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Abstract—Identifying fall risk can prevent injuries in the
elderly as well as reduce the related financial burden. A balance
assessment, Timed Up and Go (TUG), has been widely applied
to estimate fall risk. However, the standardized TUG usually
excludes complex factors (e.g. slopes and obstacles) falling short
of representing challenges in environments that many older
adults navigate. Having information on the motor performance
in more complex settings can better inform clinicians about an
individual’s risk of falling. To this end, we present Smart Insole
TUG (SITUG), a cost-efficient, real-time and self-assessment
system suitable for the complex environmental TUG. Based on
the human stride mechanism, our SITUG educes four refined
aspects in the gait feature and segments the TUG process by six
detailed phases, providing accurate and advanced information for
the fall risk estimation. We evaluate the system with four complex
environmental TUG. The results show that the SITUG achieves
mean accuracy 94.1% in extracting subcomponents within a
stride and 93.13% in deriving the stride length based on the
verification of estimated walking distance. Moreover, this system
can distinguish six TUG phases with the correctness around 90%.

I. INTRODUCTION

About 14.5% of the U.S. population, around 46.2 million

people, can be classified as a senior in 2014. By 2060, there

will be more than twice that number, i.e., approximately

98 million elders in the US [1]. With the growing elder

population, a health-related risk, fall risk, increasingly draws

attention. Falls are the leading cause of injuries in older

population. According to statistics from the National Council

on Aging (NCOA), a senior receives emergency services every

11 seconds because of a fall and an elder dies every 19
minutes due to a fall [2]. The U.S. Bureau of Labor Statistics

(BLS) reported 238, 610 nonfatal injuries and illnesses cases

involving falls, slips, trips in 2015 [3]. The financial burden

associated with falls is not optimistic either. The total fare of

fall injuries was 34 billion U.S. dollars in 2013 and there exists

an increasing trend with this financial cost [2].

Complex conditions of daily life which involve external,

situational, and other factors can contribute to falls [4]. For

examples, slopes and clutters are two extrinsic factors that

can increase the fall risk [5]. Considering many older adults

have a diminished ability to control their balance well, these

conditions can place greater postural control and mobility

demands on elderly individuals. Thus, complex elements from

the living environment place many seniors at increased risk

for falling [6]. Timed Up and Go (TUG) is recommended

by the American Geriatric Society and the British Geriatric

Society for evaluating balance, gait, and fall risk [7]. However,

the standardized TUG and its widely adapted variations may

not be as comprehensive as desirable to fully evaluate an

individual’s fall risk. These TUG forms are mainly criticized

in three aspects: (1) They avoid many complex factors in

fall scenarios that further test subject’s abilities in braking,

mobility, and balance in the human gait. (2) The measurement

is only based on the total duration of TUG, offering thin test

data, that can be deficient for the further fall risk assessment.

(3) The presence of clinicians timing the TUG may provide a

sense of security to patients or conversely, cause pressure to

perform well, both of which can affect the result of TUG.

Therefore, a robust, feature-rich and self-assessment TUG

measuring system offers improvements in the fall risk analysis.

In this paper, we introduce Smart Insole TUG (SITUG),

which can provide the real-time, fine-grained results of TUG

in more complex ecological environments for the fall risk

evaluation. Four complex environmental TUGs involving ele-

ments, such as the obstacle and the incline, are developed and

deployed. Consisting an unobtrusive wearable sensing device,

a matched smartphone software, and a competent TUG data

analysis module in a cloud server, our SITUG is capable

of extracting rich gait related features, providing advanced

information about the walking status. Based on these features,

the system can further analyze the complex environmental

TUG by distinguishing six different TUG phases.

II. PRELIMINARIES

A. Timed Up and Go Test

Timed Up and Go (TUG) is widely used for assessing

the subject’s mobility. In the standardized TUG, a subject is

required to get up from the chair without using arms (the

beginning of TUG), walk a 3-meter distance in a comfortable

pace on flat ground, turn around, walk back to the chair,

and turn again to sit back down (the end of TUG) [8]. The

traditional setup needs a chair, a tape measure, a stopwatch,

and someone to time the test process. The tape measure is used

to indicate the three meters distance. The performance of the

testee on the TUG is determined by the total duration [9].

As the judgment only depends on the time performance, the

kinematic data is not recognized leading to lost information

in the fall risk assessment when using the standardized TUG.

In addition, the presence of clinician timing the TUG may
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Fig. 1. The overall framework of our proposed system, SITUG. It contains a wearable sensing device, the smart insole, a matched smartphone software, and
a TUG data analysis module within a cloud server. The photo of the actual smart insole device are presented under Wearable Sensing Device. Pictures of the
smartphone app are placed under Smartphone Software.

influence the performance. It is possible that the test setting

could cause the client anxiety or have the opposite impact

giving the client a sense of security with the clinician standing

nearby. To address these issues, several technology-based

methods for measuring TUG data are developed including

video-based and IMU-based ones.

B. Advanced TUG Measurement

The video-based TUG measurements allow testees to per-

form the TUG without the presence of a tester [10]. In some

advanced studies, the total taken steps and the duration of

some phases (e.g., turning and sitting down) in the TUG

can be extracted automatically via video cameras [11], [12].

Knowing the time taken in different TUG phases improves

the reliability of estimating the fall risk [13]. However, the

video-based methods have obvious drawbacks and limitations

in practical usages. The camera setup is crucial. The position

of cameras and the lighting of environments must be carefully

adjusted. There are also privacy issues if we apply them to

residential environments.

The IMU-based way utilizes the inertial measurement units,

an electronic device which contains accelerometers, gyro-

scopes, and more, offering detailed basic data including lin-

ear accelerations and angular velocities [14]. Many existing

IMU-based systems provide finer data of the TUG process.

However, they require either bulky devices or obtrusive sensor

attachments. For instance, a reliable instrumented system de-

veloped by Salarian et al. [15], named iTUG, needs seven sen-

sor attachments over the entire body. Another well-developed

system, QTUG [16], depends on only two small sensors, but

deploys an inconvenient tablet comparing to smartphones.

C. Design Consideration and Goal

In additional to the aforementioned issues, another three

common deficiencies exist in most of the current advanced

TUG systems, (1) handling only the standardized TUG with

no complex factor, (2) missing analyses in some TUG aspects,

and (3) difficulties in accessing test results in real-time. To

address the existing shortages, our SITUG design should

satisfy the following requirements:

• Unobtrusive: the SITUG has no sensor attachment to the

body or camera setup nearby.

• Cost-efficient: the system is built based on low-cost

functional units.

• Robust: our SITUG is practical for the complex environ-

mental TUG.

• Reliable: It captures accurate features in all complex

environmental TUG aspects.

• Real-time: It provides real-time test results inside the

smartphone software.

III. APPROACH OVERVIEW

As shown in Fig. 1, our system comprises of a wearable

sensing device, a smartphone software, and a TUG data

analysis module. The wearable sensing device, named Smart

Insole, collects basic data such as angular velocities, linear

accelerations, and pressures, during the performance of the

test. The smartphone software is mainly acting as a bridge

between the sensing device and the TUG data analysis module.

The Smart Insole receives commands for data collecting from

and transfers obtained data to the software, which uploads

raw data files to our TUG data analysis module located in

the cloud server for operating the data pre-processing and the

TUG analysis. At the end of this process, test results are sent to

the smartphone software. Furthermore, a database included in

the cloud server is capable of saving the physical information

and test histories for each user. The following are the detailed

descriptions of different modules.

A. Smart Insole

Our wearable sensing device shown in Fig. 1, the Smart

Insole, has been commercialized by SennoTech Inc. [17]. It

has a similar hardware design to its previous version [18],

[19]. This insole has three essential functions. The first one

is the data sensing accomplished by a 3-axis gyroscope, a

3-axis accelerometer, a 3-axis magnetometer, and 16 pressure

sensors. Secondly, the data acquiring is performed by a 16 to 1
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channel MUX and a Microcontroller Unit (MCU). Finally, the

data transferring is done using a Bluetooth Low Energy (BLE)

module. This device also contains a battery module which

is charged through USB connection. All the aforementioned

components except the pressure sensors are placed in a 40mm

by 40mm printed circuit board (PCB).

B. Smartphone Software

The smartphone software makes the entire system user-

friendly. We designed it by prioritizing ease-of-operation con-

sidering most users are elders who may have less experience

with smartphone apps compared to other age groups. The

software connects the Smart Insole through Bluetooth so that

testees can choose when to collect data by simply clicking a

button. The design of the smartphone software’s graphical user

interface (GUI) is shown in Fig. 1. Our software automatically

transfers data from the insole to the cloud server for running

the TUG data analysis module, via Wi-Fi or LTE. Moreover,

the subject’s physical information and all test results can be

viewed inside the software, as presented in Fig. 1.

C. TUG Data Analysis Module

The TUG data analysis module located at the cloud server is

the core part in our system design. It has two main missions,

the data pre-processing and the TUG analysis. This module

performs three activities for the data pre-processing [20]: (1)

denoising collected pressure values, (2) calibrating and filter-

ing accelerometer and gyroscope data, and (3) initializing the

baseline with magnetometer data. After the above described

procedure, we obtain finer basic data for the TUG analysis

including two functional features, the gait feature extraction

and the TUG phase recognition. For a clearer illustration, the

structure of the TUG analysis is presented in Fig. 2 and the

methodology is fully described in the next section.

Fig. 2. The structure of TUG analysis including two functional features, the
gait feature extraction and the TUG phase recognition.

IV. FINE-GRAINED TUG ANALYSIS

A. Gait Feature Extraction

We consider our extracted gait features into four sub-

divisions including pressure, temporal, spatial, and spatial-

temporal ones. The pressure and spatial features are bases

for the temporal feature extraction. In particular, the former

provides data in the walking balance [21]; and the latter gives

a comprehensive picture of plantar positions and motions.

The temporal feature shows the time information of detailed

activities within the gait. Combining the spatial and temporal

data, the spatial-temporal feature is significantly helpful in the

fall risk evaluation [22].

1) Pressure Feature:
• Maximum Pressure: the maximum out of 16 pressure

values taken by all sensors in one sample intake.

• Average Pressure (Pavg): the average pressure on the

sole or two particular areas, the fore (toe) and the hind

(heel), in one sample intake, calculated by:

Pavg =

∑m
i Pi
n

, n ∈ {4, 16}, (1)

where Pi is the pressure value of ith sensor. The i starts

from the index of first sensor in a partial or entire plantar

area and ending at m, the index of last sensor in this area.

The n denotes the number of involved pressure sensors in

the calculation. Sensors with the index 1 to 4 are located

at the fore area. The last four sensors with the index 13
to 16 are on the hind area.

• Center of Pressure (COP) Location (Xcop, Ycop): the

position of COP on the sole in one sample intake.

Xcop =

∑n
i XiPi∑n
i Pi

, Ycop =

∑n
i YiPi∑n
i Pi

, (2)

where n = 16, the total amount of pressure sensors. The

Xi and the Yi are representing coordinate values for the

ith pressure sensor .

• COP Velocity (Vcop): the speed of COP location move-

ments during the time interval �t.

Vcop =
1

�t
√
(Xdist)2 + (Ydist)2, (3)

where the COP travel distances on both X and Y axes

are defined as follows:

Xdist = |Xcop(t+�t)−Xcop(t)|, (4)

Ydist = |Ycop(t+�t)− Ycop(t)| (5)

2) Spatial Feature: This feature extraction is enabled by

applying the pitch, roll, and yaw axes on the Smart Insole.

Angles caused by rotations around the axes can be used to

monitor movements of feet. The following calculations are

inspired by an online article [23].

• Pitch Angle (θ): the angle caused by the plantar rotation

about the pitch axis is equal to the one between vector �P
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Fig. 3. Phases in a stride including the stance and the swing. The stance is consisted by a load, a foot-flat, and a push sub-phases, which are separated by
four essential moments, heel-strike, toe-strike, heel-off, and toe-off. The swing starts from a toe-off and ends at a following heel-strike.

and its projection vector �P ′ on the xy-plane or we could

say the ground.

�P = (ax, ay, az), (6)

where the �P represents the plantar direction and position;

the ax, ay , and az are linear acceleration values on x-,

y-, and z-axes in the corresponding sample intake. The

equations for calculating the θ are given below:

||�P ′xy|| =
√
(ax)2 + (ay)2, (7)

θ = arctan(az × (||�P ′xy||)−1), (8)

where ||�P ′xy|| is the magnitude of �P ′ on the xy-plane.

• Roll Angle (ψ): the angle caused by the plantar rotation

about the roll axis is obtained ψ by computing the angle

between the z-axis and the �P ′ on the yz-plane.

ψ = arctan(ay × (az)
−1) (9)

• Yaw Angle (φ): the angle caused by the plantar rotation

about the yaw axis is derived from calculating the one

between the x-axis and the �P ′ on the xy-plane.

φ = arctan(ay × (ax)
−1) (10)

3) Temporal Feature: Four essential moments including a

heel-strike, a toe-strike, a heel-off, and a toe-off are exactly

the breaking points for phases and subphases in a stride (see

in Fig. 3). Methods for finding the four moments are referred

from Mariani et al. [24].

• Heel-strike (HS): the moment of the heel striking the

ground during the walking. Upon each HS, the average

pressure of hind area suddenly and dramatically increases

from zero. Therefore, the SITUG stamps the HS by

searching critical points (CP) in the derivative of Pavg ,

denoted as (Pavg)
′, of hind area [21]. Moreover, it checks

the derivative of pitch angle, (θ)′, to verify the CP found

in the (Pavg)
′. The (θ)′ is less than zero and should be

a local minimum upon an HS.

• Toe-strike (TS): the moment of the toes hitting the

ground. Before a TS, Pavg = 0 in the fore area. After the

TS, this Pavg gradually increases. Based on this trend, the

system locates a TS by searching a time stamp that the

Pavg of fore area is zero until reaching it and increasing

to positive afterward. In addition, our SITUG uses the

(θ)′ for the verification. A TS is found if the (θ)′ is less

than and close to zero at the located time stamp.

• Heel-off (HO): the moment the heel is disconnected with

the ground by lifting. The system first tracks the (θ)′ and

locates a time stamp where the (θ)′ starts to continuously

decrease from around zero until reaching another local

minimum. If Pavg = 0 in the hind area on this time

stamp, then it is an HO.

• Toe-off (TO): the moment of the toes lifting apart from

the ground. A TO is marked by finding the time point of

first zero value in the (θ)′ behind its last local minimum

as mentioned in locating the HO. Furthermore, Pavg = 0
in the fore area upon a TO.

Finding the above four moments, the duration of a stride’s

phases (e.g., a stance and a swing) as well as periods of three

subphases in the stance (e.g., a load, a foot-flat, and a push)

can now be derived [21], [24].

• Duration of Load: the foot is lowering down with the

pivot located at the heel.

T (Load) = t(TS)− t(HS), (11)

where T and t denotes the duration and the time stamp.

• Duration of Foot-flat: both the heel and the toes are

connected with the ground.

T (Foot− flat) = t(HO)− t(TS) (12)

• Duration of Push: the foot is lifting up with the pivot

located under the toes.

T (Push) = t(TO)− t(HO) (13)

• Duration of Stance: a load, a foot-flat, and a push form

a stance.

T (Stance) = t(TO)− t(HS) (14)

• Duration of Swing: a certain walking distance is made

by swinging a leg forward.

T (Swing) = t(HSnext)− t(TO) (15)

• Duration of Stride: a stride, also called a gait cycle,

includes two subdivisions, a stance and a swing.

T (Stride) = T (Stance) + T (Swing) (16)
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4) Spatial-temporal Feature:
• Stride Count: the amount of strides that happened within

the entire TUG.

• Cadence: the amount of strides taken in one minute.

• Stride Length: the walking distance produced in a stride

is calculated by taking the double integral of x-axis linear

acceleration in the corresponding time section.

• Pitch, Roll, Yaw Angular Speed (Vθ, Vψ , Vφ): the

derivative of pitch, roll, yaw angle.

• Mean, Maximum, and Minimum Vθ, Vψ , Vφ
B. TUG Phase Recognition

Considering each TUG into six phases, we derive the further

information, such as the time taken during the turning, that is

highly useful in the fall risk measurement [22]. For a clearer

illustration, we introduce twelve time stamps which directly

mark all the six phases. These temporal points are grouped

and described below:
1) Lifting Phase (LF):
• Beginning of TUG (BOTUG): BOTUG is also the

beginning of LF. It is the moment of starting to press

feet onto the ground and trying to get up from the chair.

If the testee sits naturally, Pavg = 0 on the entirety of

both soles. Both Pavg start increasing when the testee

tries to stand up and presses both feet onto the ground;

therefore, the first time when Pavg > 0 in both entire

plantar areas, the SITUG locates the BOTUG.

• Ending of Lifting (EOL): EOL is the moment of

reaching a full-stand (up-right) posture after the BOTUG.

Both soles’ Pavg keep increasing before the EOL and stay

in a small range of values afterward until the beginning of

the next phase (BOW-1) arrives. Our system indicates the

EOL by finding the first temporal point with the following

three properties: (1) Pavg > 0, (2) (Pavg)
′ close or equal

to zero, and (3) the second derivative of Pavg is less than

zero. If the SITUG cannot locates the EOL before the

BOW-1, these two are overlapped.

2) First Walk Phase (FW):
• Beginning of First Walk (BOW-1): the first series of

an HO, a TO, and an HS implies the first step has taken

and the walking has started. Thus, our system detects this

first series and locates the BOW-1 that is the HO.

• Ending of First Walk (EOW-1): EOW-1 is the moment

of finishing a short distance followed by a turning. If the

SITUG has marked the beginning of next phase (BOR-1),

the EOW-1 is the last TS right before the BOR-1.

3) First Reverse Phase (FR):
• Beginning of First Reverse (BOR-1): the turning in

the FR is unique, which can be detected if both feet

successively satisfy D ≥ 75◦, where

D = |(φ)current − (φ)last| (17)

The (φ)current represents the yaw angle upon the current

TS and the (φ)last is the one upon the last TS. The BOR-

1 is a TO located right after the first TS among two pairs

of a current and a last TS, performed by both feet.

• Ending of First Reverse (EOR-1): if the system finds

conditions of detecting the BOR-1 no longer satisfied, the

FR has ended. Within the last two pairs of TS qualified

for the conditions, the final TS is the EOR-1.

4) Second Walk Phase (SW):
• Beginning of Second Walk (BOW-2): BOW-2 is the

moment of starting to walk back after the FR. The SITUG

sets the first TO after the EOR-1 as the BOW-2.

• Ending of Second Walk (EOW-2): EOW-2 is followed

by the last turn in front of the chair. Similar to the case

of locating the EOW-1, the last TS before the beginning

of second reverse is the EOW-2.

5) Second Reverse Phase (SR):
• Beginning of Second Reverse (BOR-2): BOR-2 is the

first TO behind the foremost TS in the final two pairs of

TS as described in Section IV-B3 with D ≥ 20◦ because

only the regular turning happens in the SR.

• Ending of Second Reverse (EOR-2): our system stamps

EOR-2 by checking the pitch and the yaw angular speeds

of both feet. Once these speeds become and remain

closely around zero, the EOR-2 is marked since no step

is taken after it.

6) Lowering Phase (LW):
• Beginning of Lowering (BOL): during the process of sit-

ting down, the Pavg of hind area, (Pavg)hind, is distinctly

greater than the one of the fore area, (Pavg)fore. Our

system marks the BOL after the EOR-2 if (Pavg)hind ≥
(Pavg)fore × 15 in both plantar sample intakes.

• Ending of TUG (EOTUG): EOTUG is also the end of

LW. If the Pavg and the x-axis linear acceleration of both

feet are all equal to zero, the EOTUG is found.

V. EVALUATION

A. Experimental Setup

Four different complex environmental TUG are operated

in order to verify the capability of SITUG. The data set

is collected by the Smart Insole placed in shoes with 100
Hz as the sampling frequency and 12-bit as the resolution.

The video filming is used with the purpose of setting ground

truth references. Two healthy female and four male subjects,

measured in weight from 57 - 89 kg and height from 163 -

186 cm, volunteered to carry out the series of four complex

environmental TUG (see in Fig. 5).

• Extended TUG (E-TUG): E-TUG has the similar setup to

the standardized TUG except that the distance between

the start and the turning locations is extended from three

to seven meters as presented in Fig. 4(a).

• Incline TUG (I-TUG): testees need to walk on an incline

within I-TUG. Some activities (e.g., turning, standing up,

and sitting down) are still performed on the flat ground.

Fig. 4(b) shows the process of I-TUG.

• Bypass TUG (B-TUG): B-TUG is operated on the flat

ground. Each subject should avoid obstacles by passing

aside in the test (see in Fig. 4(c)). The displacement is
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Fig. 4. Four different complex environmental TUG including: (a) E-TUG: standardized TUG with the extended distance; (b) I-TUG: TUG with the incline
factor; (c) B-TUG: TUG with the obstacle factor. Testees should go around obstacles; (d) O-TUG: Testees should step over obstacles.

Fig. 5. The experimental scenes of four complex environmental TUG.

seven meters and the estimated walking distance is 7.75
meters between the start and the turning points.

• Overpass TUG (O-TUG): in O-TUG, the subject avoids

obstacles by stepping over as shown in Fig. 4(d). Detailed

distances are also provided in the graphic of O-TUG.

We aim at validating the feasibility of SITUG in monitoring

movements within the complex environmental TUG which is

designed to create a more complex ecological environment.

Moreover, we present contrasts found in the results of afore-

mentioned four TUG for providing an overview image of

SITUG in handling different test cases.

B. Feasibility Assessment

We use three terms to present the results of validation which

are the accuracy, the absolute error Ea, and the relative error

Er. The corresponding equations are listed below:

Ea = Vm − Vt, (18)

Er =
|Ea|
Vt

× 100%, (19)

Accuracy = (1− |Vm − Vt|
Vt

)× 100%, (20)

where Vm and Vt stand for the measured and the true values.

1) Duration of Load, Foot-flat, and Push: As described in

Section IV-A3, the load, the foot-flat, and the push duration

are directly derived from four essential time stamps, an HS, a

TS, an HO, and a TO, in a stride. We analyze the capability

of SITUG in locating the four time points by checking the

correctness of three extracted duration. Comparing the results

found by the SITUG and observing video recordings, we

obtain the average accuracy of load duration 92.9%, foot-flat

duration 95.1%, and push duration 94.2%. The detailed com-

parisons between results found by the two different methods

are shown in Fig. 6.

2) Stride Count and Stride Length: According to the com-

parison between stride count (SC) results of each testee in

four different TUG derived from SITUG computations and

video recording observations, the mean of all relative errors is

4.77%. Moreover, Fig. 7(a) provides a view of absolute errors

of all extracted SC in four different TUG.

In order to assess the reliability of stride length (SL) results,

we first estimate walking distances performed by each testee

in four different TUG using the extracted SL. The walking

distance (WD) is computed as follow:

WD =
Sleft + Sright + C

2
, (21)

where the Sleft is the sum of all SL produced by the left

foot and the Sright represents the one caused by right foot

movements; the C is an average value of all SL. The WD is

usually close to either the Sleft or the Sright. Therefore, we

use the mean value of Sleft and Sright in the equation (21).

Notice the SITUG does not consider the very first two steps,

which has no beginning heel-strike, in the TUG as strides,

we add (C2 ) to better estimate the WD. Comparing the WD

with the real walking distance of test setup, the correctness

of SITUG in educing the SL is assessed. The maximum, the

median, and the minimum accuracies of computed WD are

99.36%, 93.16%, and 81.43% as shown in Fig. 7(b).

Fig. 6. The average load, foot-flat, push duration of each subject in (a) E-TUG,
(b) I-TUG, (c) B-TUG, and (d) O-TUG. Labels with Ref: the duration obtained
from the video observations. Labels with Comp: the duration computed by
the SITUG.
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Fig. 7. (a): The maximum, the median, the minimum, and the IQR in absolute
errors of extracted stride count from six subjects’ TUG results. (b): Each circle
represents an accuracy in estimating the walking distance (WD) of a subject
in a TUG; the upper and the lower red circles are the maximum and the
minimum; the red dash line indicates the median.

3) TUG Phases: To assess the correctness of recognizing

TUG phases, we check the inferred average duration of each

phase in four different TUG taken by all subjects with the

reference value derived from video observations (see in Fig.

8). Mean accuracies of extracted six TUG phase duration are

94.78%, 91.17%, 82.04%, 90.23%, 84.39%, and 92.47%.

C. Comparison among Results of Different Types of TUG

1) The ratio changing patterns in each phase duration

within a stride time are similar in the E-TUG, the I-

TUG, and the B-TUG. However, the situation of O-TUG

is completely different. In Fig. 9, we present the ratio

of load, foot-flat, stance duration to a corresponding left

foot stride period in the series of four TUG performed

by one of our female testee. It is understandable that the

pattern in the O-TUG is much more complicated than in

the other three tests because the testee uses the arbitrary

foot to step over each obstacle.

2) The change of cadence in the O-TUG process is distinct

and it is worth mentioning that it has an unique sharp

pattern. Cadence trends in the I-TUG and the B-TUG

are either similar to the ones in the E-TUG or quite

irregular. Therefore, Fig. 10(a)-(d) only show cadence

Fig. 8. The graph presented for the verification of extracted TUG phases.
Each colored segment inside a column represents an average value of all
duration of the corresponding TUG phase created by six subjects. Ref: true
values from the video observation. Comp: our system’s computed values.

changing paths of one female and one male subjects in

the E-TUG and the O-TUG.

3) Due to the design of B-TUG, multiple regular turnings

happen during the test. The yaw angle changing pattern

is especial in the B-TUG as a regular turning is detected

using equation (17) with D ≥ 20◦. In Fig. 10(e)-(h),

each vertical line represents a result of a yaw angle value

at the current toe-strike (TS) minus the one at the last

TS. We only present the yaw angle changing patterns in

the E-TUG and the B-TUG since trends of yaw angles

in other two tests are close to the one in the E-TUG.

VI. CONCLUSION AND FUTURE WORK

Due to the existing drawbacks in current fall risk assess-

ments, we propose the Smart Insole TUG (SITUG) designed

for extracting rich and fine features in the Timed Up and Go

in more complex ecological environments advances current

clinical standards for identifying individuals at risk for falling.

The SITUG consists of a sensor-equipped wearable device,

a user-friendly smartphone software, and a well-considered

TUG data analysis module. It offers comprehensive gait fea-

ture extractions and distinguishes six detailed TUG phases,

providing fine-grained information for estimating the fall risk.

According to the results from experiments, the SITUG can

educe three subphase duration in the stance period with the

overall accuracy above 92.9% and recognize all TUG phases

with the mean accuracy around 90%. Moreover, it is competent

in counting the number of strides with the average relative

error 4.77% and estimating the walking distance with the mean

accuracy 93.16% for verifying the computed stride length.

In the future, we plan to improve the system by two main

paths. The first is enabling the SITUG in monitoring the TUG

within the stairs environment. Secondly, we will evaluate the

system in the wider and the older populations. Afterwards, we

believe that our SITUG can achieve a higher level of usability

and reliability in complex ecological environments.
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