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Abstract

The use of wearable sensors for human activity mon-

itoring and recognition is becoming an important tech-

nology due to its potential benefits to our daily lives.

In this paper, we present a sparse representation-based

human activity modeling and recognition approach us-

ing wearable motion sensors. Our approach first learns

an overcomplete dictionary to find the motion primi-

tives shared by all activity classes. Activity models are

then built on top of these motion primitives by solving a

sparse optimization problem. Experiments on a dataset

including nine activities and fourteen subjects show the

advantages of using sparse representation for activity

modeling and demonstrate that our approach achieves

a better recognition performance compared to the con-

ventional motion primitive-based approach.

1 Introduction

The recognition of various human activities has been

a research focus in computer vision for decades. How-

ever, the major concern of this vision-based solution is

that it would fail if people are out of cameras’ field of

view. In recent years, using wearable sensors to track

human activities becomes popular since it opens the

door to applications such as fitness monitoring, phys-

ical rehabilitation and assisted living for elderly people

that would provide enormous benefits to our lives [3].

In this paper, we focus on developing algorithms to rec-

ognize human activities using wearable motion sensors.

Human activity recognition using wearable motion

sensors is challenging because of the complexity of hu-

man physical body kinematics. Over the years, many

types of activity models have been explored. One stan-

dard method uses a “global” model that maps each ac-

tivity segment to a single point in the feature space

and trains a classifier to find the appropriate classifica-

tion boundaries [2]. Another popular method uses the

temporal-spatial activity trajectories constructed from

either the raw sensor data [5] or the embedded nonlinear

low-dimensional manifolds [7] to characterize each ac-

tivity. Recognition is then casted as a trajectory match-

ing problem. However, these models are limited by

their robustness to outliers and their scalability in han-

dling large number of activity classes and activity style

variations among human subjects.

Recently, a new modeling method which uses mo-

tion primitive to capture the local information of hu-

man activity signals has shown promising performance

to tackle the issues mentioned above [8]. In this motion

primitive-based model, each activity segment is first

partitioned into a sequence of tiny window cells. Then

an overcomplete dictionary is learned through unsuper-

vised clustering techniques (such as K-means) from a

set of training samples. Each dictionary element is re-

ferred to as a motion primitive shared by all the activ-

ity classes. Finally, the partitioned window cells are

mapped to the motion primitives and activity models are

built in the primitive space via primitive distribution.

The performance of the motion primitive-based

model relies on the quality of the dictionary. In this

work, we are inspired by the recent success of the sparse

coding theory and propose a method which follows the

motion primitive-based model with the goal of further

improving its performance by learning a dictionary and

building activity models based on sparse representation-

based techniques. Specifically, we first apply the K-

SVD algorithm proposed in [1], which learns an over-

complete dictionary via an optimization problem with

sparsity constraints. It is a direct generalization of the

K-means algorithm such that the dictionary learned by

K-SVD has more representation power and better fits

the training data. Activity models are then built based

on the accumulated sparse coefficients related to the

dictionary elements. These coefficients can be seen as

a natural extension to the primitive distribution used in

the motion primitive-based model. Here we study the
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Figure 1. The block diagram of the sparse representation-based motion primitive framework

robustness of this method with respect to different win-

dow cell sizes, dictionary sizes and sparsity constraints,

and compare its performance to the baseline motion

primitive-based model based on K-means.

2 Our Approach

Figure 1 shows an overview of our framework. In

training stage, the streaming sensor data sampled from

activity segments is first divided into a sequence of

fixed-length tiny window cells whose length is much

smaller than the duration of the activity segment it-

self. Features are extracted from each window cell and

stacked together to form a local feature vector. The lo-

cal feature vectors from all training activity segments

are then pooled together to learn the overcomplete dic-

tionary. By incorporating sparse coding, activity mod-

els are built and represented through sparse coefficients

related to the dictionary elements. Finally, these coef-

ficients are used as global features to train the classi-

fier. In recognition stage, the test activity segment is

first transformed into a sequence of local feature vec-

tors in the same manner as in training stage. Its sparse

coefficients related to the dictionary elements are then

computed and imported into the classifier for classifica-

tion. We now present the details of each component.

2.1 Sensing Platform and Feature Extraction

We use a MotionNode1 wearable sensor that inte-

grates a 3-axis accelerometer (±6g) and a 3-axis gyro-

scope (±500dps) to collect human activity signals. The

sampling rate is set to 100 Hz which is high enough

to capture all details of normal human activities. For

each axis of both accelerometer and gyroscope, we ex-

tract five features including mean, standard deviation,

root mean square, derivative, and mean crossing rate.

These features have proven to be useful to capture ac-

tivity characteristics in many previous studies [2]

1http://www.motionnode.com/

2.2 Dictionary Learning

In this work, we employ the K-SVD algorithm pro-

posed in [1] to learn the overcomplete dictionary from

the training data. Specifically, assume that there are L

distinct activity classes to classify and nc training win-

dow cells from class c, c ∈ [1, 2, . . . L]. Recall that

each window cell is represented as a m-dimensional lo-

cal feature vector (m is equal to 30 in our case). To

learn the dictionary, we first pool the local feature vec-

tors from all the activity classes together and arrange

them as columns to construct the data matrix:

Y = [y
1
,y

2
, . . . ,yN ] ∈ Rm×N (1)

where N = n1 + n2 + . . .+ nL denotes the total num-

ber of training windows cell samples. Given Y , the K-

SVD algorithm intends to learn a reconstructive over-

complete dictionary D = [d1,d2, . . . ,dK ] ∈ Rm×K

with K elements, over which each yi in Y can be

sparsely represented as a linear combination of no more

than T0 dictionary elements. This can be formulated as

an optimization problem which constructs the desired

dictionary by minimizing the reconstructive error while

satisfying the sparsity constraints:

arg min
D,X

‖Y −DX‖
2

2
s.t. ∀i, ‖xi‖0 ≤ T0 (2)

where X = [x1,x2, . . . ,xN ] ∈ RK×N are the sparse

coefficients of the data matrix Y related to D, ‖xi‖0
is the ℓ0 norm of the coefficient vector xi, which is

equivalent to the number of non-zero components in the

vector, and the term ‖Y −DX‖
2

2
represents the recon-

struction error of Y over D in terms of ℓ2 norm.

Here, it is worthwhile to note the connection and the

difference between the K-SVD algorithm and the K-

means algorithm in the baseline motion primitive-based

model for the task of dictionary learning. By using K-

means, each local feature vector yi is represented by

the dictionary element which has the minimum ℓ2 norm

distance to it. Moreover, the coefficient multiplying the
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closest dictionary element is forced to be integer one. In

comparison, the K-SVD algorithm is designed to look

for a more general solution, in which each local feature

vector yi is represented as a linear combination of as

many as T0 dictionary elements. In addition, the corre-

sponding coefficients can be any real numbers. There-

fore, the K-SVD algorithm can be regarded as a gener-

alization of the K-means algorithm. As a consequence,

the dictionary learned by K-SVD is expected to have

more representation power of the data matrix Y .

2.3 Sparse Coding for Activity Modeling

Given the overcomplete dictionary D learned in the

previous step, any window cell y can be decomposed

as a linear combination of the dictionary elements. Its

coefficients x can be computed by solving the following

standard sparse coding problem:

argmin
x

‖x‖
0

s.t. ‖y −Dx‖
2
≤ ǫ (3)

where ǫ is the noise level. Finding the exact solution to

(3) proves to be an NP hard problem [1]. However,

if the signal is sparse enough, approximate solutions

can be found by pursuit algorithms such as the match-

ing pursuit (MP) [4] and orthogonal matching pursuit

(OMP) [6]. Based on our experiments, OMP achieves

better performance than MP. Therefore the results re-

ported here are based on the OMP method.

Since each activity segment consists of a sequence

of window cells, to build the activity model, we need

to find a meaningful way to accumulate information

from all the window cells within each segment. As-

sume there are M window cells in each activity seg-

ment. As mentioned above, each window cell is repre-

sented as a linear combination of dictionary elements

[d1,d2, . . . ,dK ] with the corresponding coefficients

[xd1
, xd2

, . . . , xdK
]. These coefficients can be viewed

as the weights of the dictionary elements for recon-

structing the window cells. Therefore, if we aggre-

gate the coefficients from all window cells in each ac-

tivity segment together, we will obtain a class-related

distribution of the dictionary elements for each activity

segment. After normalization, the distribution is trans-

formed into the conditional probability defined as:

P (di|c) =

∑
j xdi,j

∑
i

∑
j xdi,j

(4)

where i ∈ [1, 2, . . . ,K] , j ∈ [1, 2, . . . ,M ] , c ∈
[1, 2, . . . , L], and P (di|c) represents the probability

of observing the dictionary element di given activ-

ity class c. Since these conditional probabilities cap-

ture the global information of the activity segments,

we use them as features by concatenating them to-

gether as a K-dimensional global feature vector f =
[P (d1|c), P (d2|c), . . . , P (dK |c)]

T
for classification.

2.4 Classifier

The size of the overcomplete dictionary can be po-

tentially large. In this work, we use the multi-class Sup-

port Vector Machine (SVM) with linear kernel as our

classifier. This classifier has proved to be very effective

in handling high dimensional data in a wide range of

pattern recognition applications.

3 Evaluation

3.1 Dataset and Experiment Setup

To evaluate our approach, fourteen participants with

diverse gender, age, height and weight were asked to

perform nine common activities from daily life: walk

forward, walk left, walk right, go upstairs, go down-

stairs, jump, run, stand, and sit. A MotionNode is at-

tached onto the participant’s right front hip during data

collection. To capture day-to-day variations and mini-

mize inter-individual correlation, each participant per-

forms five trials for each activity on different days with-

out supervision. The captured activity signals in each

trial are then segmented into 4 second activity segments.

To achieve reliable results, we adopt a leave-one-

trial-out cross validation strategy. Specifically, since

each participant performs five trials for each activity, we

use four trials of all participants for dictionary learning

and activity model training while the left-out trial is for

testing. This process iterates for every trial, and the final

result is the average value across all five trials.

3.2 Experiment Results and Discussions

As our first experiment, Figure 2 shows the recog-

nition accuracy of our approach with different window

cell sizes from 0.1 to 2 seconds. As shown, the accu-

racy reaches the maximum when the window cell size

is 0.3 second. As the window cell size increases, the

recognition accuracy declines as a general trend. This

is partially attributed to the fact that as the window cell

size increases, the local feature vector constructed from

each window cell can not capture the local information

of the activity signal anymore. Moreover, the increase

of window cell size leads to the reduction of the total

number of window cells included in each activity seg-

ment. Thus the statistical power of our activity model

that is built on top of the primitive distribution is diluted.

Next, we fix the window cell size to 0.3 second and

examine the impact of sparsity (T0) on the classification

performance. As shown in Figure 3, when T0 is less
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Figure 2. Impact of Window Cell Sizes

than 30, the recognition accuracy rises in general as T0

increases. This observation demonstrates the superior-

ity of K-SVD over K-means for the task of dictionary

learning. In other words, it shows significant benefits in

using more than one dictionary element with real val-

ued coefficients to represent window cells within each

activity segment. It should also be noted that when T0

is bigger than 30, the recognition accuracy only varies

slightly. This indicates that using 30 elements in the

dictionary is sufficient to reconstruct any window cell

for our activity dataset.

Finally, we set T0 to 30 and measure the performance

using different dictionary sizes (K). We also compare

our approach with the baseline motion primitive-based

model under the same condition. The baseline algo-

rithm uses K-means for dictionary learning and the raw

primitive distribution (histogram of motion primitives)

for activity modeling. As shown in Figure 4, the ac-

curacy of our approach starts to rise at the very begin-

ning and stabilizes when the dictionary size reaches 50.

A maximum accuracy of 96.47% is achieved when the

dictionary size is 75. More importantly, our approach

achieves a much better performance compared to the

baseline algorithm across all dictionary sizes, with an

improvement of 10% for the same ditionary size on av-

erage. This result indicates that by leveraging sparse

coding techniques, the motion primitive-based model

can achieve a significant performance improvement.

4 Conclusion and Future work

In this paper, we presented a sparse representation-

based approach for motion primitive learning and hu-

man activity recognition using wearable motion sen-

sors. To conclude, our approach exhibits great robust-

ness with a wide range of sparsity constraints and dic-

tionary sizes. Furthermore, our approach achieves an

average 10% performance improvement compared to

the baseline motion primitive-based method. As shown,

our approach separates dictionary learning and classi-

fier training into two different steps. For future work,
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we plan to explore the possibility of jointly learning the

dictionary and the classifier in one single step.
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