Special Session 6: Neuromorphic Computing and Deep Neural Network

GLSVLSI *19, May 9-11, 2019, Tysons Corner, VA, USA.

ADMM-based Weight Pruning for Real-Time Deep Learning
Acceleration on Mobile Devices

Hongjia Li Ning Liu Shaokai Ye
li hongjia@husky.neu.edu Xiaolong Ma Tianyun Zhang
Northeastern University Sheng Lin Syracuse University
Boston, USA Northeastern University Syracuse, USA
Boston, USA
Xue Lin Wenyao Xu Yanzhi Wang

xue. lin@northeastern.edu
Northeastern University
Boston, USA

ABSTRACT

Deep learning solutions are being increasingly deployed in mobile
applications, at least for the inference phase. Due to the large model
size and computational requirements, model compression for deep
neural networks (DNNs) becomes necessary, especially considering
the real-time requirement in embedded systems. In this paper, we
extend the prior work on systematic DNN weight pruning using
ADMM (Alternating Direction Method of Multipliers). We integrate
ADMM regularization with masked mapping/retraining, thereby
guaranteeing solution feasibility and providing high solution qual-
ity. Besides superior performance on representative DNN bench-
marks (e.g., AlexNet, ResNet), we focus on two new applications
facial emotion detection and eye tracking, and develop a top-down
framework of DNN training, model compression, and acceleration
in mobile devices. Experimental results show that with negligible
accuracy degradation, the proposed method can achieve significant
storage/memory reduction and speedup in mobile devices.

CCS CONCEPTS

« Computing methodologies — Neural networks; Real-time
simulation;

KEYWORDS

Mobile devices, neural networks, acceleration, real-time

ACM Reference Format:

Hongjia Li, Ning Liu, Xiaolong Ma, Sheng Lin, Shaokai Ye, Tianyun Zhang,
Xue Lin, Wenyao Xu, and Yanzhi Wang. 2019. ADMM-based Weight Pruning
for Real-Time Deep Learning Acceleration on Mobile Devices. In Great Lakes
Symposium on VLSI 2019 (GLSVLSI ’19), May 9-11, 2019, Tysons Corner, VA,
USA. ACM, New York, NY, USA, 6 pages. https://doi.org/10.1145/3299874.
3319492

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

GLSVLSI 19, May 9-11, 2019, Tysons Corner, VA, USA

© 2019 Association for Computing Machinery.

ACM ISBN 978-1-4503-6252-8/19/05...$15.00
https://doi.org/10.1145/3299874.3319492

wenyaoxu@buffalo.edu
University at Buffalo
Buffalo, USA

501

yanz.wang@northeastern.edu
Northeastern University
Boston, USA

1 INTRODUCTION

Recently, deep learning has been expanded into many new applica-
tion fields, such as automatic drive system, 3D printing detection,
and medical imaging and diagnosis [15, 19, 25]. As an example for
the latter application, deep neural networks (DNNs) can be trained
for the detection of facial expressions and performing eye track-
ing for the patients [6, 16]. By extracting complex and high-level
features from large-scale data, DNNs can achieve a high accuracy
and provide significant help and convenience for both doctors and
patients.

DNN:ss are typically trained in an offline manner, and are often
deployed in low-power, embedded, or mobile devices during in-
ference. One of the major challenges is the large model size and
computational requirement, which makes it difficult for real-time
implementation in mobile devices. To overcome this challenge,
many efforts have been devoted to DNN model compression from
both industry and academia. One pioneering work [9] adopts an
iterative heuristic for DNN weight pruning, achieving good pruning
results: 9x weight reduction in AlexNet [17] and 12X in LeNet-5
[18]. Despite the promising results, the compression gain mainly
focuses on the fully-connected (FC) layers, and the pruning ratio is
limited on convolutional (CONV) layers (e.g., 2.7x for CONV layers
in AlexNet). This limitation needs to be overcome as CONV layers
become the most computationally intensive layers in current DNNs
[11, 17].

Later weight pruning work extend to (i) use more sophisticated
heuristic such as both weight prune and grow [4, 8], (ii) strike a
desirable tradeoff between pruning ratio and accuracy, and (iii)
incorporate regularity or structure in weight pruning framework
[12, 26]. To partially overcome the heuristic nature, recently, a
systematic DNN weight pruning framework has been proposed in
[27], based on the powerful ADMM (Alternating Direction Methods
of Multipliers) technique [1]. This work formulates the DNN weight
pruning problem as a mathematical optimization problem, and
observes the compatibility between the combinatorial constraints
(associated with weight pruning) with ADMM. It achieves improved
weight pruning results, 21X on AlexNet and 71.2X on LeNet-5, with
no accuracy loss. However, this work adopts a direct application of
ADMM, and lacks rigorous guarantee on feasibility (satisfying all

https://doi.org/10.1145/3299874.3319492
https://doi.org/10.1145/3299874.3319492
https://doi.org/10.1145/3299874.3319492

Special Session 6: Neuromorphic Computing and Deep Neural Network

constraints) and solution quality due to the non-convex objective
function.

Using [27] as the starting point, this work first develops a sys-
tematic, algorithmic DNN weight pruning framework, with an inte-
gration of ADMM regularization and masked mapping/retraining
steps. In this way the solution feasibility can be guaranteed and
solution quality (test accuracy) can be improved. The proposed
framework outperforms prior work on representative benchmarks
such as AlexNet and LeNet-5, and also achieves 18X weight reduc-
tion on ResNet-50 [11], which is widely accepted to be difficult
for compression. We further incorporate structured pruning [26],
including filter-wise, channel-wise, and filter shape-wise sparsities,
into the ADMM regularization framework, thereby facilitating high
parallelism and hardware implementations.

Deep learning solutions are being increasingly deployed in mo-
bile applications, at least for the inference phase[20]. Due to the
large model size and computational requirements, model compres-
sion for deep neural networks (DNNs) becomes necessary, espe-
cially considering the real-time requirement in embedded systems.
For real-world and real-time applications, we apply the proposed
framework on two medical-related applications and implement
on different embedded systems. The first application is the facial
emotion recognition [6]. The second application is eye tracking
[16]. DNNs for both applications are mainly CONV layers. The first
application uses the FER-2013 dataset [6], and we prune 78.33%
of total weights with (almost) no accuracy loss. We can achieve
97.2% weight reduction in the second application. For inference
acceleration in mobile devices, we use sparse matrices and dictio-
nary of keys[5] for weight representation and computation after
pruning, and perform testing on three mobile devices. We achieve
10x speedup and 13.2x speedup on these two applications, respec-
tively, when testing on mobile devices. Our models are released at
the anonymous link https://bit.ly/2P1ehdb.

2 A SYSTEMATIC WEIGHT PRUNING
FRAMEWORK USING ADMM

2.1 Systematic View of Weight Pruning

Similar to [27], we provide a systematic view of DNN weight prun-
ing during training as an optimization problem. Consider a general
N-layer DNN. Sets of weights and biases of the i-th (CONV or FC)
layer are denoted by W; and b;, respectively. Let us denote the
loss function of the N-layer DNN as f({Wl}fil {bi}l{il). Then
the overall problem is defined as

{bi}f\il),

., N.

minimize f {W}I\i ,
{Wi} {b;} (Wikisy (1)
subjectto W; € S§;, i =1,..

The set S; = {Wi|card(supp(W,~)) < ai} reflects constraint for
weight pruning, where ‘card’ refers to cardinality and ‘supp’ refers
to support set. Elements in S; are W; solutions, satisfying that
the number of non-zero elements in W; is limited by «; for layer
i. Because of such combinatorial constraints, problem (1) cannot
be solved using conventional stochastic gradient descent which
assumes no hard constraints. This is key reason that prior work
use heuristic methods to get rid of these constraints. To overcome

502

GLSVLSI *19, May 9-11, 2019, Tysons Corner, VA, USA.

this limitation, a key observation is that such form of combinatorial
constraints is compatible with ADMM technique.

2.2 Connection to ADMM

ADMM [23, 24] is a powerful optimization tool, by decomposing an
original problem into two subproblems that can be solved separately
and iteratively. Consider optimization problem

min £(x) + 9x). @)

In ADMM, the problem is first re-written as
(3)

rilizn f(x) + g(z), subjectto x = z.
Next, by using augmented Lagrangian [1], the above problem is de-
composed into two subproblems on x and z. The first is miny f(x)+
q1(x|z), where qi1(x|z) is a quadratic function of x with fixed z.
Subproblem 2 is minz g(z) + q2(z|x), where g2(z|x) is a quadratic
function on z with fixed x. The two subproblems will be solved
iteratively until convergence is achieved [23, 24].

ADMM is conventionally utilized to accelerate convergence of
convex optimization problems. The optimality and fast convergence
have been proven for convex problems [1, 23]. As a special prop-
erty, ADMM can effectively deal with a subset of combinatorial con-
straints and yields optimal (or at least high quality) solutions [14, 21].
Our observation is that associated constraints in DNN weight prun-
ing belong to this subset. More specifically, we use indicator func-
tions to incorporate combinatorial constraints into objective func-

0 ifW; € S;
tion. The indicator functions are g;(W;) = ! b

+o0o otherwise
Then problem (1) becomes:
N
minimize FEWEL DY) +) g:i(W)) (4)
R i=1

Despite the compatibility of the combinatorial constraints with
ADMM, there is difficulty in using ADMM directly due to the non-
convex nature of the objective function in (1). Therefore, special
mechanisms are needed to guarantee the solution feasibility and
solution quality.

2.3 Systematic DNN Weight Pruning

Instead of direct application of ADMM, we develop an integrated
framework of ADMM regularization and masked mapping and re-
training as showed in Algorithm 1. We guarantee solution feasibility
(satisfying all constraints) and provide high quality (maintaining
test accuracy).

The ADMM regularization starts from a DNN model without
compression. By incorporating auxiliary variables Z;’s, and dual
variables U;’s, we decompose (4) into two subproblems, and itera-
tively solves them until convergence. The first subproblem is

minimize f({wz }{11 >

b3) +
(W, }, {b; } {bikicy)

s

1l
—-

pi
FIWi = Z{ + UFIE. ()
1
The first term in (5) is the differentiable (non-convex) loss function
of the DNN, while the other quadratic terms are differentiable and
convex. As a result, this subproblem can be solved by stochastic

https://bit.ly/2P1ehdb

Special Session 6: Neuromorphic Computing and Deep Neural Network

gradient descent similar to the one that would be used to train the
original DNN.
The second subproblem is

N
minimize gi(Z;) +
() ,; o

N

Biwk -z + b ©
i=1
The optimal, analytical solution is the Euclidean projection of
Wi.““ + U{.‘ onto the set S;. Since «; is the desired number of
weights after pruning in the i-th layer, we can prove that the Eu-
clidean projection results in keeping «; elements in Wé‘“ + U;‘
with the largest magnitudes and setting the remaining weights to
zeros. After both subproblems solved, we update the dual variables
U; as Eqn. (7) and complete one iteration in ADMM regularization.

7

Masked Mapping and Retraining: We extend the formulation in
[27] by introducing masked mapping and retraining step. After
ADMM regularization, we obtain intermediate W; solutions. In
this step, we first perform the said Euclidean projection (mapping)
to guarantee that at most a; weights in each layer are non-zero.
Next, we mask the zero weights and retrain the DNN with non-zero
weights using training sets (while keeping the masked weights 0).
In this way test accuracy can be partially restored.

Algorithm 1 shows the pseudo-codes of the proposed weight
pruning training algorithm, in which ADMM_ITERA
TION is normally set as 7 of MAX_ITERATION_FOR_SGD.

U{;+1 _ Ulic + Wli<+1 _ Zifﬂ

Algorithm 1: Systematic Weight Pruning Training Algorithm
using ADMM

1 Initialize training hyperparameters;

2 for CURRENT _ITERATION <
MAX_ITERATION_FOR_SGD do

3 Solve(Eqn. (5));

4 if CURRENT_ITERATION % ADMM_ITERATION == 0

then
5 Solve(Eqn. (6));
6 Solve dual update according to Eqn. (7);
7 end

s end
9 Masked mapping;
10 Retrain the pruned model;

Feasibility and Solution Quality: One can observe that con-
straints on weight pruning are satisfied through the mapping step
and that the retraining process restores the accuracy loss of map-
ping. ADMM regularization acts as a smart, adaptive DNN regular-
ization (see Eqn. (5)), where the regularization targets are dynami-
cally updated in each iteration by solving subproblem 2 (optimally
and analytically). This is one key reason that this method outper-
forms many prior works on DNN weight pruning based on fixed
regularization [26], where regularization targets are not updated.

Sample Results on Representative DNNs: Sparse matrices
are employed for representing the pruned weights due to the re-
duced space complexity (by storing only the non-zero entries and

503

GLSVLSI *19, May 9-11, 2019, Tysons Corner, VA, USA.

Table 1: Sample results on representative DNNs

A Pruni
Network Method ceuracy Weights runing
Loss Rate
Network Pruning [10] 0.0% 34.5K 12.5x
LeNet-5 -
(99.2%) Direct ADMM[27] 0.0% 6.05K 71.2x
o Our Proposed Method 0.2% 2.58K 167x
Network Pruning [10] 0.0% 6.7M 9x
AlexNet NEST [4] 0.0% 3.9M 15.7x
(80.2%) Direct ADMM[27] 0.0% 2.9M 21x
Our Proposed Method 0.1% 1.9M 31x
ResNet-50 Fine-grained Pruning [22] 0.1% 12.6M 2.6x
(92.4%) Our Proposed Method 04% 2.18M 15x
ik ur frop 0.3% 182M 18x

Channel-wise(W). , .. Shape-wise(W). p,ca

Filter 1 Filter 1 Filter 1
Filter 2 Filter 2 Filter 2
Filter N Filter N Filter N

Figure 1: Examples of filter-wise, channel-wise and shape-
wise structured sparsities.

index to the next non-zero entry) and associated computation sav-
ings. We have performed testing on representative DNNs, LeNet-5
[18] for MNIST dataset, and AlexNet [17] and ResNet-50 [11] for
ImageNet dataset. As shown in Table 1, we achieve 167x reduc-
tion in number of weights in LeNet-5, 31x in AlexNet, and 15x in
ResNet-50, with (almost) no accuracy loss. These results consis-
tently outperform prior arts especially on ResNet, which is difficult
for pruning in prior work.

2.4 Incorporating Structures in Weight Pruning

As discussed before, the DNN after weight pruning is an irregular,
sparse neural network, and sparse matrices with indices are uti-
lized for weight storage. One clear disadvantage is the limitation on
parallelism degree and therefore degradation in hardware perfor-
mance as also observed in [26]. Prior work (e.g., [26]) incorporates
regularity or “structures” in DNN weight pruning in order to solve
this problem, but lacks a systematic approach to achieve this goal.

We make an observation that structured pruning is compatible
with the ADMM-based weight pruning framework, and therefore
can be solved systematically. We use CONV layers (the most com-
putationally intensive in current DNNs [11, 17]) as an illustrative
example while FC layers can be treated similarly. There are three
types of structured sparsities, filter-wise, channel-wise, and shape-
wise sparsities as shown in Figure 1.

Special Session 6: Neuromorphic Computing and Deep Neural Network

Feature Map: H X W X C

CONV Weight: N filters, each K X K x C 7
J
m row-wise sparsity
1 g
/ v
| ——
C) 5 N
—
5 1) %
| —) column-wise sparsity
N x (K? x C) Matrix S
I —
~/

(K2 x C) x D Matrix

Figure 2: Examples of GEMM in CONV layer and effect of
structured sparsities.

CONYV operations in DNNs are commonly transformed to matrix
multiplications by converting weight tensors and feature map ten-
sors to matrices [3], named general matrix multiplication or GEMM,
as shown in Figure 2, in order to facilitate implementation from mo-
bile devices to GPUs. Filter-wise pruning corresponds to reducing
number of rows, while channel-wise and filter shape-wise prun-
ings correspond to reducing the number of columns. As a result,
a combination of the said three structured sparsities will reduce
the dimension in GEMM while maintaining a full matrix, thereby
facilitating acceleration in mobile/hardware platforms.

All the above three structured pruning scenarios can be incor-
porated into the ADMM regularization framework. For filter-wise
sparsity as an example, the constraint set S; will indicate that the
number of nonzero filters in W; is less than a predefined value. For
channel-wise sparsity, constraint set S; will indicate that the num-
ber of nonzero channels in W; is less than a predefined value. In
this way structured pruning will replace the second subproblem in
(6), and the optimal Euclidean mapping will be derived accordingly.
The first subproblem in (5) and the masked mapping/retraining step
will maintain the same form (and solution method).

3 MOBILE IMPLEMENTATION/
ACCELERATION OF PRUNED DNNS

In this section, we describe mobile implementation/ acceleration of
the inference phase of pruned DNNs. As shown in Figure 3, there
are four high-level modules on Android-based platforms: model
constructor, parameters loader, dataset loader and inference engine.
In the first module, the network architecture will be constructed
and through parameters import, pre-trained weights and bias will
be loaded. In the third module, the test data are loaded through
camera or files and we perform inference in the last module through
C++ interface.

Since GEMM is utilized for CONV layer computation in mobile
systems, and CONV layer is the most computationally intensive
layer, we adopt sparse matrices in GEMM based on the weight prun-
ing results. Specifically, the computational complexity is reduced
from O(N3) to O(K - N), where N is weight matrix dimension, and
K is the number of non-zero elements in the matrix. We implement
sparse matrix computation in a bottom-up manner from C++ array

GLSVLSI *19, May 9-11, 2019, Tysons Corner, VA, USA.

Model Setting

----------- -+ Model Constructor
Parameters Inference Prediction
----------- -+ Parameters Loader Engine | [~ 7
C++ Interface
Input Data

___________ —»

Dataset Loader

Figure 3: Building blocks of software implementation.

template, instead of existing libraries (e.g., OpenCV [2], Eigen [7]).
This is because of the limited scalability of the mobile version of
such libraries to support large-scale DNNs.

The DNN inference acceleration algorithm is shown in Algo-
rithm 2, focusing on GEMM acceleration for a specific layer. In each
layer, the input matrix and weight matrix in GEMM are denoted
by X and W, respectively. The bias vector is b. To accelerate the
computation, the structure of the weight matrix W is transformed
to the sparse matrix structure denoted as W’, in which Dictionary
of Keys is adopted to efficiently construct and represent. Step 5 to
12 show the details of the general multiplication of the dense input
matrix X and the sparse weight matrix W’. The dimensionality of
W’ is K x 3.

Algorithm 2: Pruned Model Inference Algorithm on Mobile
Devices (focusing on GEMM for one layer)

1 Input: m X n matrix X;
2 Parameters: W, b;
3 Output: matrix Y;

/* convert dense matrix to sparse matrix */
1 W «W;
/* sparse matrix * dense matrix operation */

for index <« 0 until K do
row < W,index,0§

o o«

7 col « W,index,l;

8 value «— W/index,z;

9 for j « 0 until ndo

10 ‘ Yrow,j < Yrow,j + value * X;qp j;
1 end

12 end

B3Y<—Y+b;

14 ReturnY;

4 EXPERIMENTAL RESULTS AND
DISCUSSIONS
In this section, we perform evaluation on two medical related appli-

cations, starting from DNN construction, systematic weight pruning
using ADMM, and finally implementation of DNN inference on

Special Session 6: Neuromorphic Computing and Deep Neural Network

GLSVLSI *19, May 9-11, 2019, Tysons Corner, VA, USA.

Table 2: Platforms under test and specifications.

Platform Android Primary CPU Companion CPU CPU Architecture GPU RAM (GB)
Huawei Honor 6X 7 (Nougat) 4 X 2.1GHz Cortex-A53 4 X 1.7GHZ Cortex-A53 ARMv8-A Mali T830 3
LG Nexus 5X 8.1 (Oreo) 4 x 1.4 GHz Cortex-A53 2 x 1.8GHz Cortex-A57 ARMvS-A Adreno 418 2
Huawei Honor 10 8.1 (Oreo) 4 x 2.4 GHz Cortex-A73 4 x 1.8 GHz Cortex-A53 ARMvS-A Mali-G72 MP12 6

multiple mobile devices to evaluate the applicability of the infer-
ence phase. Table 2 summarizes the specifications of test mobile
platforms.

The performance evaluation includes two aspects: (a) storage
reduction due to the reduced DNN model size, (b) inference accel-
eration (running time reduction). The largest portion of inference
time is from GEMM operation, which will benefit from sparse matri-
ces. We compare the run-time cost of GEMM as well as the overall
run-time.

4.1 Case I: Facial Emotion Recognition

Facial emotion recognition is utilized in many fields such as medical,
entertainment and security. For this application, FER-2013 face
database [6] is used to train and test the DNN model. The dataset
comprises a total of 35,887 pre-cropped, 48-by-48-pixel grayscale
images of faces each labeled with one of the 7 emotion classes:
anger, disgust, fear, happiness, sadness, surprise, and neutral. Due
to the small portion of the disgust class, the dataset is merged into
six classes including angry, fear, happy, sad, surprise, and neutral
[13].

A typical DNN is constructed, comprising 9 CONV layers with
one max-pooling after every three CONV layers. There are 32, 64,
and 218 filters in these three CONV-layer groups, respectively. In
addition, 2 FC layers are constructed followed by a softmax layer
in the end. Table 3 shows the weight pruning result. Our pruning
algorithm can achieve a high compression ratio by 4.6x without
accuracy loss.

Table 3: Weight Pruning Result on Facial Emotion Recogni-
tion Model

Layer Weights Weights after prune Matrices sparsity
convl 288 230 20%
conv2 9216 3687 60%
conv3 9216 2765 70%
conv4 18432 3687 80%
conv>s 36864 7373 80%
conv6 36864 5530 85%
conv7 73728 11060 85%
conv8 147456 22119 85%
conv9 147456 22119 85%
fc1 294912 88474 70%
fc2 4096 1639 60%
fc3 384 154 60%
Total 778912 168837 78.33%

In Table 4, the overall performance is shown including the ac-
curacy and inference time on various mobile systems. According

505

to the results, the overall acceleration of the pruned model can
achieve up to 10x, while the GEMM acceleration can achieve up to
22x compared with the non-pruned model. The actual speedup is
even higher than the pruning ratio, due to two reasons: (i) we focus
more on the pruning of computationally intensive CONV layers
than FC layers, and (ii) the bandwidth requirement is also reduced
besides computation reduction.

Table 4: Performance of Facial Emotion Recognition Model
on Mobile Devices

Model Pruned model Speedup
Accuracy 58.2056% 58.0663% -
Overall 0.971s 0.133s 7.3x
Honor 6X —=e N 0.9255 0.082s 11.3x
Overall 0.161s 0.015s 10x
Nexus SX —=eMM 0.137s 0.006s 22x
Honor 10 Overall 0.304s 0.046s 6.6x
GEMM 0.283s 0.025s 11.3x

4.2 CaseII: Eye Tracking

Eye tracking is one widely used application in many areas such
as human-computer interaction, medical diagnoses, psychological
studies and computer vision. To implement the weight pruned eye
tracking model for embedded systems, we use GazeCapture, a large-
scale mobile eye tracking dataset, containing data from over 1,450
people with almost 2.5M frames [16].

The eye tracking DNN model takes as input the detected and
cropped portions of the original frame, including left eye, right eye,
and face images (all of size 224 x 224). Additionally, the face grid
is considered as another input, with a binary mask to indicate the
location and size of the head within the frame (of size 25 x 25). The
output is the distance, in centimeters, from the camera. The whole
model consists of 13 CONV layers and 7 FC layers. Compared with
typical DNN, the eye tracking network has a more complicated
architecture. It consists of three small typical DNNs taking inputs
from the right eye, left eye and face respectively. The outputs get
concatenated and go through 7 FC layers along with the input from
face grid. The details of model structure are demonstrated in [16].
The network architecture also shows a big impact on the overall
real-time speedup.

After applying our weight pruning method, the weight reduction
result is shown in Table 5. The overall pruning ratio can achieve 36x.
The total number of weights is reduced from 718K to 19K. The per-
formance on three mobile devices is demonstrated in the following
Table 6. The pruned model achieves up to 13x speedup compared
with the non-pruned model, especially, the GEMM computing time
gets accelerated up to 28x.

Special Session 6: Neuromorphic Computing and Deep Neural Network

Table 5: Weight Pruning Result of Eye Tracking Model

Layer =~ Weights Weights after prune Matrices sparsity
conv-el 4875 3413 30%
conv-e2 102400 512 99.5%
conv-e3 73728 369 99.5%
conv-e4 8192 1229 85%
conv-f1 4875 3413 30%
conv-f2 102400 512 99.5%
conv-f3 73728 369 99.5%
conv-f4 8192 1229 85%

fc-el 65536 3933 94%

fc-f1 32768 656 98%
fc-f2 8192 1475 82%
fC—fgl 160000 800 99.5%
fc—fgz 32768 984 97%
fc1 40960 615 98.5%
fc2 256 256 -
Total 718870 19765 97.25%

Table 6: Performance of Eye Tracking Model on Mobile De-
vices

Model Pruned model Speedup
Accuracy 92.97% 91.47% -
Overall 0.563s 0.043s 13.2x
Honor 6X —=r¥ M 0.541s 0.019s 28.8x
Nexus 5X Overall 0.070s 0.009s 7.5%
GEMM 0.065s 0.002s 28x
Honor 10 Overall 0.142s 0.018s 7.7x
GEMM 0.131s 0.007s 17.4x

5 CONCLUSION

In this paper, we extend the prior work on systematic DNN weight
pruning using ADMM. We integrate ADMM regularization with
masked mapping/retraining, thereby guaranteeing solution feasi-
bility and providing high solution quality. We develop two new
applications: facial emotion detection and eye tracking, and pro-
pose a top-down framework of DNN training, model compression,
and acceleration in mobile devices. The proposed method shows
significant storage/memory reduction and speedup measured on
mobile devices.

ACKNOWLEDGMENTS

This work is funded by the National Science Foundation Awards
CNS-1704662 and CNS-1739748.

REFERENCES

[1] Stephen Boyd, Neal Parikh, Eric Chu, Borja Peleato, Jonathan Eckstein, et al. 2011.
Distributed optimization and statistical learning via the alternating direction
method of multipliers. Foundations and Trends® in Machine learning 3, 1 (2011),
1-122.

G. Bradski. 2000. The OpenCV Library. Dr. Dobb’s Journal of Software Tools
(2000).

Sharan Chetlur, Cliff Woolley, Philippe Vandermersch, Jonathan Cohen, John
Tran, Bryan Catanzaro, and Evan Shelhamer. 2014. cudnn: Efficient primitives
for deep learning. arXiv preprint arXiv:1410.0759 (2014).

[2

S
&N

506

—_

4]

—_
&

=
=

[11

[12

[14

[15

[16

(17]

oy
&

[19

[20

[21

~
5,

[23

[24

[25

[26

[27

GLSVLSI *19, May 9-11, 2019, Tysons Corner, VA, USA.

Xiaoliang Dai, Hongxu Yin, and Niraj K Jha. 2017. NeST: a neural network syn-
thesis tool based on a grow-and-prune paradigm. arXiv preprint arXiv:1711.02017
(2017).

Gene H Golub and Charles F Van Loan. 2012. Matrix computations. Vol. 3. JHU
press.

Ian J Goodfellow, Dumitru Erhan, Pierre Luc Carrier, Aaron Courville, Mehdi
Mirza, Ben Hamner, Will Cukierski, Yichuan Tang, David Thaler, Dong-Hyun
Lee, et al. 2013. Challenges in representation learning: A report on three machine
learning contests. In International Conference on Neural Information Processing.
Springer, 117-124.

Gaél Guennebaud, Benoit Jacob, et al. 2010. Eigen v3. http://eigen.tuxfamily.org.
(2010).

Yiwen Guo, Anbang Yao, and Yurong Chen. 2016. Dynamic network surgery for
efficient dnns. In Advances In Neural Information Processing Systems. 1379-1387.
Song Han, Huizi Mao, and William J Dally. 2015. Deep compression: Compressing
deep neural networks with pruning, trained quantization and huffman coding.
arXiv preprint arXiv:1510.00149 (2015).

Song Han, Jeff Pool, John Tran, and William Dally. 2015. Learning both weights
and connections for efficient neural network. In Advances in neural information
processing systems. 1135-1143.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2016. Deep residual
learning for image recognition. In Proceedings of the IEEE conference on computer
vision and pattern recognition. 770-778.

Yihui He, Xiangyu Zhang, and Jian Sun. 2017. Channel pruning for accelerating
very deep neural networks. In International Conference on Computer Vision (ICCV),
Vol. 2.

Jostine Ho. 2016. Facial Emotion Recognition. https://github.com/JostineHo/
mememoji. (2016).

Mingyi Hong, Zhi-Quan Luo, and Meisam Razaviyayn. 2016. Convergence
analysis of alternating direction method of multipliers for a family of nonconvex
problems. SIAM Journal on Optimization 26, 1 (2016), 337-364.

Joel Janai, Fatma Giiney, Aseem Behl, and Andreas Geiger. 2017. Computer vision
for autonomous vehicles: Problems, datasets and state-of-the-art. arXiv preprint
arXiv:1704.05519 (2017).

Kyle Krafka, Aditya Khosla, Petr Kellnhofer, Harini Kannan, Suchendra Bhan-
darkar, Wojciech Matusik, and Antonio Torralba. 2016. Eye Tracking for Everyone.
In IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. 2012. Imagenet classifica-
tion with deep convolutional neural networks. In Advances in neural information
processing systems. 1097-1105.

Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. 1998. Gradient-
based learning applied to document recognition. Proc. IEEE 86, 11 (1998), 2278-
2324.

Zhe Li, Xiaolong Ma, Hongjia Li, Qiyuan An, Aditya Singh Rathore, Qinru Qiu,
Wenyao Xu, and Yanzhi Wang. 2018. C3PO: Database and Benchmark for Early-
stage Malicious Activity Detection in 3D Printing. arXiv preprint arXiv:1803.07544
(2018).

Sheng Lin, Ning Liu, Mahdi Nazemi, Hongjia Li, Caiwen Ding, Yanzhi Wang,
and Massoud Pedram. 2018. FFT-based deep learning deployment in embedded
systems. In 2018 Design, Automation & Test in Europe Conference & Exhibition
(DATE). IEEE, 1045-1050.

Sijia Liu, Jie Chen, Pin-Yu Chen, and Alfred O Hero. 2017. Zeroth-order online al-
ternating direction method of multipliers: Convergence analysis and applications.
arXiv preprint arXiv:1710.07804 (2017).

Huizi Mao, Song Han, Jeff Pool, Wenshuo Li, Xingyu Liu, Yu Wang, and William J
Dally. 2017. Exploring the regularity of sparse structure in convolutional neural
networks. arXiv preprint arXiv:1705.08922 (2017).

Hua Ouyang, Niao He, Long Tran, and Alexander Gray. 2013. Stochastic alter-
nating direction method of multipliers. In International Conference on Machine
Learning. 80-88.

Taiji Suzuki. 2013. Dual averaging and proximal gradient descent for online
alternating direction multiplier method. In International Conference on Machine
Learning. 392-400.

Xiaosong Wang, Yifan Peng, Le Lu, Zhiyong Lu, Mohammadhadi Bagheri, and
Ronald M Summers. 2017. Chestx-ray8: Hospital-scale chest x-ray database and
benchmarks on weakly-supervised classification and localization of common
thorax diseases. In Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition. 2097-2106.

Wei Wen, Chunpeng Wu, Yandan Wang, Yiran Chen, and Hai Li. 2016. Learning
structured sparsity in deep neural networks. In Advances in Neural Information
Processing Systems. 2074-2082.

Tianyun Zhang, Shaokai Ye, Kaiqi Zhang, Jian Tang, Wujie Wen, Makan Fardad,
and Yanzhi Wang. 2018. A systematic DNN weight pruning framework using
alternating direction method of multipliers. arXiv preprint arXiv:1804.03294
(2018).

https://github.com/JostineHo/mememoji
https://github.com/JostineHo/mememoji

	Abstract
	1 Introduction
	2 A Systematic Weight Pruning Framework using ADMM
	2.1 Systematic View of Weight Pruning
	2.2 Connection to ADMM
	2.3 Systematic DNN Weight Pruning
	2.4 Incorporating Structures in Weight Pruning

	3 Mobile Implementation/ Acceleration of Pruned DNNs
	4 Experimental Results and Discussions
	4.1 Case I: Facial Emotion Recognition
	4.2 Case II: Eye Tracking

	5 Conclusion
	Acknowledgments
	References

