounding environments by manually building the meshes of the
surrounding environments. To address this challenge, we propose to
decompose the IF signals into two parts, i.e., the signals generated by
the foreground objects and the signals generated by the background
environment. Then we separately simulate the two types of signals
and finally combine them to generate the final IF signal obtained by
radar. A new method is proposed to simulate the signals reflected
from the background environment using point cloud data. The
details are described in Section 5.1.

Another challenge when we solve the above optimization prob-
lem is that the second constraint in this problem (Eq. (3)) is non-
differentiable because 𝑁 is discrete, and this makes it difficult to
directly solve this problem using gradient based methods. To ad-
dress this challenge, we propose a novel solution in which the
parameters are divided into two groups, i.e., the surface pattern-
related parameters 𝑃𝑎 and the object’s coverage-related parameters
{𝑁, 𝑃𝑙 , 𝑃𝑠 }, and they are updated alternatively until the conver-
gence criterion is satisfied. The proposed solution contains two
steps: pattern update and coverage update. In the pattern update
step, we fix the coverage-related parameters and use gradient de-
scent to optimize 𝑃𝑎 . In the coverage update step, we update the
coverage-related parameters using a heuristic method. Specifically,
we first calculate an importance score for each reflective tile of
the adversarial objects, and this score reflects the importance of a
particular reflective tile on determining the detection result. Then
we update {𝑁, 𝑃𝑙 , 𝑃𝑠 } by removing the redundant tiles with small
importance scores to reduce 𝐿𝑎𝑟𝑒𝑎 without hurting the value of
𝑀 (𝑋 ′

𝑒 ) significantly. The details of the solution are described in
Section 5.2 and Section 5.3.

5.1 mmWave Reflection Simulation
Reflected signal from the target. We first simulate the IF signal
generated by the target vehicle without the background environ-
ment. Specifically, we first obtain the mesh of the target 𝑉 through

3D model databases [1], mesh generation methods [36, 76], or man-
ual building. Then we divide the target mesh into a large number
of small reflective surfaces (triangles). The occluded surfaces of
the target mesh (e.g., surfaces occluded by adversarial objects) are
removed based on the parameters {𝑁, 𝑃𝑙 , 𝑃𝑠 } of the adversarial ob-
jects during the updating process. Based on the method proposed
in [40], the IF signal at the receiver’s 𝑘-th antenna can be repre-
sented as the summation of the IF signals generated by each surface
𝑖:

𝑆 ′ (𝑡, 𝑘 ) =
∑︁
𝑖

𝜔𝐴𝑔𝐴𝑚𝐴𝑎

(4𝜋 )2𝑑𝑇𝑖𝑑𝑖𝑅
exp(− 𝑗2𝜋𝛾

𝑑𝑇𝑖 + 𝑑𝑖𝑅
𝑐

𝑡 ), (4)

where 𝑑𝑇𝑖 is the distance between the transmitter and surface 𝑖 ,
and 𝑑𝑖𝑅 is the distance between the surface 𝑖 and the receiver’s
𝑘-th antenna. Since the amplitude of the echo signal reflected from
each surface to radar receiver is determined by its area, orientation,
and material, a few matrices (i.e., 𝐴𝑎 , 𝐴𝑚 , and 𝐴𝑔) are used to
measure these factors. 𝐴𝑎 measures the area of each surface. 𝐴𝑚
represents the reflective ratio of themmWave signal on each surface.
𝐴𝑔 models the relationship between the amplitude of the incident
signal and the reflected signal towards the receiver’s 𝑘-th antenna:
𝐴𝑔 = exp(−\2/2𝜎2), where \ is the angle between the direction 𝑟𝑖
that achieves the maximum reflection amplitude at surface 𝑖 and
the direction from the surface 𝑖 to the Rx, as shown in Figure 4.
This simulation method is lightweight, effective, and efficient. The
average structured similarity [77] between the range-azimuth maps
generated from the simulated signals and the real signals for various
targets is over 90%.

Reflected signal from the background environment. To
simulate the IF signals generated by background environments, we
could build the environments’ meshes and use the same method
above. However, building the meshes for various environments is
difficult and time-consuming in practice. To address this challenge,
we propose to use 3D point clouds of the environments to generate
their IF signals. Point cloud is a precise 3D representation of the
environments, and can be easily collected using LiDAR or RGBD
sensors, or from open-source datasets. Each point in the point cloud
can be treated as the location of a virtual reflective surface. Each
surface’s orientation can be generated by estimating its normal
vector. Each surface’s area can be approximated by calculating the
density of the points around it. Each surface’s material can be ap-
proximated based on the point’s label, which can be obtained from
the datasets’ label information. Thus, the IF signal generated from
the environment can be calculated based on Eq.(4). The proposed
method can conveniently and quickly derive the IF signals gener-
ated by the background environments without the need of building
the environments’ meshes. The average simulation time for each
background environment is only 2.6𝑠 . And we found that these sim-
ulated signals can help achieve environment independent attacks
by considering enough environments in the optimization problem.
5.2 Pattern Update
Our solution for the proposed optimization problem contains two
steps: pattern update and coverage update, which are alternatively
conducted until some convergence criterion is satisfied. The goal of
the first step is to optimize 𝑃𝑎 while fixing the values of {𝑁, 𝑃𝑙 , 𝑃𝑠 }.
To achieve this goal, we divide the IF signal generated by the fore-
ground objects into two parts: the IF signal generated by the target
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itself (𝑆 ′𝑡 ) after removing the surfaces occluded by adversarial ob-
jects, and the IF signal generated by the adversarial objects (𝑆 ′𝑎).
Then, we have the following optimization problem:

min
𝑃𝑎

𝑀 (𝑋 ′
𝑒 ) + 𝛽𝐿𝑝𝑎𝑡𝑡𝑒𝑟𝑛

s.t. 𝑋 ′
𝑒 = 𝐹 (𝑆 ′𝑡 + 𝑆 ′𝑎 + 𝑆𝑒 ),

𝑆 ′𝑎 = 𝑇 (𝑃𝑎 ) .

(5)

where 𝑆𝑒 is the IF signal from the background environment 𝑒 calcu-
lated by the proposed environment signal simulation method. 𝑆 ′𝑡
can be calculated using the above target’s signal simulation method.
Since the parameters {𝑁, 𝑃𝑙 , 𝑃𝑠 } are fixed, the remaining surfaces
of the target after occlusion are also fixed, so 𝑆 ′𝑡 is a constant in this
step. 𝑇 is a function that is used to model the IF signals generated
by the adversarial objects when fixing the parameters {𝑁, 𝑃𝑙 , 𝑃𝑠 }.
𝑇 is differentiable and can be derived by modeling the IF signals
generated by each reflective tile based on Eq.(2) and Eq.(4). Gradient
descent is used to optimize 𝑃𝑎 .

5.3 Coverage Update
Importance score. To update the parameters 𝑁 , 𝑃𝑙 , and 𝑃𝑠 , we
propose to remove the unimportant tiles of the adversarial objects.
Removing these unimportant tiles can help reduce the total area
of the adversarial objects 𝐿𝑎𝑟𝑒𝑎 without affecting the detection
confidence 𝑀 (𝑋 ′

𝑒 ). To achieve this, we introduce an importance
score associated with each small reflective surface on the target
and each tile on adversarial objects to study its importance to radar
object detection. In the rest of this section, we use “surface" to refer
to both the small surface on the target and the tile on adversarial
objects for convenience. Based on the intuition in Section 3, our
proposed attack is achieved by manipulating the amplitude of the
echo signal generated by each small surface on the object. We define
the importance score of each small reflective surface as the effect of
changing its echo signal amplitude on the detection confidence. To
measure the effect of changing each surface’s echo signal amplitude,
we leverage the characteristics of 2D FFT. According to Section 2.1,
the amplitude of echo signal generated by each surface affects the
magnitude of the corresponding pixel in the range-azimuth map.
Larger amplitude of its echo signal results in larger magnitude of the
corresponding pixel in the range-azimuth map. Based on this, we
define the effect of changing the amplitude of echo signal generated
by the surface 𝑖 as: (𝐹 (𝑠𝑖 + 𝛿𝑠𝑖 ) − 𝐹 (𝑠𝑖 )) ∗𝐺 (𝐹 (∑𝑖 𝑠𝑖 )), where 𝑠𝑖 is
the IF signal generated by surface 𝑖 , 𝐺 () calculates the gradients of
𝑀 for each input pixel given the input range-azimuth map 𝐹 (𝑠𝑖 ),
and 𝛿𝑠𝑖 is the change of IF signal after increasing/decreasing the
amplitude of echo signal from surface 𝑖 . In the physical world,
there are constraints on the maximum and minimum echo signal
amplitude generated by each surface, which limits the amplitude
of IF signal generated by each surface. We define the IF signal
upper bound for each surface 𝑆 = {𝑠𝑖 } as the IF signal generated
by assuming each surface reflect all the incident signal back to the
radar receiver, i.e., the amplitude of the echo signal is the same as
that of the incident signal (𝐴𝑔 = 𝐴𝑚 = 1). Obviously, the IF signal
lower bound for each surface is zero: 𝑆 = {𝑠𝑖 } = 0, i.e., no signal
is reflected back to the radar receiver. We define the importance
score of each surface by measuring the effect of decreasing its echo
signal amplitude to its lower bound and increasing its echo signal

amplitude to its upper bound. The effect of decreasing the echo
signal amplitude of surface 𝑖 is calculated by the integrated effect
on the detection confidence:

𝑊𝑑𝑒𝑐 = 𝐹 (𝑠𝑖 ) ∗
𝐵∑︁

𝑏=0
𝐺 (𝐹 (

∑︁
𝑖

𝑏

𝐵
∗ 𝑠𝑖 ) )/𝐵, (6)

so does the effect of increasing the reflected signal amplitude of
surface 𝑖:

𝑊𝑖𝑛𝑐 = (𝐹 (𝑠𝑖 ) − 𝐹 (𝑠𝑖 ) ) ∗
𝐵∑︁

𝑏=0
𝐺 (𝐹 (

∑︁
𝑖

𝑠𝑏𝑖 ) )/𝐵, (7)

where 𝑠𝑏
𝑖
= (𝑠𝑖 + 𝑏

𝐵
∗(𝑠𝑖−𝑠𝑖 )) and 𝐵 is the number of integrated steps.

The total effect of changing surface 𝑖 is calculated by considering
the effect of both increasing and decreasing its echo signal ampli-
tude:𝑊 =𝑊𝑖𝑛𝑐 +𝑊𝑑𝑒𝑐 . The positive value of𝑊 indicates positive
correlation between its echo signal amplitude and the detection
confidence (i.e., increasing its echo signal amplitude will also in-
crease the detection confidence of the target), while the negative
value of𝑊 indicates negative correlation. The final importance
score of surface 𝑖 is given by the absolute value of𝑊 . Manipulating
the echo signal amplitude of surfaces with high importance score
has large impact on the detection results, while manipulating the
echo signal amplitude of surfaces with low importance score has a
small impact on the detection results.

Parameters Update To update {𝑁, 𝑃𝑙 , 𝑃𝑠 }, we propose to re-
move the tiles with low importance score to decrease the total 𝐿𝑎𝑟𝑒𝑎 .
Specifically, after calculating the importance scores of all the tiles of
the initial adversarial objects. The tiles with low importance scores
(smaller than threshold𝑤𝑡ℎ𝑟𝑒 ) are removed and the remaining tiles
are clustered based on their geometric locations. The clusters for
which the number of tiles is smaller than a threshold are removed. A
new adversarial object is then generated from each of the remaining
clusters, so the number 𝑁 of the adversarial objects is the number
of the remaining clusters. The location 𝑃𝑙,𝑛 of each adversarial ob-
ject is the location of the corresponding cluster, and the size of the
objects 𝑃𝑠,𝑛 is generated based on the minimum bounding box of
the corresponding cluster. For the feasibility of 3D printing, the
adversarial objects are kept in rectangle shape during the updating
process.

5.4 Attack Algorithm
Before conducting the above two steps, we first initialize the ad-
versarial objects by calculating the importance score of each small
surface on the target vehicle. Then we cluster the small surfaces
and sort the clusters according to their average importance scores.
As we discussed, changing the amplitudes of signals reflected from
the surfaces with high importance scores tends to have a large
impact on the detection results. Thus, we select the clusters with
high average importance scores. The number of the adversarial
objects is the number of the selected clusters. The locations of the
initial adversarial objects are generated based on the locations of
the selected clusters. The sizes of the adversarial objects are gener-
ated based on the minimum bounding box of the selected clusters.
The initial surface patterns are randomly generated within a given
range. After the initialization, the Pattern Update step and Coverage
Update step are alternatively conducted to generate the adversarial
objects’ parameters 𝑁, 𝑃𝑠 , 𝑃𝑙 , 𝑃𝑎 .
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5.5 Environment Independent and Continuous
Attack

We then propose to generate the adversarial objects that are en-
vironment independent, i.e., they can achieve the attack goal in
various environments. In addition, we propose to continuously hide
the target under various possible positions, orientations, and speed
between the target and radar, and consider the possible location
and orientation errors when placing the adversarial objects.

Perform the attack in practice. To achieve the above goals, the
adversarial objects and their locations are generated in an offline
manner. Specifically, for a given target, the attacker first simulates
various possible driving conditions and generates the target meshes
in these conditions, such as different positions, orientations and
speed. The attacker randomly samples some environments from a
public dataset and generates their background signals 𝑆𝑒 using the
method in Section 5.1. Based on the above algorithm, the attacker
derives the adversarial objects and their locations by summing the
objective values in Eq. (3) for all the simulated conditions and the
randomly sampled background signals. Random perturbations on
the locations and orientations of the adversarial objects are also
added during the generation process. Finally, the attacker can per-
form the attack by placing these adversarial objects at the derived
locations. And the adversarial objects can continuously hide the
target vehicle under various driving conditions and be robust to
location and orientation errors. And they can achieve the attack
goal under various background environments even when they are
not included in the sampled environments.

6 PERFORMANCE EVALUATION
6.1 Experimental Setting
We first use one of the state-of-the-art radar object detection mod-
els, i.e., RODNet [75], as our target model. It first preprocesses the
IF signals received by radar into range-azimuth maps, and then uses
CNNs to learn the features from the range-azimuth maps, as dis-
cussed in Section 2.1. The outputs of RODNet contain the locations
and class labels of the detected objects (e.g., vehicle, pedestrian,
and bicycle). We train RODNet with CRUW dataset [5] according
to [75]. In our experiments, we consider the scenarios where the
victim AV is driving toward the target vehicle, i.e. a black Honda
sedan. The attack goal of the attacker is to continuously hide the
target vehicle from the victim AV’s radar perception system as the
victim AV drives forwards. In addition, we intend to achieve the
attack goal under various background environments to achieve en-
vironment independent attack. To achieve these goals, we generate
the adversarial objects using the proposed framework in Section 5.5.
The mesh of the target vehicle is obtained from the public 3D model
database with slight modifications.

Physical world evaluation. To evaluate the proposed attacks
in the physical world, we use a TI AWR1843 board attached with a
DCA1000 board as the mmWave radar, which is a widely adopted
radar for object detection in autonomous driving [7]. It is also the
same radar used by the victim detection model, i.e., RODNet. We
mount the radar on the front of the Lincoln MKZ as the victim AV
testbed, as shown in Figure 9. The height of the radar is around

0.5m. The radar configurations are the same as described in ROD-
Net, which aims to ensure the input range-azimuth map has the
same size as that of the original model. 3D printing techniques are
adopted to print the base of the adversarial objects, and stainless
steel foils used as the metal tiles. Based on the proposed algorithm,
we generate two adversarial objects that are enough to hide the
target vehicle, as shown in Figure 10. Due to the fact that mmWave
signal can penetrate some thin papers and fabrics, the two adver-
sarial objects can be concealed as some car signs by covering them
with some posters. The attacker can stick these car signs on the rear
of the target vehicle to continuously hide it from the victim AV. To
evaluate the attack performance, we drive the victim AV towards
the target vehicle in Figure 10 and collect the data as the victim AV
is approaching the target vehicle from 20𝑚 to 2𝑚. To demonstrate
the environment independent attack, we collect the data in four
different real-world environments. Please note that when gener-
ating the adversarial objects, none of the four environments are
considered in the optimization problem.

Figure 9: mmWave radar testbed

Digital world evaluation. To further evaluate the attack in
more scenarios, we also perform the attack in the digital world. We
randomly sample 200 scenes from the SemanticKITTI dataset [15].
In each scene, we consider the same attack scenarios as that in the
physical-world experiments, i.e., the victim AV drives towards the
target vehicle from 20m to 2m. The adversarial objects and their
locations are the same as that in the physical world evaluations. To
evaluate the attack performance under these scenes, we simulate
the signals reflected from these background environments and
the IF signals received by the radar using the proposed method
in Section 5.1. Please note that when generating the adversarial
objects, none of the above environments are considered in the
optimization problem.

For the evaluation metric, we use the Attack Success Rate (ASR),
which is defined as the percentage of the examples (radar frames)
that are successfully attacked among all the collected examples. An
example is successfully attacked when the target is successfully
hidden from the radar detection. We also calculate the detection
Recall (i.e., the percentage of the examples where the target vehicle
is successfully detected) before and after the attack, referred to as
Recall-benign and Recall-attack, respectively.

6.2 Overall performance
As shown in the Figure 10, the attacker camouflages the adversar-
ial objects as a pizza delivery advertisement, and sticks them at
the derived locations on the target vehicle. The total area of the

1324



TileMask: A Passive-Reflection-based Attack against mmWave Radar Object Detection in Autonomous Driving CCS ’23, November 26–30, 2023, Copenhagen, Denmark

Figure 10: The adversarial objects are concealed as car signs
and continuously hide the front car as victim AV approaches.

two adversarial objects is 0.06𝑚2. We first evaluate the attack per-
formance in four different types of environments in the physical
world, where the victim AV are driving on the road surrounded by
trees (Figure 11b), buildings (Figure 11c) and passing-by vehicles
and pedestrians (Figure 11d). Before the attack, we drive the victim
AV towards the target vehicle 10 times in each environment. Each
time, we collect a sequence of the radar frames, i.e., a sequence of
IF signals received by the radar at each timestamp. Without the
attack, we collect 40 sequences that contain 2243 radar frames in
total, and he target vehicle is detected in 95% of the frames. During
the attack, we also drive the victim AV towards the target vehicle
10 times in each environment and collect 40 sequences that contain
2316 frames. On average, each sequence contains 58 frames and the
target vehicle is detected in only 4 frames. Among all the collected
frames, the target vehicle is detected in 7% of the frames, and the
average attack success rate is 0.93. For the frames where the target
is not detected, the average detection confidence is 0.12. Table 1
shows the average attack success rates and detection Recalls before
and after the attack in these four different environments. We can
see that the proposed attack can achieve similar success rates in
the four environments. The results demonstrate that the derived
adversarial objects are environment independent.

Table 1: Performance in different environments

Environments Env-A Env-B Env-C Env-D

Recall-benign 0.93 0.94 0.98 0.93
Recall-attack 0.09 0.06 0.09 0.04

ASR 0.91 0.94 0.91 0.96

Our proposed attack can continuously hide the target when the
victim AV approaches. To further evaluate the effect of the distance
between the victim AV and target, we divide the collected radar
frames into different groups according to the distance between
victim AV and target vehicle. The average attack success rates
of different groups are shown in Table 2. The target vehicle is
completely hidden from the victim AV when the distance is larger
than 8𝑚, which can be smaller than the minimum braking distance
of the vehicle [32]. In addition, even when the target vehicle is
occasionally detected when the distance is smaller than 8𝑚, the
occasionally detection in a few frames may be identified as false
alarms and ignored by the victim AV.

To demonstrate the attack effectiveness in more scenarios, we
also evaluate the attack performance in the digital world. Fig-
ure 12 shows two examples of the selected environments in Se-
manticKITTI dataset. The average attack success rate in all 200
environments is 0.92. We summarize the attack performance under

Table 2: Performance w.r.t. different distances.

Distance (m) 2 − 8𝑚 8 − 14𝑚 14 − 20𝑚

Recall-benign 0.97 0.95 0.89
Recall-attack 0.20 0.00 0.00

ASR 0.80 1.00 1.00

eight selected environments in Table 3. The attack can achieve sim-
ilar attack success rates in the eight environments. These results
demonstrate that the derived adversarial objects are environment
independent. This is because the adversarial objects have domi-
nant effects on the detection results by considering some randomly
sampled environments when generating the adversarial objects. To
demonstrate this, we calculate the importance score of the environ-
ment (background) and the target vehicle with adversarial objects
(foreground). Specifically, we adopt the method in Section 5.3, and
calculate the average importance score of each small reflective sur-
face in the background and foreground, respectively. Table 3 reports
the ratio between the background importance score and the fore-
ground important score in the eight selected environments. We find
that the background environments are much less important than
the foreground, which demonstrates that the derived adversarial
objects have dominant effects on the detection.

Table 3: Performance in different environments.

Environments 𝐸1 𝐸2 𝐸3 𝐸4 𝐸5 𝐸6 𝐸7 𝐸8

Recall-benign 0.91 0.95 0.92 0.90 0.94 0.92 0.97 0.94
Recall-attack 0.06 0.09 0.09 0.06 0.09 0.07 0.10 0.06

ASR 0.94 0.91 0.91 0.94 0.91 0.93 0.90 0.94
Importance ratio 0.02 0.06 0.07 0.05 0.04 0.03 0.06 0.04

6.3 Comparison to Baselines
In this section, we compare the proposed method with other base-
line methods. We consider two types of baseline methods, object-
based attack and spoofing attack. In object-based attack, we also
leverage the proposed idea that metal surfaces can manipulate the
amplitudes of echo signals to change the detection model’s output,
and consider a naive attack method where the attacker randomly
stick two pieces of metal board (metal foil attached on cardboard) in
random inclination angle on the rear of the target vehicle, denoted
as Obj-random. We also use Differential Evolution algorithm [67]
to optimize the sizes, locations, and angles of the two metal boards,
and this method is denoted as Obj-optimize. For spoofing attack,
we adopt the method in [49], which has the same attack goal as
our proposed attack. It can change the outputs of raw radar mea-
surements by using a special device to inject a spoofed object at
a specific location. Since the raw radar measurement method al-
ways identifies the strongest reflection point around an area as a
potential object, the spoofed object that has strong reflection can
make the radar unable to detect the target and detect the spoofed
object instead [49]. To perform such an attack, we generate the
spoofing signal using the method in [49] and inject it into the re-
ceived IF signals. We consider the same attack scenarios as that in
Figure 11, where the attacker intentionally parks a car on the road
and make the victim AV fail to detect it. In addition, to demonstrate
the effectiveness of the proposed two-step optimization framework,
we consider a baseline method that solves the optimization prob-
lem in Eq. (3) directly using Differential Evolution algorithm. The
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Figure 11: Attack scenarios in physical world. Figure 12: Examples of selected back-
grounds in SemanticKITTI.

number of adversarial objects is set to 2. This method is denoted as
DE. Table 4 shows the performance of the proposed attack method
and baseline methods. The proposed TileMask achieves the highest
success rate when the number of objects and total area of objects
are similar to that of baselines. Obj-random and Obj-optimize are
not effective because the structure of the metal board is too simple
to create a malicious pattern of echo signal amplitudes to fool the
DNN model. We can also find that the spoofing attack can not fool
the DNN-based radar detection models. This is because the DNN-
based radar detector relies on the reflection pattern (i.e., pattern
of the amplitudes of echo signals generated by different spots on
the target) to identify the object, and the spoofing attack can not
change the reflection pattern of the target vehicle. Compared with
raw radar measurements, the DNN-based radar detection is more
robust to the spoofing attack. The results also show that TileMask
can achieve better performance than DE, which demonstrates the
effectiveness of the proposed two-step framework when generating
the parameters of the adversarial objects.

Table 4: Comparison to baselines

Method Recall-attack ASR Num of objects Total area (𝑚2)

Obj-random 0.93 0.07 2 0.12
Obj-optimize 0.70 0.30 2 0.11
Spoofing 0.85 0.15 - -

DE 0.57 0.43 2 0.14
TileMask 0.07 0.93 2 0.06

In addition to the attack effectiveness, we also provide more com-
parisons between TileMask and spoofing attacks. Existing spoofing
attacks require the attacker to use special devices to aim at the
victim radar. As shown in Table 5, they either require the devices to
be placed at a specific distance to the victim radar [49], or require
sub-nanosecond-level synchronization between the devices and
the victim radar [39]. So, in their experiments, they only attacked
a stationary radar or used a wired link to connect their devices
to radar. And their specially-designed spoofing devices are much
more expensive than our proposed adversarial objects. Compared
with these attacks, our proposed attack is more effective, and does
not have requirements on the radar’s distance and synchronization.
The adversarial objects can be easily fabricated using 3D printing
techniques, at an average cost of $10.

Table 5: Comparison to spoofing attacks.

Constant distance Wired link Cost

Spoofing attack [49] Yes No $1920
Spoofing attack [39] No Yes $540

TileMask No No $10

6.4 Hiding Different Types of Targets
In this section, we demonstrate the possibility of hiding different
types of targets using the proposed attack framework. We consider
a scenario where the attacker aims to continuously hide a person
from the vicim AV’s radar detection. Since mmWave signals can
penetrate paper and thin fabric, the attacker can conceal the adver-
sarial objects with a notebook cover and secretly place them inside
a backpack, as shown in Figure 13. When the target person wears
this backpack and walks on the road, the victim AV’s radar can not
see him, which may cause severe traffic accidents. We generate the
adversarial objects using the proposed attack framework, and con-
duct the experiments in the physical world, as shown in Figure 13.
The total area of the two adversarial objects is 0.04𝑚2. Before the
attack, we repeat the experiments 20 times and collect 2321 radar
frames in total. The average detection Recall is 0.89. After the attack,
we also repeat the experiments for 20 times and collect 2024 frames
in total. The average detection Recall is 0.05 and the average attack
success rate is 0.95. For each time of the experiment, we collect 101
frames on average and the target person is detected in only 5 frames
on average. On the frames where the target is not detected, the av-
erage detection confidence is 0.08. Apart from the sedan (Sedan-A)
in Figure 10 and person (Person-A) in Figure 13, we perform the
attacks to hide more targets in digital world, including two more
sedans, a SUV and two more persons. Table 6 shows the average
attack success rate, the average value of the angles \𝑠 for all tiles,
and the total area of the derived adversarial objects when hiding
different targets. We can see that the derived adversarial objects
can achieve over 89% attack success rate for all these targets.

Table 6: Performance on hiding different targets.

Targets Sedan-B Sedan-C SUV Person-B Person-C

ASR 0.94 0.90 0.93 0.92 0.89
Average \𝑠 (◦) 23 24 20 19 23
Total area (𝑚2) 0.09 0.06 0.12 0.04 0.02

Transfer attack on different targets. In some scenarios, the
mesh of the target vehicle may not be available to the attacker,
so we investigate the possibility of using the adversarial objects
generated from one vehicle to hide other vehicles. Specifically,
we use the derived adversarial objects for Sedan-A in Figure 10
to hide other vehicles. As shown in Figure 14, we stick the same
adversarial objects as that in Figure 10 at the same locations on a
blue Nissan sedan and drive the victim AV towards it 20 times. In
total, we collected 1186 frames, and the average attack success rate
is 0.88. On the frames where the target is not detected, the average
detection confidence is 0.11. Table 7 summarizes the attack success
rates when using the adversarial objects designed for Sedan-A to
hide Sedan-B, Sedan-C and a SUV in digital world. We can find that
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Figure 13: Attacker conceals adversarial objects and se-
cretly put them in a backpack.When the target wears this
backpack, he is continuously hidden from the AV’s radar.

Figure 14: Hiding a differ-
ent sedan using the same
objects.

Figure 15: Importance distributions
on the rear of target vehicle.

the adversarial objects can achieve good success rates when being
used to attack the same type of vehicles, i.e., sedans. This is because
although the shapes of different sedans are not exactly the same,
they are still similar, which results in similar reflection patterns.
So the derived adversarial objects can still change their reflection
pattern and significantly affect the learned features of DNNs. This
enables the attacker to perform the attack even though he could
not obtain the mesh of the target: he could generate the adversarial
objects designed for other vehicles to hide the target vehicle.

Table 7: Transferability on different targets.

Targets Sedan-B Sedan-C SUV

ASR 0.85 0.89 0.38

6.5 Attacking Different Radar Detection Models
In this section, we evaluate the performance of the proposed attack
on different state-of-the-art radar object detectionmodels, including
RODNet-hgwi [75], RODCSN [31], and SENet [68].

RODNet-hgwi. RODNet-hgwi uses the temporal inception con-
volution layers to extract different lengths of temporal features from
the input, which is able to achieve better detection performance
compared with origianl RODNet.

RODCSN. RODCSN is a computationally efficient radar object
detection model. A densely connected residual block is proposed to
better deliver the gradient flow from the loss function to improve
the feature representation ability.

SENet. SENet improves the detection performance by proposing
a noisy detection approach and a weighted location fusion strategy,
which ranks as the 3rd place on the 2021 Radar Object Detection
Challenge leaderboard [6].
Table 8: Performance on different radar detection models.

Models RODNet-hgwi RODCSN SENet

ASR 0.87 0.85 0.95
Average \𝑠 (◦) 23 15 23
Total area (𝑚2) 0.14 0.11 0.15

We generate the adversarial objects and their locations for each
detection model using the proposed framework. Please note that
when generating and evaluating the adversarial objects for each
detection model, the radar configurations are set to the same values
as that required by each model. We calculate the average attack
success rate under the same settings in Section 6.2. Table 8 reports
the performance on attacking different radar detection models. We
can see that the proposed attack can achieve over 85% success rate

on all these models. These results demonstrate the effectiveness of
the proposed attack on different radar object detection models.

Transfer attack on different radar detection models. In this
section, we investigate the possibility of performing black-box at-
tack. We aim to use the adversarial objects generated for one radar
detection model to attack other models. Specifically, we use the
adversarial objects generated for RODNet to attack other state-of-
the-art detection models. The experimental setting is the same as
that in Section 6.2, and the average attack success rates are reported
in Table 9. We can find that the adversarial objects for attacking
RODNet can achieve good performance when being used to attack
RODNet-hgwi and SENet. The attack performance for RODCSN is
not as good as the others, but its average success rate is 50% which
is still dangerous for autonomous driving. This transferability of
the proposed attack can be used for black-box attacks: the attacker
can generate the adversarial objects based on other detection mod-
els to attack the victim model even though he does not have full
knowledge of the victim model. This transferability is because the
amplitudes of echo signals generated by some specific areas on the
target play important roles in most of the state-of-the-art radar de-
tection models, and the derived adversarial objects can significantly
change the echo signal amplitudes of these areas.
Table 9: Transferability on different radar detection models.

Models RODNet-hgwi RODCSN SENet

ASR 0.65 0.50 0.72

7 VULNERABILITY INTERPRETATION
As discussed in Section 3, our proposed attack is performed by
manipulating the amplitudes of echo signals generated by some
specific areas on target. In Section 5.3, we divide the target into
many small surfaces and propose an importance score for each
small surface to study the effect of changing the amplitude of echo
signal from this surface. In this section, we aim to provide an expla-
nation for the vulnerability of radar detection models by studying
the distribution of importance scores on the target vehicle. We
propose importance distribution, which is generated by calculating
the values of𝑊 and importance score | |𝑊 | | for each small surface
on the target. Figure 15a shows the importance distribution of the
target vehicle in Figure 10 when the distance between the target
and victim AV is 9𝑚. The red color indicates high importance score
at that surface, while the blue color indicates low importance score.
The red rectangles indicated the locations of the derived adversarial
objects in Figure 10.

We can find that the surfaces with high importance scores are
always concentrated in a few areas. This shows that there are some
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important areas on the target, from which the echo signals play
critical roles in detecting this target. This characteristic makes the
radar perception vulnerable to our proposed attacks. This is be-
cause the proposed attack framework can always generate some
adversarial objects to cover these important areas (as shown by
the red rectangles in Figure 15a) and manipulate the echo signals
generated by these areas, which can significantly affect the features
learned by the radar perception model. We also find that the im-
portant areas are more likely to be around the areas that generate
large amplitudes of echo signals. Figure 15b shows the amplitudes
of echo signals generated by different surfaces on the target vehicle.
The red color indicates that the amplitude of the echo signal gen-
erated by this surface is large, while the blue color indicates small
amplitude. We can see that the important areas in Figure 15a are
around the areas that generate large amplitudes of echo signals in
Figure 15b. This is because the amplitude of the echo signal from
each surface can be treated as the weight of its IF signal according
to Eq. (1), and the signal with larger amplitude contributes more to
the summed IF signal, i.e., the input of the radar detection model.
Thus, the radar perception model will be trained to rely on the echo
signals generated by these important areas to learn the features.
Once the echo signals from these areas are manipulated, the learned
features will be significantly distorted. Our investigation shows that
this vulnerability exists in various victim radar perception models.

8 DISCUSSION
8.1 Potential Defense Strategies
Sensor fusion. A straightforward defense strategy is to use addi-
tional sensors such as camera and LiDAR to help detect the target.
However, recent studies have proved that camera and LiDAR can
also be fooled by physically realizable adversarial attacks [34, 85, 86].
The attacker could combine them with our proposed attacks to fool
all the sensors simultaneously to achieve the attack goal [17, 70].

Defense based on importance score.As discussed in Section 7,
the echo signals generated by some important areas play critical
roles in learning the features. And since the important areas are al-
ways concentrated, the attacker can derive some adversarial objects
to cover these areas and significantly affect the learned features.
To defend the proposed attack, we propose to make the important
areas less concentrated and make it difficult for the attacker to find
the effective locations of the adversarial objects. Towards this end,
we propose to modify the training procedure and force the model
to learn the features from the echo signals generated by other unim-
portant areas. Specifically, we inject the simulated target vehicle
into the training data, by adding its generated IF signals to the
original mmWave signals. And we divide the surfaces of the vehicle
into important surfaces 𝐼 and unimportant surfaces𝑈 . The surfaces
𝐼 are the surfaces whose important scores of the original model are
among the top 30%, while the remaining surfaces are surfaces 𝑈 .
We define the training loss as: 𝐿 +𝛾 |𝑊𝐼 −𝑊𝑈 |, where 𝐿 is the origi-
nal training loss, and the latter term is the difference between the
average important score of important surfaces𝑊𝐼 and that of the
unimportant surfaces𝑊𝑈 . This aims to scatter the distribution of
important scores. 𝛾 is a hyper parameter to balance the two terms,
which is set to 0.01 in our experiments. In the training process, we
also randomly change the amplitudes of echo signals generated

by the important surfaces 𝐼 to force the model to learn features
from unimportant surfaces𝑈 . To evaluate the effectiveness of the
defense, we select RODNet as the victim model and train a new
model using the above defense strategy, denoted as RODNet-def. We
then perform the proposed attack against RODNet-def and evaluate
the attack success rate. The attack scenarios are the same as that
in previous experiments in the digital world. For various targets,
the proposed defense reduces the ASR from 92% to 34% on average.
We also evaluate the effectiveness of the defense when it is applied
to different radar detection models. We use the proposed defense
strategy to re-train various state-of-the-art radar object detection
models. Table 10 summarizes the attack success rate of the proposed
attack on different models after the defense. The ASR on all the
radar detection models is reduced to 30%-40%. The above results
demonstrate the effectiveness and generalizability of the proposed
defense strategy. However, an attack with a 34% success rate is still
dangerous. More robust radar detection model will be explored in
our future work based on this defense strategy.

Table 10: Defense performance for different models.

Models RODNet-def RODNet-hgwi-def RODCSN-def SENet-def

ASR 0.34 0.30 0.35 0.46

8.2 Limitations and Future Works
Multi-sensor fusion. In this paper, we mainly focus on investigat-
ing a new type of attack against radar perception systems. As dis-
cussed in Section 8.1, the perception system that uses other sensors
(e.g., camera and LiDAR) to perform sensor fusion can mitigate this
attack. However, based on our proposed attack, it is possible to de-
velop an attack method that can fool all the sensors simultaneously.
In our future work, we will study how to extend the proposed attack
to sensor fusion systems. For example, a potential attack against
camera-LiDAR-radar systems is to cover the adversarial objects
with papers painted in specific color patterns. As demonstrated
in [81], the specific color pattern can change the pixel values in
camera images and affect the camera detection results. And by
placing some adversarial objects at some adversarial locations, the
LiDAR perception systems can be fooled, as demonstrated in [86].
Thus, all three types of sensors can be attacked simultaneously to
change the output of multi-sensor systems. In addition, in some
severe weather conditions such as foggy weather, the camera and
LiDAR may not provide reliable perception results, and the sensor
fusion system may only rely on radar. In such weather conditions,
our proposed TileMask can fool multi-sensor fusion systems by
attacking its radar perception.

Universal attack. Another limitation of our attack is that the
derived adversarial objects for one type of vehicles (e.g., sedan) may
not be useful to hide another type of vehicles (e.g., SUV), as shown
in Table 7. Thus, the attacker needs to fabricate new adversarial
objects if he wants to hide a new type of vehicle. However, since
the cost of the adversarial object is small, the attacker can easily
manufacture many different adversarial objects for different types
of vehicles, and simply choose the corresponding objects for the
target vehicle type each time he performs the attack. To further
generate the adversarial objects that can hide any types of vehicles,
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we can take various types of vehicles into the optimization problem
by summing their objective values in Eq. (3). Further study on the
universal adversarial objects will be our future work.

Precision of placing the adversarial objects. To discuss the
difficulty of placing the adversarial objects precisely on the vehicle,
we consider two cases based on the attack scenarios. (1) If the
target vehicle belongs to the attacker (Figure 8b), the attacker could
always place the adversarial objects very precisely before the attack
because he has enough time to set up the target vehicle. (2) If the
target vehicle does not belong to the attacker (Figure 8a), it is also
not difficult to place the adversarial objects precisely enough to
achieve the attack goal. Even if the adversarial objects are not
placed on the desired locations with 100% precision, they can still
achieve good performance. Specifically, we found that when the
adversarial objects are placed 7𝑐𝑚 away from the derived locations,
the average attack success rate is still around 80%. This is because,
when generating the adversarial objects, we propose to add random
perturbations (within 5cm) on their locations in the optimization
process, according to our attack framework in Section 5.5. In our
real-world experiments, we do not use any precise measuring tools
when placing the adversarial objects, and we found that the errors
of placing the adversarial objects is always within 5cm. Thus, even
when the target vehicle does not belong to the attacker, it is not
difficult for the attacker to place the adversarial objects precisely
enough to achieve the attack goal.

9 RELATEDWORK
9.1 Security of Radar Perception Systems
There are many prior works on the security of autonomous driving
systems [14, 23, 24, 28, 29, 37, 45, 46, 57, 58, 62, 65]. Since radar is an
important sensor adopted by AVs, the security of radar perception
systems has also been studied. There are some existing works that
propose to actively transmit signals to the radar and change the
outputs of raw radar measurements. The authors in [20] inject false
data into the victim radar and change its distance measurement us-
ing a physical cable connected to the radar. Some works propose to
transmit some specific signals to the radar using software-defined
radio techniques, which can create fake objects [69], or range and
velocity measurements of an object [39]. Among the existing works,
[49] is more relevant to our work because it also proposes to hide
a target from radar. They design a spoofing device to introduce a
frequency shift on the incoming FMCW signals and transmit the sig-
nals to radar. However, the above attacks either require the devices
to be placed at a specific distance to the victim radar, or require
sub-nanosecond-level synchronization between the devices and the
victim radar. So, in their experiments, they only attacked a station-
ary radar or used a wired link to connect their devices to the radar.
And the specially designed spoofing devices are usually very costly.
In addition, we found that although these spoofing attack methods
can change the outputs of raw radar measurements, they can not
effectively fool the succeeding DNN models to eventually change
the outputs of DNN-based radar object detection in autonomous
driving, as shown in Table 4. [21] proposes to use some tags that
are made of a special mmWave absorbing material to hide an object
from raw radar measurements. However, the special material can
only be used for a specific mmWave radar frequency range, i.e.,

18–40 GHz. And today’s DNN-based mmWave radar object detec-
tion systems in autonomous driving normally operate in a much
higher frequency such as 77 GHz [3, 7, 75]. So their method can not
be used to attack state-of-the-art DNN-based radar object detection
in autonomous driving.

Different from the above works, we leverage the characteristics
of mmWave signal reflection on metal surfaces and design a novel
structure of adversarial objects to perform the attack through pas-
sive reflection. The generated adversarial objects do not require
any special materials and can be easily fabricated at low cost. And
they can be used for any mmWave radar frequency.

9.2 Adversarial Attacks
Adversarial examples have been proposed to fool the deep neu-
ral networks for camera images [22, 25, 33, 35, 50, 61, 81, 83],
LiDAR point cloud [18, 64, 78], text [42, 84], and audio sig-
nals [10, 63, 72, 80, 80, 82]. Due to the different sensing principles
of mmWave FMCW radar and other sensors, these attacks against
other sensors can not be adopted to attack mmWave radar. Few
recent studies have investigated the adversarial examples in radio
signals to fool the radio signal classification [43, 60]. However, radio
signal classification intends to generate a label for a given radio
signal to identify its modulation type (such as OFDM), which is
a different task from radar object detection whose goal is to find
locations and classes of the objects on the road. Besides, the above
adversarial radio examples aremainly generated in the digital world,
and it is difficult to generate them in the physical world. In this pa-
per, we study the characteristics of feature learning in DNN-based
radar detection and leverage the characteristics of mmWave signal
reflection, and design a novel structure of adversarial objects to
perform the adversarial attacks, which is effective, low-cost, and
easy to fabricate in the real world.

10 CONCLUSIONS
In this paper, we study the vulnerability of the DNN-based radar
object detection in autonomous driving. We leverage the character-
istics of mmWave signal reflection on metal surfaces and design a
novel structure of adversarial objects to hide a target vehicle. These
adversarial objects can be easily fabricated at low cost and can be
concealed as car signs. Experiments in both the physical and digital
world are conducted to evaluate the attack effectiveness. The real-
world evaluations show that the radar object detection model can
be attacked continuously when the victim AV approaches the target
under various environments, by using only two small adversarial
objects.
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