
Adaptive Compressed Sensing Architecture in Wireless
Brain-Computer Interface

Aosen Wang1, Chen Song1, Zhanpeng Jin2 and Wenyao Xu1

1CSE Dept., SUNY at Buffalo, NY, USA
2 ECE Dept., SUNY at Binghamton, NY, USA

{aosenwan, csong5, wenyaoxu}@buffalo.edu, zjin@binghamton.edu

ABSTRACT
Wireless sensor nodes advance the brain-computer interface
(BCI) from laboratory setup to practical applications. Com-
pressed sensing (CS) theory provides a sub-Nyquist sam-
pling paradigm to improve the energy efficiency of electroen-
cephalography (EEG) signal acquisition. However, EEG
is a structure-variational signal with time-varying sparsity,
which decreases the efficiency of compressed sensing. In this
paper, we present a new adaptive CS architecture to tack-
le the challenge of EEG signal acquisition. Specifically, we
design a dynamic knob framework to respond to EEG sig-
nal dynamics, and then formulate its design optimization
into a dynamic programming problem. We verify our pro-
posed adaptive CS architecture on a publicly available data
set. Experimental results show that our adaptive CS can
improve signal reconstruction quality by more than 70% un-
der different energy budgets while only consuming 187.88
nJ/event. This indicates that the adaptive CS architecture
can effectively adapt to the EEG signal dynamics in the BCI.

1. INTRODUCTION
The brain-computer interface (BCI) is a rapidly growing

technology with highly diverse applications [1]. Wireless im-
planted and wearable EEG sensors enable the mobility of B-
CI, yet are also limited by energy inefficiency because of the
high-sampling rate of EEG signals and power-hungry wire-
less communication. The compressed sensing (CS) theory
provides a promising solution to this challenge [2]. The CS
samples the original signal by the sub-Nyquist rate, which is
proportional to its intrinsic information. The reconstruction
algorithms accurately recover the original signal with prov-
ably high probability. However, existing CS architectures
pre-assume that the signal sparsity is known and consisten-
t, which lacks adaptivity to cope with structure-variational
signals, such as EEG.
Recently, there are a few related works about the adap-

tivity of CS frameworks. Malloy et al. proposed a compres-
sive adaptive sense and search (CASS) [3] method to update

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from Permissions@acm.org.
DAC’15, June 07 - 11, 2015, San Francisco, CA, USA
Copyright 2015 ACM 978-1-4503-3520-1/15/06$15.00
http://dx.doi.org/10.1145/2744769.2744792

the matrix on each iteration, which needs to obtain the sig-
nal sparsity ahead of time. Wang et al. [4] presented an
algorithm to adjust the compressive measurement number
dynamically. This method traversed possible measurement
dimensions to compare the signal reconstruction quality and
determine the optimal compression ratio, which is computa-
tionally intensive. However, these works focused on adaptive
algorithms of the signal reconstruction in CS, and to date
there is no sophisticated research about adaptive CS archi-
tecture.

In this paper, we present an adaptive CS architecture for
the BCI applications. We introduce the concept of dynam-
ic knob to specifically deal with the structural-variational
EEG signals. Because of the design considerations of dy-
namic knob, i.e., adaptive controlling and ultra-low power
design, we propose a template-based structure of dynamic
knob in CS using a supervised learning algorithm. Specifi-
cally, we design an support vector machine (SVM) based cas-
caded signal analyzer to recognize the signal structure. We
also model the design space in a close form and formulate
it into a dynamic programming problem. We benchmark
the performance of proposed adaptive CS architecture with
the real EEG signals from publicly available data set [5].
The evaluation results indicate that compared with the tra-
ditional CS [2], the adaptive CS architecture can improve
signal reconstruction quality by more than 70% with the
energy consumption of 187.88 nJ/event under any given en-
ergy constraint.

The remainder of this paper is organized as follows: Sec-
tion 2 introduces the background of Quantized CS theory.
Our proposed adaptive CS architecture is discussed along
with an optimization problem formulation of dynamic knob
design in Section 3, and Section 4 presents the related ex-
periments and evaluations. The conclusion and future work
are described in Section 5.

2. QUANTIZED COMPRESSED SENSING
Compressed sensing theory is a new emerging analog-to-

information sampling scheme for the signals that are known
to be sparse or compressible under certain basis. We assume
that the x is an N -dimension vector and sampled using M -
measurement vector y:

y = Φx, (1)

where Φ ∈ RM×N is the sensing array that models the lin-
ear encoding, and M is defined as the sampling rate in N-
dimensional CS. The elements in Φ are either Gaussian ran-
dom variables or Bernoulli random variables. Because of

M << N , the formulation in Eq. (1) is undetermined, and
the signal x can not be uniquely retrieved from sensing array
Φ and measurements y. However, under a certain sparsity-
inducing basis Ψ ∈ RN×N , the signal x can be represented
by a set of sparse coefficients u ∈ RN :

x = Ψu, (2)

that is, the coefficient u, under the transformation Ψ, has
few non-zero elements. Therefore, based on Eq. (1) and (2),
the sparse vector, u, can be represented as follows:

y = ΦΨu = ΘM×Nu, (3)

where ΘM×N = ΦΨ is an M × N matrix, called the mea-
suring matrix. In practical applications, original signals are
analog in nature and need to be quantized before trans-
mitting and digital processing. Therefore, the compressed
signal, y, should be processed by a quantization model [6]
formulated as follows:

ŷ = Qb(y), (4)

where Qb(.) is the quantization function , and ŷ is the quan-
tized representation of y with b bits. Due to the prior knowl-
edge that the unknown vector u is sparse, u can be estimated
based on ŷ using the ℓ0 minimization formulation as follows:

û = min ∥u∥0 s.t. ∥ŷ −Θu∥ < ϵ, (5)

where ϵ is the reconstruction error margin. The formulation
in Eq. (5) is a determined system with unique solutions.
However, ℓ0 minimization is an NP-hard problem. One of
the methods to solve (5) is to approximate ℓ0 minimization
formulation to ℓ1 minimization formulation:

û = min ∥u∥1 s.t. ∥ŷ −Θu∥ < ϵ. (6)

Under the condition of Restricted Isometry Property (RIP) [7],
the ℓ1 problem is provably equivalent to minimizing ℓ0 prob-
lem. The ℓ1 minimization is convex and can be solved within
the polynomial time. Therefore, the reconstructed signal, x̂,
is retrieved by:

x̂ = Ψû. (7)

3. ADAPTIVE COMPRESSED SENSING AR-
CHITECTURE

In this section, we present our proposed adaptive CS archi-
tecture. First, we introduce the entire framework of adaptive
CS. Then we discuss the core component, dynamic knob, in
the architecture. Specifically, we analyze the knob design
in-depth and model the design criterion in a close form. Fi-
nally, we formulate the design optimization into a dynamic
programming problem for the optimal design.

3.1 Architecture Overview
Towards efficient sensing in EEG-based BCI, we propose

an adaptive CS architecture, which can dynamically recon-
figure its own components based on the input EEG signal.
The entire architecture in BCI is shown in Figure 1. It con-
sists of four key components, i.e., a dynamic knob module,
a randomized encoding module, a quantization module in
adaptive CS front-end, and a signal reconstruction module
in data aggregator.

Figure 1: The block diagram of adaptive CS archi-
tecture in Wireless BCI.

In Figure 1, original analog signals, which usually denote
the raw analog data, x ∈ RN , coming from sensors, are ana-
lyzed by a signal structure analyzer in our proposed dynam-
ic knob. The dynamic knob outputs the optimal parameter
estimation to configure the two functional modules: ran-
domized encoding and quantization. Then the analog data
x is encoded into an M -dimensional vector, y ∈ RM , by
linear encoding ΘM×N . Through the quantization scheme
Qb(.), every measurement becomes a certain b-bit digital
representation, ŷ. A wireless transmitter streams these mea-
surement data to the data aggregator. When the wireless
receiver obtains the data extracted from bit stream, the da-
ta aggregator performs reconstruction algorithms to recover
N -dimension original input signal x from the quantized M -
dimension compressed measurement y. We can see that the
dynamic knob is the core part in adaptive CS architecture,
which acts as the“brain” to control other modules to accom-
modate the adaptivity of EEG signals.

Here, we introduce the models of energy and performance [8]
to evaluate the adaptive CS architecture. In the front-end,
power consumption is dominated by the volume of data
stream in wireless communication. The energy model can
be formulated as follows:

E = C ×M × b, (8)

where M is the sampling rate, b is the bit resolution, and C
is the wireless communication energy per bit, which is deter-
mined by the wireless communication protocol and usually
a constant. In addition, we use the percentage root-mean-
square difference (PRD) as the performance metric of the
entire architecture:

PRD =
∥x− x̂∥2
∥x∥2

× 100%, (9)

where x̂ denotes the recovered signal and x is the original
input signal.

3.2 Dynamic Knob in CS
The dynamic knob framework is the most significant part

specifically designed for sensing adaptivity, which needs a
low-power and high-accuracy design for the mobility of EEG
front-end. The knob is made up of two components, a sig-
nal structure analyzer and a configuration look-up table.
The look-up table will store the pre-calculated configura-
tion parameters. It can be implemented by the ultra-low
non-volatile power memory technology. Therefore, the main
challenge in adaptive CS architecture is to design a low-

Figure 2: The data flow of SVM testing phase on
circuit level.

Table 1: Description of seven attributes in SVM
classification node.

Attributes Description
Parent Category The input category set of

(P c) this classifier
LChild Category The subset of Parent Category

(LC c) when the decision of classifier is −1
RChild Category The subset of Parent Category

(RC c) when the decision of classifier is 1
LChild domain The SVM node ID set that

(LC d) connects to LChild Category
RChild domain The SVM node ID set that

(RC d) connects to RChild Category
energy The average energy consumption
(eny) to identify an input feature vector

accuracy Recognition rate to identify training
(acc) data by the trained SVM classifier

power and high-accuracy signal structure analyzer.
In this part, we introduce a cascade SVM scheme for our

signal structure analyzer, whose preliminary element is the
binary SVM classifier [9]. We take two factors, accuracy
and energy consumption, into consideration simultaneously.
The accuracy can be calculated by recognizing the training
data using the corresponding classifier. For the energy con-
sumption, we need circuit-level implementation of the basic
binary SVM classifier to estimate its power consumption.
We first illustrate the circuit-level implementation of bina-

ry SVM. The main task of dynamic knob is to deal with the
multi-class classification problem, and we only need to con-
sider the testing phase of SVM. We use a time-division mul-
tiplexing strategy to design our implementation, and take
radical basis function (RBF) [10] as the kernel in the SVM
classifier. Considering that it is computationally complicat-
ed to calculate the exponential value on the hardware plat-
form, we adopt the Cordic algorithm [11] to accomplish this
task. The circuit-level details of binary SVM implementa-
tion is illustrated in Figure 2.
When the input vector functions, we calculate the sub-

straction values between the input vector and supporting
vectors, respectively. Then a square operation is executed by
the multiplier for individual components of the subtraction
vector. Subsequent addition operations sum all the squared
values together to a scalar value and prepares for the mul-
tiplication with parameter γ. Then the data goes through
the exponential calculation module (exp) which applies the
Cordic algorithm. Finally, the sum result of the multiplica-
tion between exponential value and paras can be taken as
the indicator for the final binary decision. We can obtain
the paras as the following:

parasi = yi × αi. (10)

Based on the above circuit-level design, we can estimate the
energy consumption of each trained binary SVM classifier.

Figure 3: SVM classification tree: tree-shaped or-
ganization of the SVM classification nodes.

3.3 Problem Formulation
In this part, we mathematically formulate the design of

the signal structure analyzer. We have a large group of
trained binary SVM classifiers, and each binary SVM has
two key attributes, classification accuracy and energy con-
sumption. Then the most important is to find the optimal
SVM-cascade classifier from the complete solution space,
i.e., all kinds of possible combinations of elementary binary
SVM candidates.

This problem is intractable, if we brute-force search for
the optimal solution in the complete solution space. Here,
we develop a tree-based method to transform this problem
to a solvable form within polynomial time. First, some basic
definitions are essential for understanding our problem:

Definition 1. An SVM classification node is a binary
SVM classifier with seven attributes, Parent Category, LChild
Category, RChild Category, LChild domain, RChild domain,
accuracy and energy.

In Definition 1, we emphasis that each SVM classification
node has two child domains (left and right), and each child
domain can arbitrarily connect to other SVM nodes, as the
red-dashed rectangle shown in Figure 3. Another empha-
sis is that the attribute energy indicates the average energy
consumption for a single classification event. For simplicity
of presentation, we directly use nJ, instead of nJ/event, as
SVM node’s energy unit. The detailed attribution descrip-
tion is illustrated in TABLE 1.

Definition 2. An SVM classification tree is a tree con-
sisting of the SVM classification nodes, with its leaf node
indivisible. The connectivity between two nodes is built only
when the Parent Category attribute in child node is equal to
the LChild Category or RChild Category attribute in parent
node.

According to Definition 2, we can see that an SVM classi-
fication tree divides the data set until it cannot be divid-
ed, with only one category left. We provide an example of
building a 4-class SVM classification tree in Figure 3. There
are four classes in the figure, referred to as A, B, C and
D. Each red-dashed rectangle indicates an SVM classifica-
tion node. In the SVM classification node, the top ellipse,

Figure 4: The complete SVM classification tree.

Parent Category, is the data needed to be classified, and
the green rectangle is the SVM classifier. After the deci-
sion of the SVM classifier, we obtain two category subsets,
LChild Category and RChild Category. For example, the
top SVM node is designed to classify the A category from
all other three classes, thus its Parent Category is ABCD,
LChild Category is A and RChild Category is BCD. Since
LChild Category is indivisible, with only the A category, we
continue with classification of the right child set. Here, we
have three choices of how to classify RChild Category into
two groups, B and CD, C and BD, D and BC, respective-
ly. We connect all these three classifiers to the right child
domain of the previous top node. So the LChild domain at-
tribute of the top node is ∅, and RChild domain includes
all the three nodes dividing the BCD set. There are still
three groups with two categories needed to be divided fur-
ther. We continue to train the subsequent classifiers until
there is no node to be split. Therefore, we finished an SVM
classification tree build-up.

Definition 3. A complete SVM classification tree is a
tree with a super dummy node connecting all the possible
SVM classification trees for a specific multi-class classifica-
tion problem.

Based on Definition 3, we build a complete SVM classifica-
tion tree, including all the possible SVM classification nodes
as its tree node, as illustrated in Figure 4. In this complete
tree, we define a new delimiter “|” to simplify the symbol of
our SVM classification node. This is a binary relation sym-
bol, with the variables before the delimiter classified as the
left child and the elements after the delimiter identified as
the right child. The union of both children is the entire input
data set. For example, we show a detailed SVM classifier for
the AB|CD nodes as the dashed black rectangle in Figure
4. Therefore, the design of the signal analyzer changes to
how we search for the optimal SVM cascade classifier on the
complete SVM classification tree.

3.4 Problem Solution
Before we discuss the solution of this design optimization,

we first have a look at some properties of the complete SVM
classification tree.

Lemma 1. If an SVM classification node subset from the
complete SVM classification tree can form a tree with super
dummy node as its root, whose leaves are indivisible and with
all the classes no replication, this SVM node subset provides
a solution for the multi-class classification problem.

According to Lemma 1, we can find some cascade classifier
solutions for the 4-class problem in Figure 4, such as the
cascade of C|ABD, A|BD, B|D and the combination of
AB|CD, A|B, C|D. So the solution will be a single path
from root to specific leaf, or the multi-path combination, as
the AB|CD case, which needs multiple paths to construct
the solution. We can see from the above lemma that the
subset of classifiers, locating on a single path from the root
node to leaf node, is the minimal structural unit to construct
the solution for the multi-class classification problem.

Lemma 2. The complete SVM classification tree is a com-
plete solution space for the multi-class classification problem.

From Lemma 2, we can see that our complete SVM tree
is the complete solution space of all the possible solutions
of multi-class classification. In addition to the Lemma 1,
with paths from root to leaf node, we can conclude that the
optimal cascade classifier must be a single path or multiple
path combination on the complete SVM classification tree.

Our purpose is to find the optimal cascade classifier to
compromise accuracy and energy consumption. We define
an accuracy density, Ad, as the criterion to evaluate the
relationship between accuracy and energy consumption:

Ad =
accuracy

energy
. (11)

From the definition of Eq. (11), we can see that Ad is actu-
ally an indicator of how much accuracy gain can be obtained
by consuming 1 unit of energy for an event. Thus, big Ad
means that more accuracy can be reached by consuming the
same energy. Therefore, if we have the complete solution set
Qs, our objective is to maximize the Ad sum for the cascade
SVM classifiers Cp from Qs, as the following:

Cp = arg max
Cp∈Qs

(
∑
i∈Cp

Adi). (12)

Our strategy is not directly searching for the specific travers-
ing path. On the contrary, we divide the complete SVM
classification tree into several levels according to the cate-
gory number of nodes’ Parent category attribute, as shown
in Figure 4. Then the original design problem can be re-
formulated as the multi-stage decision problem. We define
dp[i][j] as the max sum of Ad at the j-th node on the i-th
level. We apply a dynamic programming algorithm [12] on
this complete SVM classification tree to obtain the optimal
solution, with its recursive formula as the followings:

dp[i][j] = Ad(i, j) + max
LC d

dp[l1][k1]︸ ︷︷ ︸
Left Child

+max
RC d

dp[l2][k2]︸ ︷︷ ︸
Right Child

, (13)

From the formulation in Eq. (13), we can see that the
programming path is proceeding by the connectivity among
nodes, not trying to find a specific path. Each node updates
its accuracy density accumulation by the sum of the max
Ad of left child, the max Ad of right child and the Ad in its
own node. The time complexity of Dynamic Programming
on our complete SVM tree is O(n2), where n is the total
number of all the SVM classification nodes. After updating
all the accuracy density accumulation of SVM nodes, we
can obtain the largest Ad, whose programming path is the
optimal SVM cascade classifier solution.

Figure 5: An example of the optimal cascade SVM
classifier, consisting of three binary SVM nodes.

Table 2: Node characterization in the optimal solu-
tion

ID P c LC c RC c acc eny Ad
(%) (nJ) (%/nJ)

1 1234 2 134 86.67 62.45 1.39
2 134 1 34 100 76.67 1.30
3 34 3 4 100 48.76 2.05

Total – – – – 187.88 4.74

4. EXPERIMENTS
In this section, we evaluate our proposed adaptive CS ar-

chitecture. We characterize the design of dynamic knob first,
and then compare the performance between traditional CS
and adaptive CS architecture.

4.1 Dynamic Knob Characterization
In this part, we discuss the characterization of our dy-

namic knob design. We choose the EEG dataset from Phy-
sionet [5] as our test bench, initially 120 continuous 128-
sample EEG segments with 60 as the training set and the
other 60 as the testing set. We take the Libsvm tool [13] to
train the basic SVM classifier. For the energy simulation,
we implement our dynamic knob design by verilog using ver-
ilog compile simulator (VCS) in Synopsys. We use design
compiler (DC) to synthesize our design with TSMC 130nm
standard cell library and report the power consumption by
the Power Compiler.
After obtaining the accuracy and energy attributes, we

build the complete SVM tree, including 7 SVM classification
trees, for the 4-class classification problem of EEG signals.
We execute dynamic programming on the complete SVM
classification tree, and the programming path corresponding
to the largest Ad sum value is the optimal cascade classifier
combination. The final optimal solution includes 3 SVM
nodes, with the highest Ad sum value 4.74 %/nJ. Related
node characteristics and their relationship are illustrated in
TABLE 2 and Figure 5, respectively.
The optimal solution is a sequential cascade SVMs, as

shown in Figure 5. The input signal vector first goes through
the number 1 SVM node. If the decision is Category 2, the
recognition is terminated, labeling the input signal as Cate-
gory 2. On the alternative decision, the input feature vector
continues to be verified by number 2 SVM node, as the red
arrow line shows. If the result is Category 1, the classifica-
tion task is over. Otherwise, the input vector needs to be
identified by the last SVM node, number 3. Based on its de-
cision, the input feature can be recognized as Category 3 or
Category 4. The total energy consumption in this analyzing
procedure is 187.88 nJ/event, as listed in TABLE 2.

4.2 Adaptive CS v.s. Traditional CS

Figure 6: PRD of Segment 55 under three cases,
the traditional CS, the adaptive CS and the lower
bound.

After characterizing the dynamic knob, we would like to
examine the PRD improvement in our adaptive CS archi-
tecture. We simulate the CS architecture using Matlab on
PC with Intel Core i7, 3.4GHz and 8G RAM. We employ
inverse discrete wavelet transform (IDWT) as the sparsity-
inducing transformation basis, Ψ. All of our experiments
use Bernoulli random variables as sensing array and select
the uniform quantization strategy.

Towards practical BCI, we adopt an IPv6-based commu-
nication model over Bluetooth Low Energy (BLE) on real
devices [14] to model energy consumption of wireless data
transmission. The throughput of EEG is 0.5 KBytes/s, and
the 128-length segment can be transmitted in one packet.
Thus, according to the experiment of connection mode of
BLE, the energy consumption of this setup is 325 KBytes/J,
that is, C = 0.4 uJ/bit in the energy model.

For the sake of comparison, we calculate the PRD of both
adaptive CS and traditional CS with all energy bounds be-
tween 64 and 819 uJ. In the traditional CS architecture, its
bit resolution is set as 16 with sampling rate ranges from
10 to 128. The adaptive CS can reconfigure sampling rate
M , 10 ∼ 128, and bit resolution b, 1 ∼ 16. We use all
the 60 EEG segments in the testing set to go through the
two architectures. We also show the lower bound of PRD
from brute-forcing, which is the optimal solution in the en-
tire performance-energy space. Figure 6 illustrates the three
PRD curves under each energy bound for the EEG segment
55.

From Figure 6, we can see that the traditional CS, blue
dashed line, is always with the largest PRD in all cases of
energy bounds. Our adaptive CS, red line, is much better
than the traditional constant bit resolution case. As energy
bound increases, the PRD of adaptive CS case gradually
approximates to the lower bound. this is because larger
bit resolution can reduce the truncated data noise from the
quantization procedure. Then sampling rate M gradually
takes advantage to affect the reconstruction. This indicates
that our adaptive CS architecture can adapt to the structure
variation in the EEG signal for adaptive sensing.

The average reconstruction quality improvement of all the
60 testing segments are evaluated. For simplicity of data
representation, we define APRD, the average PRD, as the
performance metric on all the energy bounds for a specific

Figure 7: Average PRD of EEG segments under
three cases: the traditional CS, the adaptive CS and
the lower bound case.

testing segment, as follows:

APRDi =
1

|EB|
∑

j∈EB

PRD(i, j), (14)

where EB is the energy bound set, |EB| is the total number
of the bounds and PRD(i, j) refers to the reconstruction
error under energy bound j of segment i. Based on the Eq.
(14), we can plot select average PRD values from the EEG
testing set in Figure 7.
In Figure 7, we can see that our adaptive CS, denoted

by the red bar, can significantly improve the PRD com-
pared to traditional CS architecture, shown as the yellow
bar. On the other hand, the difference between adaptive CS
and the lower bound, indicated by the black bar, is small,
which indicates that our adaptive CS is close to the opti-
mal performance. Also, we can observe the change of signal
intrinsic information over different EEG segments through
their PRDs in the lower bound case.
Specifically, we define the relative enhancement index (REI)

to quantitatively evaluate the improvement in our adaptive
CS architecture, whose form is as follows:

REI =
APRDTCS −APRDACS

APRDTCS −APRDLB
, (15)

where APRDTCS is the average PRD of traditional CS, then
APRDACS and APRDLB refer to the PRD from the adap-
tive CS case and the lower bound case. Because the aver-
age PRD has its lower bound, the improvement should be
a ratio by the difference between APRDTCS and APRDLB

as the denominator, which is the maximum value in theo-
ry, and the improvement contributed by our adaptive CS,
APRDTCS −APRDACS , as the numerator. Once calculat-
ing the REI for each EEG segment, we can obtain 73.49%
relative enhancement of average PRD, resulting from our
adaptive CS. Therefore, our adaptive CS architecture can
excellently accommodate to EEG signal dynamics in BCI,
with its 73.49% reconstructed signal quality improvement.

5. CONCLUSION AND FUTURE WORK
In this paper, we introduced an adaptive CS architecture

for BCI. We presented the entire framework of adaptive C-
S architecture. Then we proposed a specific dynamic knob

design to dynamically control other components. We model
the optimal knob design to a dynamic programming for-
mulation. Eventually, we verified our proposed adaptive CS
architecture by experiments on continuous EEG signals. We
analyzed the characterization of the dynamic knob and dis-
cuss its impact on CS architecture. We demonstrated that
our adaptive CS architecture can greatly improve the signal
reconstruction quality to adapt to signal dynamics in BCI.

In the future work, we will consider designing energy-
aware supervised learning methods. Another direction is to
apply more accurate supervised learning algorithms to im-
prove the architecture performance towards signal dynam-
ics.

6. ACKNOWLEDGMENTS
This work is in part supported by NSF CNS-1423061/1422417,

NSF/AFOSR ECCS-1462498/1462473 and the Ohio Occu-
pational Safety and Health Research Program.

7. REFERENCES
[1] C-T Lin, L-W Ko, M-H Chang, J-R Duann, J-Y Chen, T-P

Su, and T-P Jung. Review of wireless and wearable
electroencephalogram systems and brain-computer
interfaces–a mini-review. Gerontology, 56(1):112–119, 2009.

[2] David L Donoho. Compressed sensing. Information Theory,
IEEE Transactions on, 52(4):1289–1306, 2006.

[3] Matthew L Malloy and Robert D Nowak. Near-optimal
adaptive compressed sensing. In Signals, Systems and
Computers (ASILOMAR), 2012 Conference Record of the
Forty Sixth Asilomar Conference on, pages 1935–1939.
IEEE, 2012.

[4] Xing Wang, Wenbin Guo, Yang Lu, and Wenbo Wang.
Adaptive compressive sampling for wideband signals. In
Vehicular Technology Conference (VTC Spring), 2011
IEEE 73rd, pages 1–5. IEEE, 2011.

[5] George B Moody, Roger G Mark, and Ary L Goldberger.
Physionet: a web-based resource for the study of
physiologic signals. IEEE Eng Med Biol Mag, 20(3):70–75,
2001.

[6] Aosen Wang, Wenyao Xu, Zhanpeng Jin, and Fang Gong.
Quantization effects in an analog-to-information front-end
in eeg tele-monitoring. Circuits and Systems II: Express
Briefs, IEEE Transactions on, 62(2):104–108, 2014.

[7] Argyrios Zymnis, Stephen Boyd, and Emmanuel Candes.
Compressed sensing with quantized measurements. Signal
Processing Letters, IEEE, 17(2):149–152, 2010.

[8] Aosen Wang, Chen Song, and Wenyao Xu. A configurable
quantized compressed sensing architecture for low-power
tele-monitoring. In Green Computing Conference (IGCC),
2014 International, pages 1–10. IEEE, 2014.

[9] Corinna Cortes and Vladimir Vapnik. Support-vector
networks. Machine learning, 20(3):273–297, 1995.

[10] S Lukaszyk. A new concept of probability metric and its
applications in approximation of scattered data sets.
Computational Mechanics, 33(4):299–304, 2004.

[11] Jack E Volder. The cordic trigonometric computing
technique. Electronic Computers, IRE Transactions on,
(3):330–334, 1959.

[12] Eric V Denardo. Dynamic programming: models and
applications. Courier Dover Publications, 2003.

[13] Chih-Chung Chang and Chih-Jen Lin. Libsvm: a library
for support vector machines. ACM Transactions on
Intelligent Systems and Technology (TIST), 2(3):27, 2011.

[14] Matti Siekkinen, Markus Hiienkari, Jukka K Nurminen,
and Johanna Nieminen. How low energy is bluetooth low
energy? comparative measurements with zigbee/802.15. 4.
In Wireless Communications and Networking Conference
Workshops (WCNCW), pages 232–237. IEEE, 2012.

