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Abstract—Energy efficiency is one of the most concerns in
tele-monitoring. As the rapid development of mobile technolo-
gy, wireless communication has gradually become the biggest
energy sector in most tele-monitoring applications. Recently,
Compressed Sensing (CS) has attracted increasingly attention
to solve this problem due to its extremely low sampling rate.
In this paper, we investigate the quantization effect in the
Compressed Sensing architecture. We point out that quanti-
zation configuration is a critical factor towards the energy
efficiency concern of the entire CS architecture. To this end,
we present a configurable Quantized Compressed Sensing (QCS)
Architecture, where sampling rate and quantization are jointly
explored for better energy-efficiency. Furthermore, to overcome
the computational complexity of the configuration procedure,
we propose a rapid configuration algorithm, called RapQCS,
to promote the configuration speed. Through the experiments
with public physiological data, the configurable QCS architecture
can gain more than 60% performance-energy trade-off than the
constant QCS architecture. Furthermore, our proposed RapQCS
algorithm can achieve more than 200× speedup on average, while
only decreasing the reconstructed signal fidelity by 1.75%.

I. INTRODUCTION

Tele-monitoring system has been widely applied in various
domains, such as healthcare [1], transportation [2], environ-
mental surveillance [3] and etc. However, energy efficiency
becomes the most challenging issue in the tele-monitoring
system design. Due to the scaling of data throughput with the
development of hardware and computing technology, wireless
transmission has contributed to the biggest energy sector in
the entire tele-monitoring systems [4]. In recent years, the
Compressed Sensing (CS) theory [5] provides a promising
solution to tackle the energy-efficiency challenge in wireless
communication. The CS theory allows an accurate recovery by
sampling the signals at a lower rate which is proportional to
their intrinsic salient information rather than their bandwidths.
By breaking the lower bound of sampling rate defined by tradi-
tional Shannon-Nyquist theorem, Compressed Sensing shows
its great potential to lower the power consumption on wireless
data transmission by transmitting the data in a more compact
manner.

In 2004, D. Donoho, E. Candes and T. Tao first discussed
the concept of Compressed Sensing in [5], [6]. Besides energy-
efficient sensing, CS theory has been successfully applied to
many different fields. M. Duarte et al. [7] designed a single
pixel camera based on CS, and J. Wright et al. [8] employed
CS theory into face recognition to reach astonishing results.
However, some fundamental technical challenges on the prac-

tice of Compressed Sensing in tele-monitoring system remain
unsolved. One of the most concerns is that, in modern comput-
ing system, analog signals must be digitized before wireless
transmission, and quantization effect in compressed sensing is
still under study regarding energy-performance trade-off. For
example, different parts in tele-monitoring system emphasize
on different design criteria. Specifically, distributed sensors
are usually energy-bounded, and more sensitive to energy
consumption, while data aggregators are more focusing on data
quality.

In this paper, we propose and investigate a configurable
Quantized Compressed Sensing (QCS) architecture. Besides
the sampling rate, it integrates the quantization operation in
practice into the CS framework. With the extensive experi-
ments, we have proved that quantization configuration is a
sensitive factor in QCS architecture in term of its energy-
efficiency. We build the model for the configurable QCS
architecture to quantitatively evaluate its performance-energy
trade-off. Moreover, we develop a fast configuration algorithm,
called RapQCS, to further reduce the run time while almost
compromising no performance deviation of the QCS architec-
ture.

In this work, our main contributions have three-fold:

∙ We investigate the configurable Quantized Com-
pressed Sensing architecture, which considers both
the sampling rate and quantization configuration. We
analyze the significance of the quantized bit resolution
in the CS framework, and prove that the optimization
of quantization configuration along sampling rate can
provide a better performance-energy trade-off.

∙ We develop an RapQCS algorithm to fast locate the
optimal configuration on sampling rate and bit resolu-
tion, with a bounded energy budget in practice, which
can drastically reduce the run time while keeping the
excellent efficiency capacity of QCS,

∙ We evaluate the QCS architecture by the experiments
with challenging Electroencephalography (EEG) sig-
nals. Results indicate that our configurable Quan-
tized Compressed Sensing architecture can improve
the performance-energy trade-off by more than 60%.
Meanwhile, our fast RapQCS algorithm can offer
200× speed-ups while introducing 1.75% average
distortion rate.

The remainder of this paper is organized as follows:



Section II introduces prior work of Compressed Sensing and
quantization. Basics of conventional CS theory are described
in Section III. Our proposed efficient Quantized Compressed
Sensing architecture is elaborated in Section IV, and Section
V presents our fast RapQCS algorithm. Related experiments
and evaluations are discussed in Section VI. And Section VII
is the conclusion of the paper and our future work.

II. RELATED WORK

Most research works on Compressed Sensing are focusing
on reconstruction algorithms to pursue lower sampling rate
and better signal quality. Reconstruction algorithms consist of
three categories, greedy algorithm, convex optimization and
iterative thresholding. Greedy algorithm aims to select the
most significant components in sparsity-inducing bases, such
as Orthonormal Matching Pursuit (OMP) [9] and Compressive
Sampling Matching Pursuit (CoSaMP) [10]. Convex optimiza-
tion method is based on optimizing ℓ1 norm problem and
its variants. Representatives include Basic Pursuit (BP) [11],
NESTA [12] and Gradient Projection [13]. And iterative
thresholding can solve the ℓ1 penalized least square problem
with fast speed, such as Iterative Splitting and Thresholding
(IST) [14] and Iterated Hard Shrinkage (IHT) [15]. Also, Liu
et al. implemented an energy-efficient reconstruction algorithm
on FPGA [16]. Although these reconstruction algorithms can
either reduce the measurements dimension or improve the
reconstruction accuracy, they ignore that quantization is an in-
evitable process when applying CS into practical applications.

There are some existing works which take quantization
effects into account. Dai et al. [17] studied the quantization
effects on reconstruction error of CS. [18] and [19] mitigated
the quantization effects by adapting the CS reconstruction
algorithm. Also, an optimal quantizer was designed in [20]
for LASSO reconstruction under high-resolution quantization
assumption. Above researches concentrate on reducing the
impact from quantization by modeling this process as noise
introducing, or designing a better quantizer to minimize the
MSE compared with no quantization case. However, the quan-
tization effect on compressed signals is not the information
of interest in practice. Fauvel et al. gave a comprehensive
EEG tele-monitoring architecture in [21], but took the bit
resolution of quantization operation as a constant value. In
fact, the quantization effort on reconstruction error is indeed
related to the over system performance. Moreover, they did
not investigate the impact of quantization effect on energy
consumption in tele-monitoring applications.

III. BACKGROUND OF COMPRESSED SENSING

Compressed Sensing is a new emerging low-rate sampling
scheme for the signals that are known to be sparse or compress-
ible in certain basis. It has been successfully applied in image
processing, pattern recognition and wireless communications.

We assume 𝑥 is an 𝑁 -dimension vector space and sampled
using 𝑀 -measurement vector 𝑦:

𝑦 = Φ𝑥, (1)

where Φ ∈ 𝑅𝑀×𝑁 is the sensing array, which models
the linear encoding, and 𝑀 is defined as the sampling rate
in 𝑁 -dimensional Compressed Sensing. The elements in Φ

are either Gaussian random variables or Bernoulli random
variables [22]. Because of 𝑀 << 𝑁 , the formulation in Eq.
(1) is undetermined, and signal 𝑥 can not be uniquely retrieved
from sensing array Φ and measurements 𝑦. However, under
certain sparsity-inducing basis Ψ ∈ 𝑅𝑁×𝑁 , the signal 𝑥 can
be represented by a set of sparse coefficients 𝑢 ∈ 𝑅𝑁 :

𝑥 = Ψ𝑢, (2)

that is, the coefficient 𝑢, under the transformation Ψ, only has
few non-zero elements. Therefore, based on Eq. (1) and (2),
the sparse vector, 𝑢, can be represented as follows:

𝑦 = ΦΨ𝑢 = Θ𝑀×𝑁𝑢, (3)

where Θ𝑀×𝑁 = ΦΨ is an 𝑀 × 𝑁 array, called measuring
matrix. Due to the prior knowledge that the unknown vector,
𝑢, is sparse, it is possible to estimate the value, 𝑢, using the
ℓ0 minimization formulation as follows:

𝑢 = min ∥𝑢∥0, 𝑠.𝑡. ∥𝑦 −Θ𝑢∥ < 𝜖, (4)

where 𝜖 is the reconstruction error tolerance. The formulation
in Eq. (4) is a determined system with unique solutions.
However, ℓ0 is a NP-hard problem [23], and one of the methods
to solve (4) is to approximate ℓ0 minimization formulation to
ℓ1 minimization formulation:

𝑢 = min ∥𝑢∥1, 𝑠.𝑡. ∥𝑦 −Θ𝑢∥ < 𝜖. (5)

It has been proved that, under the condition of Restricted
Isometry Property (RIP) [18], ℓ1 has been theoretically proven
to be equivalent to minimizing ℓ0. Moreover, ℓ1 minimization
is convex and can be solved within the polynomial time. In this
work, we will use the ℓ1-based approach Compressed Sensing.
After estimating the sparse coefficient 𝑢 with the formulation
in Eq. (5), the original input signal 𝑥 can be recovered directly:

�̇� = Ψ𝑢. (6)

We can see that, in the traditional Compressed Sensing formu-
lation, both reconstruction error and wireless communication
energy are determined by the sampling rate 𝑀 . People only
consider to adapt 𝑀 with regard to the different design
constraints.

IV. CONFIGURABLE QUANTIZED COMPRESSED SENSING
ARCHITECTURE

A. Architecture Overview

The traditional CS theory did not take the quantization
into the formulation (see Eq. (3)). In the practical applications,
original signals are analog in nature and need to be quantized
before transmitting over the wireless channel. Therefore, the
compressed signal, 𝑦, should be processed by a quantization
model formulated as follows:

𝑦 = 𝑄𝑏(𝑦), (7)

where 𝑄𝑏(.) is the quantization function, and 𝑦 is the quantized
representation of 𝑦 with 𝑏 bits. When considering the quanti-
zation process into the Compressed Sensing architecture, the
CS formulation is reformulated:

𝑢 = min ∥𝑢∥1, 𝑠.𝑡. ∥𝑦 −Θ𝑢∥ < 𝜖. (8)
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Fig. 1. Configurable Quantized Compressed Sensing Architecture: it includes
three modules, Randomized Encoding, Quantization and Signal Reconstruc-
tion.

By solving the formulation in Eq. (8), we can obtain the sparse
representation 𝑢 from the quantized measurement 𝑦. Therefore,
the reconstructed signal, 𝑥, is retrieved by:

𝑥 = Ψ𝑢. (9)

The sensing framework based on the formulation in Eq. (8) is
defined as Quantized Compressed Sensing (QCS) architecture,
which is illustrated as Figure 1.

We can see that the Quantized Compressed Sensing archi-
tecture consists of three parts, for example, randomized encod-
ing, quantization and signal reconstruction module. Original
analog signals, which usually denote the raw analog data, 𝑥 ∈
𝑅𝑁 , coming from sensors, are encoded into an 𝑀 -dimensional
vector, 𝑦 ∈ 𝑅𝑀 , by linear encoding Θ𝑀×𝑁 . Through the
quantization scheme 𝑄𝑏(.), every measurement becomes a
certain 𝑏-bit digital representation, 𝑦. Wireless transmitter
streams these digitalized measurements data to the receiver.
When wireless receiver gets the data extracted from bit stream,
it performs reconstruction algorithms to recover 𝑁 -dimension
original input signal 𝑥 from the quantized 𝑀 -dimension com-
pressed measurements 𝑦. The reconstructed signal 𝑥 is sent
to the data post-processing model for specific applications,
such as classification [24], signal demodulation [25], signal
separation [26]. In this architecture, linear random encoding
and quantization modules form a distributed node for sensor’s
flexibility. Reconstruction and post-processing functions are
conducted in data processing center. Note that as shown in
Figure 1, in this QCS architecture, both sampling rate, 𝑀 ,
in the random encoding module and bit resolution, 𝑏, in the
quantization module are configurable. These parameters can
be setup according to different applications.

B. Models of Energy and Performance in the QCS Architecture

In this part, we will discuss the models of energy and
performance in the QCS architecture. In the above Quantized
Compressed Sensing architecture, distributed node is energy-
bounded with limited energy budget, and the data center is
performance-driven, focusing on the signal quality. In distribut-
ed nodes, the power consumption is dominated by wireless
communication, and communication energy is proportional to
the volume of data stream. Therefore, its energy model can be
formulated as follows:

𝐸 = 𝐶 ×𝑀 × 𝑏, (10)

where𝑀 is the sampling rate, 𝑏 is bit resolution in quantization
in the QCS architecture, and 𝐶 is the energy per bit, i.e., the

energy consumption of transmitting 1 bit data1. We can see that
we can change the power consumption of distributed nodes
through the 𝑀 and 𝑏 setup. The larger 𝑀 and 𝑏, the more
energy consumption in the distributed nodes.

The aim of the data center is to reconstruct the original
signal from the streaming compressed data for the post-
processing. For the simplicity of presentation, we use the
reconstruction error as the performance metric in the data
center. Therefore, the performance model in the data center
can be defined as follows:

𝑃 (𝑀, 𝑏) =
∥𝑥− 𝑥∥2
∥𝑥∥2 × 100%, (11)

where 𝑃 (𝑀, 𝑏) denotes the performance metric, i.e., the re-
construction error under the configuration of sampling rate,
𝑀 , and resolution bit, 𝑏. 𝑥 denotes the recovered signal and 𝑥
is the original input signal. Because 𝑥 is directly derived from
the measure 𝑦, the performance is affected by the sampling
rate, 𝑀 , and the bit resolution, 𝑏. Specifically, 𝑀 has an
impact on the performance of reconstruction algorithms, and
𝑏 determines the quantization noise in the measures. From the
models in Eq. (10) and (11), we can see the QCS architecture
can reach different energy-performance trade-off through the
configuration of 𝑀 and 𝑏.

C. System Design Formulation

In this part, we will present the design formulation towards
CS-based distributed systems. The distributed sensor nodes
are with a capacity-limited battery, and the battery lifetime
is usually the design constraint.

Given an energy bound, 𝐸0, for the distributed node, the
design criterion in the QCS architecture is to find the optimal
configuration of 𝑀 and 𝑏 such that the energy 𝐸 is less than
𝐸0, and the reconstruction error is as small as possible. This
design formulation can be formulated as follows:

(𝑀, 𝑏)𝑜𝑝𝑡 = 𝑎𝑟𝑔min
𝑀,𝑏

(𝑃 (𝑀, 𝑏)), 𝑠.𝑡. 𝐶 ×𝑀 × 𝑏 ≤ 𝐸0,

(12)
where (𝑀, 𝑏)𝑜𝑝𝑡 denotes the optimal energy configuration
under energy bound 𝐸0. We can see that the total design space
in the formulation in Eq. (12) is 𝑏 ×𝑀 , where 𝑏 is the bit
resolution in the quantization, and𝑀 is the sampling rate. Note
that the objective function is not in an analytic form, and the
constraint function is non-convex. Therefore, it is challenging
to efficiently obtain (𝑀, 𝑏)𝑜𝑝𝑡.

D. Brute Force Algorithm

The most straightforward method to find (𝑀, 𝑏)𝑜𝑝𝑡 is the
brute force method. It is also called exhaustive searching, a
general technique enumerating all potential solutions to check
if it satisfies the problem’s statement. In our challenge, when
energy bound 𝐸0 changes from 0 to 𝑏×𝑀 , we can get a P-E
trade-off point (𝑀, 𝑏)𝑜𝑝𝑡 on every energy bound. If we connect
all these P-E trade-off points, it will form an optimal P-E
trade-off curve, called the Pareto’s curve. Once the Pareto’s
curve is depicted in the P-E space, we can easily identify the
optimal energy configuration (𝑀, 𝑏)𝑜𝑝𝑡 under any given bound

1The energy per bit is determined by the wireless communication protocol
and usually a constant.



𝐸0. We employ the brute force method to search the entire
Performance-Energy space for the Pareto’s curve and then set
the optimal energy configuration under 𝐸0 by looking up the
Pareto’s curve. Actually, after we give the definitions of energy
and performance, this problem can be solved by searching for
a series of P-E trade-off points, who holds the best trade-off
in lower energy interval. It can be formulated as follows:

(𝑀, 𝑏)𝑖+1
𝑜𝑝𝑡 = 𝑎𝑟𝑔min

𝑀,𝑏
∥𝐸𝑖+1

𝑜𝑝𝑡 − 𝐸𝑖𝑜𝑝𝑡∥,

𝑠.𝑡.

{
𝐸𝑖+1
𝑜𝑝𝑡 > 𝐸

𝑖
𝑜𝑝𝑡,

𝑃 (𝐸𝑖+1
𝑜𝑝𝑡 ) < 𝑃 (𝐸

𝑖
𝑜𝑝𝑡),

(13)

where 𝑛 is the 𝑖-th optimal energy configuration. We execute
our searching by the ascending order of energy value. We
start from the minimal energy level, and then energy level
increases gradually. It is a common case that there could be
more than one (𝑀, 𝑏) configuration on the same energy level,
which results from our energy definition. Under this situation,
we exhaustively check every possible (𝑀, 𝑏) configuration
for the optimal trade-off. That is, we take every energy
configuration (𝑀, 𝑏) as our candidates, but our searching order
is by ascending order of energy values. The entire algorithm
is as ALGORITHM 1. Also, an example of the Brute Force
algorithm is shown as Figure 2.

Algorithm 1 Brute Force Algorithm
Input: 𝐸0: given energy bound

𝐷𝐸 :the set of all the energy configuration
(𝑀, 𝑏)𝑚𝑖𝑛:configuration corresponding to the least

energy level
𝑐ℎ𝑒𝑐𝑘13(.):function to check if configuration satisfies

Eq. (13)
Output: 𝐺𝐸 :set of configurations of P-E trade-off points.

(𝑀, 𝑏)𝐸0
:the optimal configuration with energy

bound 𝐸0

1: 𝐺𝐸 = 𝐺𝐸
∪
(𝑀, 𝑏)𝑚𝑖𝑛

2: (𝑀, 𝑏)𝑜𝑝𝑡 = (𝑀, 𝑏)𝑚𝑖𝑛
3: for each (𝑀, 𝑏) in 𝐷𝐸 do:
4: if 𝑐ℎ𝑒𝑐𝑘13((𝑀, 𝑏), (𝑀, 𝑏)𝑜𝑝𝑡) then
5: 𝐺𝐸 = 𝐺𝐸

∪
(𝑀, 𝑏)

6: (𝑀, 𝑏)𝑜𝑝𝑡 = (𝑀, 𝑏)
7: end if
8: end for
9:

10: for (𝑀, 𝑏) ∈ 𝐺𝐸 do
11: if 𝑀 × 𝑏 ≤ 𝐸0 then
12: (𝑀, 𝑏)𝐸0

= (𝑀, 𝑏)
13: else
14: 𝑏𝑟𝑒𝑎𝑘
15: end if
16: end for

From Figure 2, every red point represents a P-E point,
located by its energy configuration (𝑀, 𝑏) and corresponding
performance 𝑃 (𝑀, 𝑏). The green line is the Pareto’s P-E curve,
connecting all the P-E trade-off points, which are centered in
the blue triangular markers. However, run time of Brute Force
algorithm increases linearly as the candidate number grows,
which means larger searching space in our energy-efficiency
challenge.

Fig. 2. Brute Force Algorithm: red point indicates a P-E point, blue triangular
marks a P-E trade-off point and the green line is the Pareto’s curve.

V. RAPID QCS CONFIGURATION WITH A BOUNDED
ENERGY BUDGET

In practical applications, it is normal that an upper-energy
bound is set to constraint system’s power consumption. For
our Quantized CS Architecture, energy bound is usually set on
distributed node for its sensitivity to power consumption. It is
a big challenge to fast locate the optimal energy configuration
under a given energy bound. In the following part, we will
tackle this challenge.

A. Energy-efficiency Control Formulation

When there is an energy budget 𝐸0 for the distributed
node, it is critical to find an optimal energy configuration
corresponding to the best performance under given constraint.
This problem has been formulated in Eq. (12), which is an NP-
hard problem without any polynomial optimal solutions. An
intuitive solution is applying Brute Force algorithm to search
the sub-space entirely whose energy is limited in the bound 𝐸0.
But this method is time-consuming and impractical to large-
scale problems. Based on our empirical estimation, the energy
level where optimal configuration locates should be just near
the energy bound. Thus, it seems not a wise way to search
the whole bounded energy space. In next subsection, we will
introduce a better heuristic local search algorithm based on the
sensitivity analysis to fast locate the optimal configuration.

B. RapQCS Algorithm

We first define a parameter space 𝐴 in our Quantized CS
architecture:

𝐴 = {𝑝1, ..., 𝑝𝑖, ..., 𝑝𝑛}, (14)

where 𝑝𝑖 is the parameter affecting energy or performance in
the architecture. For example, due to our energy’s definition,
𝑀 and 𝑏 are two parameter members of this model. Since pa-
rameters are all discrete values, we define a new neighborhood
operator ” → ”:

𝑠𝑘 → 𝑙 =

{
𝑠𝑘+𝑙 1 ≤ 𝑘 + 𝑙 ≤ 𝐿,
⊥ 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,

(15)

where 𝑠𝑘 is the 𝑘-th configuration of parameter 𝑝𝑖. 𝐿 is the
dimension of 𝑝𝑖. In our RapQCS, cost function is defined as
performance:

𝑓𝑐 = 𝑃 =
∥𝑥− 𝑥∥2
∥𝑥∥2 × 100%. (16)



Assuming 𝑎 = (𝑀, 𝑏) is a configuration vector from parameter
set 𝐴, we can define sensitivity 𝜎 at configuration 𝑎:

𝜎(𝑎) = 𝑓𝑐(𝛿(𝑎))− 𝑓𝑐(𝑎), (17)

where 𝛿(𝑎) ∈ 𝑁𝑑(𝑎) is the 𝑑-neighborhood of configuration 𝑎
. For our QCS architecture, 𝛿(𝑎) indicates 8-neighborhood,
𝛿(𝑎) ∈ 𝑁8(𝑎), with two parameters in 𝐴. So if the local
search chooses the most sensitive direction to proceed, which
is with the fastest decreasing of the cost function, optimal (or
sub-optimal) configuration can be achieved eventually. For a
better convergence speed and a more stable solution, we would
like to add a tuning phase to reasonably estimate an initial
configuration 𝑎0 before the local search based on sensitivity.

𝑎0(𝐸𝐵) = 𝐸ℎ∈𝐻(𝑎𝑜𝑝𝑡(ℎ,𝐸𝐵)), (18)

where 𝐻 is the application set. 𝑎𝑜𝑝𝑡(ℎ,𝐸𝐵) is the optimal
configuration of application ℎ under energy bound 𝐸𝐵. In the
tuning phase, the Brute Force algorithm will be employed to
search the P-E space for optimal configuration 𝑎𝑜𝑝𝑡(ℎ,𝐸𝐵). So
the whole algorithm of RapQCS algorithm is as ALGORITHM
2.

Algorithm 2 RapQCS Algorithm
Input: EB:given energy budget

𝑎0(𝐸𝐵): starting configuration
𝑓𝑐: cost function
𝜎(𝑎): sensitivity at configuration a

Output: 𝑎𝑜𝑝𝑡(𝐸𝐵): optimal configuration with 𝐸𝐵
1: 𝑎𝑜𝑝𝑡(𝐸𝐵) = 𝑎0(𝐸𝐵)
2: Search for (𝑀, 𝑏):

(𝑀, 𝑏) = 𝑎𝑟𝑔min
𝑀,𝑏

(𝜎(𝑎𝑜𝑝𝑡)), 𝑠.𝑡.

{
𝜎(𝑎𝑜𝑝𝑡) < 0
𝑀 × 𝑏 < 𝐸𝐵

3: if find such (𝑀, 𝑏) then
4: 𝑎𝑜𝑝𝑡(𝐸𝐵) = (𝑀, 𝑏)
5: 𝐺𝑜 𝑡𝑜 𝑆𝑡𝑒𝑝 (2)
6: else
7: 𝐸𝑋𝐼𝑇
8: end if

VI. EXPERIMENTS

A. Experimental Setups and Datasets

In this section, we describe the performance evaluation on
our work from two aspects. First, we evaluate the advantage
of the configurable QCS architecture, and investigate the
performance-energy trade-off gain compared with the tradi-
tional CS architecture. Second, we test the effectiveness and
efficiency of the RapQCS algorithm, i.e., the reconstruction
error, energy-bound accuracy and runtime speedup compared
with the brute force method.

In our experiment, we select body sensor networks (B-
SN) as the evaluation scenario. BSN is an emerging appli-
cation of tele-monitoring, which builds the wireless sensor
network around human body. Physiological signals, such as
Electrocardiography (ECG), Electromyography (EMG), and
Electroencephalography (EEG), can be gathered to monitor
human health status. Without the loss of generality, we take
four typical EEG signal samples from Physionet [27] as our

(a) Sample One (b) Sample Two

(c) Sample Three (d) Sample Four

Fig. 3. The waveforms of the four EEG samples from Physionet, and these
four patterns are significantly different.

test bench. Each EEG sample consists of 512 points, and their
waveforms are shown in Figure 3. We can see that these four
EEG samples are with significantly different patterns.

Considering that EEG signals are usually sparse under the
Discrete Wavelet Transform (DWT) basis, we use IDWT as
the sparsity-inducing transformation basis, Ψ, [28]. All our
experiments use Gaussian random variables as sensing array
and take uniform quantization strategy. For an efficient 350
𝜇W MSK/FSK transmitter, its TX energy per bit is 3 nJ/bit
under MSK modulation and 120 Kbps of bit rate [29]. Under
this condition, we setup that the average energy consumption
of wireless communication is 𝐶 = 3 nJ/bit.

B. Configurable QCS v.s. Traditional CS

1) Energy-efficiency Comparison: The significance of the
configurable QCS architecture is that it takes into account
the flexibility of resolution bit, 𝑏, in the quantization module.
The experiment in this part is designed to compare how
much the performance-energy trade-off is gained compared
to the traditional CS architecture. In our experiment, we take
four EEG samples for the benchmark evaluation. As shown
in Figure 3, these four samples are different and have no
periodicity. Also, there are no coherence features between
any two samples in the time domain. In the traditional CS
architecture, bit resolution of quantization is set as a fixed
value, such as 8, 12 or 16. Considering that the bit resolution
requirement is usually high in the EEG application, we can
set 𝑏 = 16 for the traditional CS architecture during the
experiments. For the QCS architecture, bit resolution is ranging
from 1 to 16. In the experiment, we use the brute force method
to find the Pareto’s curve of the performance-energy (P-E)
space, and the results of four EEG samples are shown in Figure
4 (a)-(d), respectively.

In Figure 4 (a)-(d), the red line is the Pareto’s curve of the
configurable QCS architecture, and the blue line is the Pareto’s
curve of the traditional CS architecture. Every marker is an
optimal P-E point. Here we can see that the P-E trade-off in
the configurable QCS architecture is significantly better than
that of the traditional CS architecture. To quantitatively analyze
the P-E gain, we define a metric, 𝐴𝑃𝐸 , which is the area
between the Pareto’s curve and the energy axis. Specifically,



(a) Sample One (b) Sample Two

(c) Sample Three (d) Sample Four

Fig. 4. (a)-(d) are the Pareto’s curves of every sample; the blue area in (d)
is an example of 𝐴𝑃𝐸 .

TABLE I. TRADE-OFF ENHANCEMENT TABLE

Sample NO. 1 2 3 4
𝐴𝑃𝐸(𝐶𝐵) 2421.5 5591.5 3361.2 2236.0
𝐴𝑃𝐸(𝑂𝐵) 824.7 2016.9 1182.8 802.3

𝑇𝑂𝑒𝑛ℎ𝑎𝑛𝑐𝑒 (%) 65.94 63.93 64.81 64.12

the Pareto’s curve consists of all optimal P-E trade-off points,
and these points form a set of trapezoidal areas. Therefore, we
can add up all these areas and obtain 𝐴𝑃𝐸 as follows:

𝐴𝑃𝐸 =
∑
𝑖

𝑆𝑖, (19)

where 𝑖 is the P-E point’s number, 𝑆𝑖 is the trapezoidal area
between two adjacent P-E points of 𝑖 and 𝑖−1, and the energy
axis. For example, the 𝐴𝑃𝐸 of the traditional CS architecture
is indicated as the blue area in Figure 4(d). We can further
define the trade-off enhancement metric as follows:

𝑇𝑂𝑒𝑛ℎ𝑎𝑛𝑐𝑒 =
𝐴𝑃𝐸(𝐶𝐵)−𝐴𝑃𝐸(𝑂𝐵)

𝐴𝑃𝐸(𝐶𝐵)
, (20)

where 𝐴𝑃𝐸(𝐶𝐵) is the area of Pareto’s curve of the traditional
CS architecture, and 𝐴𝑃𝐸(𝑂𝐵) is the area of Pareto’s curve
of the configurable QCS architecture. According to Formula
(20), we can calculate the enhancement as TABLE I.

From TABLE I, the improvement of P-E trade-off is all
more than 63% by considering bit resolution. It is indicated
that our configurable QCS architecture can greatly enhance
the energy efficiency than the traditional CS architecture.
According to our enhancement definition, it is obvious that
Sample One gains the most efficiency and Sample Two gets the
least improvement, which is contradicted with our observation.
This is because our enhancement definition is an 𝐴𝑃𝐸 ratio
corresponding to the Pareto’s curve of the traditional CS. The
𝐴𝑃𝐸 of Sample Two under the traditional CS is much more
than that of other samples. Thus, its enhancement is down to
the smallest one.

2) Reconstructed Signal Comparison: In practical appli-
cations, precise reconstruction signals usually need post-
processing. Thus, we would like to further check the signal
quality of traditional CS and configurable QCS in this experi-
ment. We can directly have a look at the energy configuration
and performance when the energy bound is 𝐸0 = 9𝜇J. Related

(a) Sample One

(b) Sample Two

(c) Sample Three

(d) Sample Four

Fig. 5. Reconstructed signals of four samples when the energy bound is set
as 9𝜇J.

waveforms are depicted in Figure 5, and detailed energy
configurations with corresponding performance information
are illustrated in TABLE II.

From the contrasting in Figure 5, we can see that original
signal (blue line) is almost covered by our configurable QCS
(green line). Reconstruction of the traditional CS (red line) is
with larger distortion than the configurable one, especially for
Sample Two and Three. The performance of the traditional CS
is all larger than the configurable QCS from TABLE II. Specif-
ically, the performance difference of Sample Two and Three
between these two cases are both more than 30%, resulting in
an easy identification of their waveforms’ differences. Then for
Sample One and Four, their difference of reconstruction error
rate is about 20%, and their distortion is not so significant.



TABLE II. ENERGY CONFIGURATION AND PERFORMANCE ON

𝐸0 = 9𝜇J.

Sample NO. 1 2 3 4

Configurable QCS
𝑀 413 498 497 493
𝑏 7 6 6 6

𝐸 (𝜇J) 8.67 8.96 8.95 8.87
𝑃 (%) 8.7 26.0 13.3 9.5

Traditional CS
𝑀 181 184 187 174
𝑏 16 16 16 16

𝐸 (𝜇J) 8.69 8.83 8.98 8.35
𝑃 (%) 30.6 84.9 48.1 33.2

(a) Sample One (b) Sample Two

(c) Sample Three (d) Sample Four

Fig. 6. Absolute error of performance between RapQCS curve and Brute-
force’s curve.

Also, Sample One holds the least reconstruction error rate,
even less than 10% under the configurable QCS. We can
not find any big distortion when performance is below 10%.
However, for Sample Two, its reconstruction error rate under
traditional CS is up to 84.9%. Reconstructed signal is far away
from the original. Its error rate in the configurable QCS is
26.9%, a very high error rate in all the QCS’s reconstructions.
The large error rate results from the weak sparsity [30] of
Sample Two, seeming like a random sequence, which DWT
can not reconstruct with high quality.

C. Rapid Optimal Configuration with Energy Bounded Budget
in QCS

1) Performance Accuracy Analysis: In this experiment, we
test the performance of our RapQCS algorithm compared
to the brute-force method. We use four samples of EEG
signals. Their patterns are shown in Figure 3. As our RapQCS
algorithm’s requirement in tuning phase, we consider all cases
of three EEG samples’ combination as tuning applications,
and the remaining one under corresponding case is the test
waveform. For a comprehensive viewing, we set energy bound
on every discrete energy level. After the searching of RapQCS
algorithm, we can obtain an optimal RapQCS performance
curve (we just call it RapQCS curve). The absolute difference
of performance between RapQCS curve and brute-force curve
is illustrated in Figure 6.

In Figure 6, there are 4 sub-graphs indicating the absolute
error between RapQCS curve and Brute-force curve. The
common trend of them is that the absolute error between
these two types of curves decreases rapidly as energy bound
increases. For all samples except No. 2, the relatively larger

errors always occur on the interval whose energy bound is less
than 3 𝜇J. When energy bound increases more than 6 𝜇J, their
absolute error can fluctuate in a relatively small range, less
than 5%. On the low energy bound, measurements number 𝑀
and bit resolution 𝑏 are both small. For ℓ1 convex optimization
problem, smaller 𝑀 will result in large reconstruction error
rate. It’s reported that 𝑀 should meet the following condition
for a successful reconstruction:

𝑀 ≥ 𝐾𝑙𝑜𝑔(𝑁
𝐾

), (21)

where 𝐾 is the sparsity of input signal. Thus small 𝑀 even
may cause reconstruction failure. Smaller 𝑏 introduces more
quantization error into the reconstruction, which is always
modeled by noise. Therefore, performance in small energy
interval takes on strong randomness, making our RapQCS
method trapped in local minima easily. As energy increases,
𝑀 and 𝑏 both grow gradually. Less quantization error and
more accurate convex optimization make reconstruction error
rate decreasing rapidly and more stable. Less local minima
provides a larger chance for our algorithm to approximate to
the optimal solution. For Sample Two, its absolute error is
relatively larger than other cases. In Figure 3, the waveform of
Sample Two is more like a random sequence. And DWT is not
good at dealing with such signals. Thus, the performance may
engender more local minima to confuse our RapQCS method
to reach its right destination.

Specifically, we use average error rate 𝐴𝑣𝑔𝐸𝑟𝑟𝑜𝑟 and
standard deviation 𝑆𝑡𝑑𝐸𝑟𝑟𝑜𝑟 to quantitatively evaluate the
performance accuracy of our RapQCS algorithm. Because our
performance has already been defined as reconstruction error
rate, we can calculate the average absolute error rate and
standard deviation on all the energy bounds to indicate the
overall error level:

𝐴𝑣𝑔𝐸𝑟𝑟𝑜𝑟 =
1

∣𝐸𝐵∣
∑

𝑒𝑏∈𝐸𝐵
𝑎𝑏𝑠(𝑃𝑅𝑎𝑝(𝑒𝑏)− 𝑃𝑜𝑝𝑡(𝑒𝑏)), (22)

𝑆𝑡𝑑𝐸𝑟𝑟𝑜𝑟 = (
1

∣𝐸𝐵∣
∑

𝑒𝑏∈𝐸𝐵
(𝑎𝑏𝑠(𝑃𝑅𝑎𝑝(𝑒𝑏)− 𝑃𝑜𝑝𝑡(𝑒𝑏))

−𝐴𝑣𝑔𝐸𝑟𝑟𝑜𝑟)2) 1
2 ,

(23)

where 𝐸𝐵 is the set of all energy bounds. 𝑃𝑅𝑎𝑝(𝑒𝑏) indicates
the performance of RapQCS method under energy bound 𝑒𝑏.
And 𝑃𝑜𝑝𝑡(𝑒𝑏) is the optimal performance querying from the
brute-force curve. The 𝐴𝑣𝑔𝐸𝑟𝑟𝑜𝑟 and 𝑆𝑡𝑑𝐸𝑟𝑟𝑜𝑟 of all 4
samples are shown in Figure 7.

From Figure 7, our RapQCS method holds about 1.75%
average error rate in general case except Sample Two. Their
standard deviations are about 3%, which is a trivial fluctuation.
As our observation in Figure 6, these three samples only suffer
from larger error rate in a small low energy bound interval,
while they hold smaller error rate on high energy bound. For
Sample Two, it has the largest average error rate and standard
deviation, for its not good reconstruction. Even under this
situation, the level of average performance error rate of all the
samples is still around 4%, with about 3.5% standard deviation.
We can see that the impact of reconstruction distortion affected
by such subtle error rate can be nearly neglected. Therefore,
when given a bounded energy budget, our RapQCS algorithm
can reach an accurate performance-energy trade-off.



Fig. 7. 𝐴𝑣𝑔𝐸𝑟𝑟𝑜𝑟 and 𝑆𝑡𝑑𝐸𝑟𝑟𝑜𝑟 of absolute performance error of all EEG
samples.

(a) Sample One (b) Sample Two

(c) Sample Three (d) Sample Four

Fig. 8. Absolute energy configuration error between RapQCS algorithm and
Brute Force algorithm.

2) Energy Accuracy Analysis: In this part, we will check
the energy accuracy between our RapQCS algorithm and the
Brute Force algorithm. The absolute energy configuration error
of these two algorithms is illustrated in Figure 8.

In Figure 8, combining the trends of 4 samples, the absolute
error is very small on low energy bound. As energy bound
increases, this error shows a growing trend. We can see that
on high energy bound, the absolute error is either very small
or relatively big. The reason is that our P-E space consists of
many discrete energy levels. As the energy definition in Eq.
(10), the step length between two adjacent energy levels will
increase as energy is bigger. Thus, any inaccurate searching
will result in a big absolute energy error. In all these 4 samples,
Sample One and Four can keep accurate configurations on
high energy bound, but other two samples suffer from different
degrees of deviation. On all energy bounds, Sample Two shows
relatively large fluctuation.

Because our reconstruction algorithm cannot recover Sam-
ple Two well, its performance may take on strong randomness,
which will result in more confusing local minima. Thus the
energy configuration of our RapQCS under Sample Two has
larger fluctuations than other samples. Also, when we take
a closer look at the performance on high energy bound in
Figure 6, their performances are all in a small range. This
persuasively demonstrates the superiority of our configurable

Fig. 9. 𝐴𝑣𝑔𝐸𝑟𝑟𝑜𝑟 and 𝑆𝑡𝑑𝐸𝑟𝑟𝑜𝑟 of absolute energy configuration error
of all EEG samples.

QCS architecture to exploit the energy efficiency. Specifically,
we will still use the 𝐴𝑣𝑔𝐸𝑟𝑟𝑜𝑟 and 𝑆𝑡𝑑𝐸𝑟𝑟𝑜𝑟 to evaluate
the energy configuration accuracy of our RapQCS method.
Since we already get the absolute energy error on every energy
bound, these two indicators of all 4 samples can directly
calculated, as shown in Figure 9.

Figure 9 confirms our previous observation. The average
absolute errors of Sample Two and Three are relatively larger
than other samples, about 0.2 𝜇J more. Their standard devia-
tions are also much more than others. Sample Two is mainly
affected by the reconstruction algorithm while Sample Three is
caused by the initial energy configuration setup. Sample Three
is with the biggest standard deviation, because the large gap
of absolute error between its lower bound and higher bound.
Although there are some impacts caused by these factors, the
average error rate of our results is only about 0.4 𝜇J, which
is a strong support for the excellent energy accuracy of our
RapQCS algorithm.

3) Run Time Analysis: Although Brute Force method can
find the optimal solution in Performance-Energy space, its
huge computational burden is a main obstacle for the practical
application. In this experiment, we will continue to explore the
run time between RapQCS method and Brute Force method.
Also, we set energy bound on every energy level to do a com-
prehensive comparison. Related run time graphs are illustrated
in Figure 10. Because the run time difference between these
two methods is too large, we employ log axis of run time to
give a more clear comparison.

From Figure 10, the run time of Brute Force algorithm
is rising all the time. Its searching space first extends with a
dramatically fast speed when energy bound is less than 3 𝜇J.
Then run time increases by a small speed after energy bound 3
𝜇J. Because we have no information on the energy bound value
ahead of time, when we get the energy bound, the Brute Force
method must search all the sub-space whose energy is less
than the given energy bound. However, our RapQCS method
starts from its optimal initial configuration. So its solution
can usually be found in several searching steps. This is a
critical factor for time-reducing. Like 𝐴𝑃𝐸 and 𝑇𝑂𝑒𝑛ℎ𝑎𝑛𝑐𝑒
in Experiment B-1), we will introduce 𝐴𝑟𝑢𝑛 and 𝑆𝑝𝑒𝑒𝑑𝑢𝑝𝑟𝑢𝑛
to calculate the speedup quantitatively. 𝐴𝑟𝑢𝑛 refers to the area
between run time curve and energy bound axis:

𝐴𝑟𝑢𝑛 =
∑
𝑖

𝑆𝑟𝑢𝑛(𝑖), (24)



(a) Sample One (b) Sample Two

(c) Sample Three (d) Sample Four

Fig. 10. Run-time comparison between the RapQCS algorithm and the Brute
Force algorithm.

TABLE III. RUN TIME SPEEDUP BETWEEN BRUTE FORCE AND

RAPQCS ALGORITHM.

Sample NO. 1 2 3 4

𝐴𝑟𝑢𝑛(𝐵𝑟𝑢𝑡𝑒𝐹𝑜𝑟𝑐𝑒) (108) 1.74 1.68 2.08 2.11

𝐴𝑟𝑢𝑛(𝑅𝑎𝑝𝑄𝐶𝑆) (105) 7.53 7.33 9.50 8.47
𝑆𝑝𝑒𝑒𝑑𝑢𝑝 230.3× 229.0× 218.9× 249.6×

where 𝑆𝑟𝑢𝑛(𝑖) is the trapezoidal area between two adjacent
points in run time curve and energy bound axis in run-time-
energy-bound axis, not the log run time axis as Figure 10.
Therefore, we can define the time speedup as follows:

𝑆𝑝𝑒𝑒𝑑𝑢𝑝𝑟𝑢𝑛 =
𝐴𝑟𝑢𝑛(𝐵𝑟𝑢𝑡𝑒𝐹𝑜𝑟𝑐𝑒)

𝐴𝑟𝑢𝑛(𝑅𝑎𝑝𝑄𝐶𝑆)
. (25)

TABLE III shows the speedup of 4 samples. The speedup
in all cases are more than 200 times without significant
difference. This is because the run time of 4 samples under
Brute Force algorithm is similar. Our RapQCS method’s run
time fluctuates with a rising trend due to the initial energy
configuration. Thus the speedups have small waves. It is
firmly demonstrated that our RapQCS algorithm gives a very
significant improvement of run time.

4) Case Study: In experiment C-1), we see the relationship
between performance of RapQCS’s curve and Pareto’s curve.
In this experiment, we will take a closer look at the reconstruc-
tion results of our RapQCS algorithm, comparing them with
optimal solution and ground truth. Optimal solution indicates
the optimal result from brute-forcing the performance-energy
space, while ground truth is the original input signal. For a
better comparison, we set an energy bound, 𝐸0 = 6𝜇J. Their
reconstruction results are as Figure 11.

In Figure 11, the blue line is the original input EEG
signal, the red signal is our RapQCS’s result and the green
signal is the reconstruction from brute-force algorithm. For
all the sample cases except Sample Two, the patterns from
RapQCS algorithm and Brute-force curve are very similar to
each other. We cannot directly identify which is with a better
performance between the two methods. They all approximate
to the ground truth closely. Therefore, we investigate their

(a) Sample One

(b) Sample Two

(c) Sample Three

(d) Sample Four

Fig. 11. Reconstruction results of all four EEG samples on 𝐸0 = 6𝜇J.

detailed information, energy configuration and performance,
listed as TABLE IV.

We can observe that except Sample Two, other absolute
error rates of performance are all around 2%. This demon-
strates the similar reconstruction signals between our RapQCS
case and optimal case. For Sample Two, its optimal solution
is closer to the ground truth than RapQCS. However, the two
reconstructions of Sample Two are both not similar to the
ground truth. Their error rate differences are both more than
40% according to the TABLE IV.

VII. CONCLUSION AND FUTURE WORK

In this paper, we presented a configurable Quantized Com-
pressed Sensing architecture. It jointly considers the configura-
tion of sampling rate and quantization in its framework to make



TABLE IV. THE COMPARISON OF CONFIGURATION, ENERGY AND

PERFORMANCE BETWEEN RAPQCS AND OPTIMAL RECONSTRUCTION.
THE ENERGY BOUND SETUP IS 𝐸0 = 6𝜇J.

Sample NO. 1 2 3 4

RapQCS Reconstruction
𝑀 384 380 381 372
𝑏 5 5 5 5

𝐸 (𝜇J) 5.76 5.70 5.72 5.58
𝑃 (%) 16.9 53.2 26.8 17.6

Optimal Reconstruction
𝑀 368 498 375 393
𝑏 5 4 5 5

𝐸 (𝜇J) 5.52 5.98 5.63 5.90
𝑃 (%) 15.4 43.9 23.8 15.0

the Compressed Sensing theory more practical. Through a case
study on the application of body sensor networks, our experi-
mental results indicated that the configurable QCS architecture
can provide more than 60% energy-performance trade-off gain
than the traditional Compressed Sensing architecture. Also,
we proposed a fast configuration algorithm, RapQCS, for the
configurable QCS architecture. In experiments, the proposed
RapQCS algorithm can reach more than 200× speedup, while
only decreasing the signal fidelity by 1.75%.

In our future, we will explore larger design space under
the configurable QCS architecture. For example, besides the
bit resolution, we will also investigate the non-uniform quan-
tization strategies. Also, we will investigate better construction
algorithms and transformation basis for complex signal, such
as Sample Two in the experiment.
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