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Abstract—Many researches have proved the significance of gait
analysis since it strongly relates to several urgent health issues.
As a response, we develop an unobtrusive sensor device, named
SennoGait, which provides comprehensive gait information. In
this paper, we verify the robustness and reliability of the device’s
hardware components, including a 16 pressure sensors array and
a 9-axis inertial measurement unit with state-of-the-art tools.

I. INTRODUCTION

Gait analysis, a momentous study for recognizing patterns

of normal or abnormal walking, has been applied to a wide

range of health related applications. For instances, the gait

analysis significantly improves the value of Timed-Up-and-

Go, a well accepted test for the fall detection [1]. To this end,

our team developed a novel insole-like wearable gait tracking

device named SennoGait [2]–[9]. It can facilitate fine-grained

gait analysis in both laboratory and real-world environments.

In this paper, our first goal is to verify the accuracy of two

important hardware components of the device, a 16 pressure

sensors array and a 9-axis IMU. In addition, we present the

validation of gait features extracted by the SennoGait.

II. SENNOGAIT OVERVIEW

SennoGait can provide plantar pressure through a 16 pres-

sure sensors array and foot orientation through a 9-axis IMU.

The sensors array and the IMU are the foundation of recording

gait data as they produce pressure, velocity, and acceleration

values which are highly related to gait features such as step

count, step pace, and step length.

Textile Pressure Array: Based on the advanced conductive

eTextile fabric sensor technique, these embedded 16 pressure

sensors in the SennoGait can provide the high-solution pres-

sure map for the sole [10]. Each sensor has size 1 cm by 1
cm. The output pressure value is in unit Pascal.

Inertial Measurement Unit: This unit contains a 3-axis

accelerometer, a 3-axis gyroscope, and a 3-axis magnetome-

ter. The accelerometer provides linear acceleration values of

movements, while the gyroscope is for recording the angular

velocities. In order to establish the baseline of calibration for

the first two subcomponents, the magnetometer is used [2].

III. SENNOGAIT VALIDATION

A. Pressure Sensor Verification

In order to apply precise amount of force onto each of the 16
pressure sensors, a Stable Micro System, TA.XTplus Texture

Analyser, is used. The applied forces are set to be 5, 15, and

Fig. 1. The horizontal lines indicate the references of applied pressure value
(50, 150, and 250 kPa). The index from 1 to 16 corresponds to different
pressure sensors embedded in the SennoGait. The recorded pressure values
with respect to each sensor are presented by colored columns.

TABLE I
THE MEAN AND STANDARD DEVIATION OF ACCURACIES OF SENSORS

Applied Pressure 50 kPa 150 kPa 250 kPa
Mean of Accuracy 95.06% 97.01% 98.69%
Standard Deviation 0.0141 0.0045 0.0034

25 Newtons. The reference pressure values in unit Pascal for

each sensor is computed as the applied force divided by the

size of a single sensor. The results are 50, 150, and 250 kPa.

We obtain the accuracies of our 16 pressure sensors through

dividing each output pressure by the corresponding reference

value (See in Fig. 1 and Table. I).

B. IMU Verification

For verifying SennoGait’s IMU, a commercial IMU device,

SparkFun 9DoF Razor IMU M0, is placed into the center of

an insole-like sponge located under the SennoGait in the left

shoe. Two male and three female testees (50−76 kg in weight

and 157 − 178 cm in height) participate in the experiment

that each performs a 14-meter flat ground walking including a

Fig. 2. (Left) The process of 14-meter flat ground walking. The testee first
walks a 7-meter distance, turns, and then walks back. (Right) The established
Vicon system for the validation of extracted gait features.
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Fig. 3. The linear accelerations in X-axis (Upper) and Y-axis (Lower) of left
feet recorded by the SennoGait’s and SparkFun’s IMUs. A moving-average
filter is applied for the clearness.

Fig. 4. The angular velocities in X-axis (Upper) and Y-axis (Lower) of left
feet recorded by the SennoGait’s and SparkFun’s IMUs. A moving-average
filter is applied for the clearness.

full turn (see in Fig. 2 Left). By comparing the experimental

output of two IMUs both sampling at 100 Hz, we obtain the

reliability of SennoGait in collecting linear accelerations and

angular velocities.

The Pearson correlation coefficients of data, recorded by the

SennoGait’s and the SparkFun’s IMUs, are presented in Table.

II. A very strong correlation exists between the two data sets

as |r| > 0.70, where r stands for each computed coefficients.

Normally, r ranges from −1 to 1. If |r| = 1, a linear

equation describes the relationship between two variables.

If |r| = 0, no linear correlation exists between the two.

In addition, the experimental results of one male testee are

plotted in Fig. 3 and Fig. 4. The pair of graphs in a plot

have similar patterns proving the strong correlation. We select

the linear accelerations and the angular velocities in only X-,

Y-axes since they are more representative in the case of flat

ground walking and turning. As the reliability of accelerometer

and gyroscope is proved, the correctness of magnetometer is

verified as well because it sets the baseline of IMU calibration.

TABLE II
THE PEARSON CORRELATION COEFFICIENTS OF THE DATA PROVIDED BY

THE SENNOGAIT’S AND THE SPARKFUN’S IMUS

Linear Acceleration X-axis Y-axis Z-axis
Pearson Coefficient 0.824 0.819 0.816

Angular Velocity X-axis Y-axis Z-axis
Pearson Coefficient 0.820 0.827 0.818

TABLE III
THE MEAN AND STANDARD DEVIATION OF ACCURACIES OF EXTRACTED

GAIT FEATURES IN DIFFERENT TRIALS

Gait Feature Step Count Step Pace Step Length
Mean of Accuracy 97.33% 97.42% 91.24%
Standard Deviation 0.0072 0.0056 0.0194

C. Gait Feature Verification

Each participant as mentioned in III-B performed another

14-meter flat ground walking with the SennoGait in shoes for

the purpose of validating the device’s capability in gait feature

extraction. To obtain the reference data, a motion capture

system (see in Fig. 2 Right), named Vicon, was monitoring

the experiment using eight Vantage cameras [11], ten Vero

cameras [12], and five 14mm pearl retro-reflective markers

[13] attached around each shoe. We verified three basic gait

features including step count, step pace, and step length. The

results of verification is presented in Table. III.
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