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Abstract—Data mining has been flourishing in the
information-based world. In data mining, the DTW-kNN
framework is widely applied for classification in miscellaneous
application domains. Most of the studies in the DTW-kNN
framework focus on accuracy and speedup. However, with
increasingly emphasis on applications of mobile and embedded
systems, energy efficiency becomes an urgent consideration
in data mining algorithm design. In this paper, we present
our work on energy characterization and optimization of data
mining algorithms. Through a case study of the DTW-kNN
framework, we investigate multiple existing strategies to improve
the energy efficiency without any loss of algorithm accuracy. To
the best of our knowledge, this is the first work about energy
characterization and optimization of data mining algorithms
on embedded computing testbeds. All the experiments are
implemented on a developed energy measurement testbed.
The experimental results indicate that the distance matrix
calculation is the bottleneck of the DTW-kNN framework, which
accounts for 89.14% on average of the total energy. With several
optimized methods, the reduction of the total energy in the
DTW-kNN framework can reach as much as 74.6%.

Keywords—Dynamic Time Warping; k-Nearest Neighbors; en-
ergy optimization; embedded computing testbed

I. INTRODUCTION

In the past several decades, with the explosion of informa-
tion, data mining has become an increasingly attractive topic,
which is used to discover implicitly and potentially useful
knowledge from data [1]. With the approaching of information
technology, the popularization of internet and the development
of mobile internet, data mining has been flourishing and
utilized in every regarding human life [2].

For applications in internet of things (IOT) and mobile
internet, data mining becomes challenging in the following
reasons. First, the scale of data in IOT and mobile internet
is growing very fast, which makes it difficult to store all the
data for analysis [2]. Second, data transmission in wireless
sensor networks and wearable technology is based on wireless
communication, which is rather energy-expensive to transmit
all the sensing data [3]. Third, many applications (e.g. medical
applications and financial market applications) require quick
action, which makes online data mining critical. To cope with
those challenges, embedded data mining [4] has been proposed
to discover patterns and knowledge in embedded computing
devices. Enegy-aware design has been a widely applied in

embedded applications [5], where energy profiling or char-
acterization is a key step to identify the energy bottleneck of
the entire design and then to guide optimization accordingly.
However, few studies have been proposed for the systematic
energy characterization and optimization for embedded data
mining.

Among data mining algorithms, k-Nearest Neighbors (kN-
N) with Dynamic Time Warping (DTW) as the dissimilarity
matric, namely the DTW-kNN framework, is one of the most
widely used classification methods, which has been applied
for speech recognition, financial market prediction, medical
electronics application, scientific research and so on [6]. How-
ever, all these work do not take the energy optimization on
embedded systems into consideration.

In this paper, we propose a systematic testbed for energy
characterization for embedded data mining and apply the
proposed testbed for optimizations of DTW-kNN. To the best
of our knowledge, this is the first work to study the energy
characterization and optimization of the data mining algorithm
on embedded computing testbeds. And our contributions can
be summarized as the following three aspects:

• We design an energy measurement testbed for data
mining algorithms.

• We analyze the energy characterization of the DTW-
kNN framework based on our proposed energy mea-
surement testbed;

• Multiple optimization strategies are selected and im-
plemented on the testbed to reduce total energy of the
system.

The remainder of this paper is divided into 6 sections.
Section II introduces the background of DTW, kNN and
DTW-kNN framework. The detailed implementation of the
energy measurement testbed is given in Section III. The energy
characterization of the DTW-kNN framework is analyzed in
Section IV. Based on Section IV, Section V introduces several
energy optimization methods. In Section VI, the optimized
DTW-kNN is configured to different experimental setups and
the experimental results and analysis are also given. The paper
is concluded in Section VII.978-1-4799-6177-1/14/$31.00 c© 2014 IEEE



Fig. 1. Signal processing chain of embedded system in IOT. The DTW-kNN
framework is integrated in the chain, including Segmentation, Pre-processing,
DTW and kNN modules.

II. BACKGROUND

A. The DTW-kNN Framework

The DTW-kNN framework is a widely applied classifica-
tion framework. A typical signal processing chain of embedded
system in IOT, integrating the DTW-kNN framework, is shown
in Fig. 1. In general, the DTW-kNN framework consists of four
functional modules, Segmentation, Pre-processing, DTW and
kNN.

In the whole processing chain of IOT, the data captured
from sensors is often regarded as raw analog data. Usually, raw
data stream is converted into digital sequences with Analog-
to-Digital (AD) convectors. Then digital data streams are
divided into sequences with the fixed length in segmentation
module. Pre-processing aims to make data more reliable and
convenient to process, in which normalization is a common
choice. And Z-Normalization (ZN) [7], is adopted in this paper.
After Pre-pocessing, the DTW module utilizes distance matrix
calculation (DMC) and warping path calculation (WPC) to
present the similarity distance between the pre-processed se-
quence and template sequences. With the similarity distances,
classification of the preprocessed sequence is determined by
kNN module, which is mainly a sorting (SN) task. At last,
The post-processing module processes the classification result
with some high level algorithms.

B. Dynamic Time Warping

Dynamic Time Warping is a distance metric of similarity.
There are two time sequences in Fig. 2(a), a sequence C of
length n, as a candidate, and a sequence T of length m, where:

C = c1, c2, · · · , ci, · · · , cn, (1)

T = t1, t2, · · · , ti, · · · , tm. (2)

To measure the similarity of these two time sequence, DTW
creates an n-by-m matrix M , which is called distance matrix
calculation. The value of the (ith, jth) element in the matrix
M represents the distance d(ci, tj) between points ci and tj ,
as shown below:

M(i, j) = d(ci, tj) = (ci − tj)
2. (3)

There are three well-known constrains in DTW [8]: Bound-
ary Conditions, Continuity Condition and Monotonic Condi-
tion. Boundary Conditions means that the first/last point of
C must correspond to the first/last point of T . Continuity

(a) DTW matching (b) DTW warping path

Fig. 2. (a) DTW matching: T and C are two sequences, the lines indicates
the matching relationship; (b) DTW warping path: the gray squares form the
warping path between T and C on the distance matrix.

Fig. 3. kNN Rule: X is classified by a majority vote of k neighbors. The
star in the center is classified as triangle when k = 3, while if k = 7, the
star will be classified as square.

Condition means that each element of the warping path in the
matrix M must have two elements of the warping path around
it except the first and the last points. Monotonic Condition
requires that the extending direction of the warping path is
right, or top or top-right.

The shortest warping path through the matrix is derived,
using [8]:

CD(i, j) = d(ci, dj) +min

{
CD(i, j − 1)
CD(i− 1, j)
CD(i− 1, j − 1)

, (4)

where CD(i, j) is the current minimum cumulative distance.
This procedure is called warping path calculation. The mini-
mized cumulative distance found as showed in Fig. 2(b). And
the final DTW distance is calculated as below:

dtw =
√
CD(n,m). (5)

C. k-Nearest Neighbors

The k-Nearest Neighbors(kNN) algorithm is one of the
well-investigated methods for pattern classification, which is
used to determine the class of an unclassified point by the
class of the k nearest points of it [9]. And k varies for different
applications. A simple example of kNN is shown in Fig. 3.

III. ENERGY MEASUREMENT TESTBED

In this section our energy measurement testbed is present-
ed. The proposed energy measurement testbed can quantita-
tively measure the dynamic energy consumption when data
mining algorithms are running on the testbed.
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Fig. 4. (a) The block diagram of energy measurement testbed; (b) the picture
of the implementation of energy measurement testbed

(a) (b)

Fig. 5. (a) The PCB of the measurement testbed, which include the ARM
module, the current-to-voltage module and the MSP430 module and (b) the
GUI of the PC software

A. Energy Measurement Testbed Overview

The block diagram of the energy measurement testbed
is shown in Fig. 4(a). The testbed consists of an embedded
computing platform, a Current Conversion and Voltage Acqui-
sition (CCVA) module, and an energy calculation module. The
embedded computing platform provides a powerful platform
to run data mining algorithms. The CCVA module converts
the voltage and current signals from the embedded computing
system to digital data and send it to the energy calculation
module. Then the energy calculation module receives the
current and voltage data to monitor the energy consumption
of embedded computing platform in real-time. The picture of
the testbed is shown in Fig. 4(b).

B. Embedded Computing Platform

The embedded computing platform can be implemented in
various hardware components. And in this paper it consists
of an ARM-based chip, a RS232-USB module, and a JTAG
module. In order to meet the requirements of high performance
and low energy consumption, STM32F103 is chosen, which is

based on ARM Cortex-M3. Every chip has reserved at least
one measurement probe to measure its electric voltage and
current. These probes for current are connected to the current-
to-voltage module.

DTW-kNN framework is implemented on the embedded
computing platform. In order to measure energy consumptions
of different stages of programs, application phase tags are
added in programs, which send changes to MSP430. Different
tags mark different operating stages.

C. Current Conversion and Voltage Acquisition Module

The Current Conversion and Voltage Acquisition module
includes two submodules, I2V and AD convertor. The I2V
converts measured currents to voltages which are then pro-
cessed by AD converter. The I2V submodule consists of a
current sensing chip. Based on considerations of accuracy and
measuring range, we choose precision, high-side current-sense
amplifier MAX471 to measure currents. The MAX471 is a
complete, bidirectional, high-side current-sense amplifier.

The AD convertor is implemented in a MSP430 micro-
controller and it has two responsibilities: converting voltages
into digital data with a 12-bit AD converter and transfering
the digital data and application phase tags to the PC software.
The voltages include the voltage from the probes in embedded
computing platform and the I2V submodule.

D. Energy Calculation Module

The energy calculation module is implemented in a Per-
sonal Computer (PC). The PC software reads and saves the
measured data and the application phase tags. Data processing
and analysis are also presented. The real-time curves and
results are displayed with a graphical user interface (GUI),
as shown in Fig. 5(b).

IV. ENERGY CHARACTERIZATION

With the developped energy measurement testbed, we
design and perform detailed experiments to characterize the
energy consumption of the DTW-kNN framework.

A. Characterization Experiment

In the experiments, datasets containing segmented data
from a popular data warehouse for classification and cluster-
ing [6] are used, which omits data stream acquisition, AD
conventor and L-length segmentation. As the RAM and ROM
are limited in the ARM chip, 5 datasets with short sequence
length are selected. Detailed information of the selected 5
datasets in the experiments is shown in TABLE I. Three k
values, 1, 3 and 5, are selected. The CPU clock speed of the
ARM chip in the energy measurement testbed is set to 72MHz.
The sizes of training set and test set of the 5 datasets are 10
and 100, respectively.

Distance matrix calculation and warping path calculation
in DTW require a 2×N×N memory space, which may exceed
the capacity of RAM of the ARM chip when the sequence
length n is large. Based on the idea that the minimum coupling
part of distance matrix and warping path matrix is just one
row, we propose a memory-efficient operation method to allow



TABLE I. DETAILED INFORMATION OF THE SELECTED 5 DATASETS [6]

NO. Name Number
of

classes

Segment
Length

Signal
Range

1 Medical Images (MI) 10 99 [-2.0,6.6]
2 ECG 2 96 [-3.0, 4.1]
3 Mote Strain (MS) 2 84 [-7.8,3.4]
4 SonyAIBORobot Surface (SS) 2 70 [-3.5,3.7]
5 Italy Energy Demand (IPD) 2 24 [-2.4,3.3]

TABLE II. ENERGY CHARACTERIZATION OF DTW-KNN FRAMEWORK

Datasets k
Total
Energy
(mJ)

Energy percentages
of different parts
ZN DMC WPC SN

Medical Images (MI) 1 15780 3.06% 89.34% 7.44% 0.15%
ECG 1 14246 2.44% 89.89% 7.49% 0.18%

Mote Strain (MS) 1 11336 2.94% 89.42% 7.45% 0.18%
SonyAIBORobot Surface (SS) 1 7804 2.83% 89.49% 7.45% 0.22%

Italy Energy Demand (IPD) 1 906 2.39% 89.50% 7.46% 0.66%
Medical Images (MI) 3 15821 3.05% 89.11% 7.43% 0.42%

ECG 3 14290 2.44% 89.62% 7.47% 0.48%
Mote Strain (MS) 3 11372 2.93% 89.14% 7.43% 0.50%

SonyAIBORobot Surface (SS) 3 7834 2.82% 89.15% 7.43% 0.59%
Italy Energy Demand (IPD) 3 916 2.36% 88.51% 7.38% 1.75%

Medical Images (MI) 5 15853 3.04% 88.93% 7.41% 0.62%
ECG 5 14323 2.43% 89.4% 7.45% 0.71%

Mote Strain (MS) 5 11399 2.93% 88.93% 7.41% 0.73%
SonyAIBORobot Surface (SS) 5 7856 2.81% 88.90% 7.41% 0.88%

Italy Energy Demand (IPD) 5 924 2.34% 87.77% 7.31% 2.58%

all the datasets run on the ARM-based testbed. Our method
calculates a row of the distance matrix first, and then calculate
a row of the warping path matrix. So only 2 × N storage
is needed. This process will iterate until the calculation of
warping path matrix ends. Therefore it cuts down the memory
occupation with no impact on arithmetic calculation.

B. Characterization Analysis

The results of the characterization experiments are shown
in TABLE II. The total energy consumption is larger as
the sequence length increases under the same k setup. For
the same dataset, total energy grows about 1% as 2 unit
increment of k . The energy percentages of different parts
of the five datasets under different k value setups are almost
the same. The most energy-expensive step is distance matrix
calculation, which accounts for 89.14% on average of the
total energy consumption. While warping path calculation and
normalization accounts for around 7% and 2%. And sorting
is the least energy consumer, accounting for around 1%. The
distance matrix calculation is made up of multiply operations
and its asymptotic time complexity is O(n2), so it is rather
energy-consuming. While the warping path calculation is full
of logical operations with an asymptotic time complexity of
O(n2). As logical operations are much less energy-expensive
than multiply operations, the energy consumption of warping
path calculation is much less than that of distance matrix cal-
culation. The asymptotic time complexity of both normaliza-
tion and sorting are O(n), so their energy percentages are very
small. As multiply and division operations in normalization are
more energy-expensive than logical operations in sorting, the
percentage of sorting is much smaller.

The DTW calculation includes two most energy-consuming
submodules, distance matrix calculation and warping path
calculation, which totally account for as much as 97% of the
total energy. From TABLE II we can see that DTW calculation
is the bottleneck of the whole DTW-kNN framework.

V. STRATEGIES OF ENERGY OPTIMIZATION

With the energy characterization of the DTW-kNN frame-
work observed in Section IV, we will employ and discuss
several optimization methods in this section. And we firmly
claim that all the selected and proposed methods have no
influence on accuracy.

A. The Squared Distance

The DTW distances need to compute square root. In
fact, this computation makes no difference of the rankings in
kNN [9]. Compared with Formula (5), the optimized version
of Formula (5) is shown below.

dtw = CD(n,m). (6)

Removing square root computing will remove square root
operations, which will potentially save time and energy.

B. Early Abandon of DTW

During the calculation of DTW in the DTW-1NN frame-
work, early abandon of DTW can be achieved. This is due to
the fact that the warping path obeys the rule of Continuity
Condition and there exist at least 1 element in a row that
belongs to the warping path. Suppose that an exact DTW
distance dtw1 is calculated. During the next calculation of
DTW, if the minimum

√
CD(i, j) of the current row exceeds

dtw1, the final dtw of the current DTW must exceed dtw1 and
the calculation of it can be abandoned early. The mechanism
of other conditions of k in DTW-kNN framework is the same.

C. Lower Bound and Indexing DTW

Lower bounding functions are used to estimate the lower
bound of DTW distances. Several lower bound functions are
selected for indexing DTW. The lower bounding function
proposed by Kim [10] (referred LB Kim hereafter), by
Yi [11] (referred LB Yi hereafter), and a revised version of
LB Kim by Rakthanmanon [8](referred LB Kim2 hereafter)
are selected.

Indexing with the above lower bounding functions, a kNN
Indexing algorithm is introduced in Algorithm ??. It is a
modification of the algorithm used for indexing time series
in [12].

As shown in Algorithm 1, Q stands for query sequence,
while T stands for training sequences. K is the desired
number of numbers in kNN. Two min priority queue, queueLB,
queueResult , are used. queueLB is sorted by the lower bound,
while the queueResult is sorted by the DTW distance. Firstly,
all lower bounds between Q and T are pushed into queueLB.
Then the algorithm pops out the first element of queueLB in
each cycle until queueLB is empty. During each cycle, if the
length of queueResult is less than K, the exact DTW distance
of first element is calculated and pushed into queueResult. If
the LBdistance of first element is equal to or greater than
the DTW distance of the last element in queueResult, the
algorithm returns. If, on the other hand, the DTW distance
of the first element is less than the DTW distance of the
last element in queueResult, first element will replace the last
element in queueResult.



Algorithm 1 kNNIndexing(Q,K)
Variable: queueLB, queueResult:MinPriorityQueue;

1: queueLB.push(T , LBdistance(Q,T ));
2: while not queueLB.IsEmpty() do
3: first=queueLB.first();
4: if queueResult.length()< K then:
5: queueResult.push(first, DTWdistance(first,Q));
6: else if first.LBdistance>=
7: queueResult.last().DTWdistance then
8: return queueResult;
9: else if DTWdistance(first,Q)<

10: queueResult.last().DTWdistance then
11: queueResult.popLast();
12: queueResult.push(first, DTWdistance(first,Q));
13: else
14: continue;
15: end if
16: end while
17: return queueResult;

TABLE III. DETAILED INFORMATION OF THE VOLTAGE AND Istatic

Voltage
(V)

Istatic (mA) with CPU clock rates
16MHz 24MHz 32MHz 40MHz 48MHz 56MHz 64MHz 72MHz

3.325 4.28 6.25 8.31 10.30 12.32 14.39 16.71 18.45

VI. EVALUATION

In this section, we carry out a comprehensive set of ex-
periments to evaluate the DTW-kNN framework with selected
optimization strategies.

A. Experimental Setup

The same 5 datasets are selected as shown in TABLE I.
We also use the memory operation method of DTW as Section
IV. The energy characterization of the DTW-kNN framework
in Section IV shows that k does not have significant influence
on the energy characterization. So in this part DTW-1NN is
adopted for simplification. The sizes of training set and test
set of the 5 datasets are 10 and 100, respectively. The energy
consumption of the ARM-based testbed is calculated as shown
below.

e = t× V × (Iknn−dtw − Istatic), (7)

where e stands for energy consumption, and t is the running
time of the program. V is the voltage. Iknn−dtw is the average
current when running programs. Istatic is the average current
of the program doing nothing. The detail information is shown
in TABLE III. And CPU clock rate is set to 72MHz by default.

B. Experimental Result and Analysis

1) The Squared Distance: The comparison between the
squared distance and the squared root distance is tested.
TABLE IV shows the results of the energy comparison of
squared distance and squared root distance. We can see that
the energy of squared distance is less than that of squared
root distance and the squared distance can reduce energy
consumption with about 1%. The difference between the two
strategies is not so significant on all 5 datasets. This is because
the square root operation is executed only once of every

TABLE IV. ENERGY COMPARISON OF SQUARED DISTANCE AND
SQUARED ROOT DISTANCE

Datasets DTW-kNN energy consumption (mJ)
MI ECG MS SS IPD

Squared Root Distance 15779 14246 11336 7804 905.81
Squared Distance 15323 14040 11004 7722 898.56

Reduction 2.9% 1.4% 2.9% 1.0% 0.8%

Fig. 6. Energy comparison of early abandon optimization and no optimization

DTW distance calculating. Since the computing complexity of
DTW is O(n2), the energy of calculating square root becomes
a subtle factor. Also, when comparing the energy reduction
between different datasets, we can find that datasets with long
sequence gain more energy reduction, while short-sequence
datasets have less reduction, such as IPD has the lowest
reduction. This is because that long sequence is probable to
have a relatively big DTW distance.

2) Early Abandon of DTW: Early abandon of DTW is
implemented without no other optimizations. As shown in Fig.
6, the energy reduction of early abandon optimization method
varies from 29.5% to 89.9%. This is due to the fact that it
is random to meet the best matching sequence for the test
sequence. If the best matching sequence is calculated in the
first step, the other calculation can be abandoned very early
and the energy reduction can be very huge. Unfortunately, if
the calculations flow of DTW is from the largest DTW distance
to the least DTW distance in a sequential chain, the reduction
can be rather low.

3) Lower Bound and Indexing DTW: TABEL V shows
the energy consumption varies with different lower bounding
methods and datasets. The energy reductions vary on different
datasets. But the three lower bounding methods have not
significant difference. Compared with the DTW-kNN frame-
work without optimization in TABLE II, the average energy
reductions are around 50%.

4) Put it all together: In this part all the optimization
strategies are implemented and tested together.

TABLE VI shows that with full optimization, the energy
reduction varies with different datasets. The highest reduction

TABLE V. ENERGY CONSUMPTION OF DIFFERENT LOWER BOUNDING
METHODS

LB method Datasets
MI ECG MS SS IPD

LB KIM 74.9% 58.5% 51.6% 33.5% 47.4%
LB KIM2 73.7% 57.5% 45.3% 35.5% 49.4%

LB Yi 74.6% 56.4% 52.8% 35.0% 43.5%
Average 74.4% 57.5% 49.9% 34.7% 46.8%



TABLE VI. ENERGY REDUCTION OF FULL OPTIMIZATION FOR
DTW-KNN FRAMEWORK WITH A 72MHZ CPU CLOCK RATE

Full Optimization Datasets
MI ECG MS SS IPD

SD+EA+LB KIM 74.6% 59.4% 52.5% 34.8% 46.9%
SD+EA+LB KIM2 73.3% 56.2% 44.9% 35.1% 50.1%

SD+EA+LB Yi 74.3% 56.9% 50.0% 34.6% 44.5%
Average 74.1% 57.5% 49.1% 34.8% 47.2%

Fig. 7. Frequency scaling on dynamic energy

is as much as 74.6%. The energy reduction of the full op-
timization is not a simple addition of energy reduction of
each optimization method. This is caused by the fact that
all the optimization methods are coupled by the DTW-kNN
framework.

We can take a close look at the comparison of TABLE V
and TABLE VI. All the energy reduction seems very similar,
with difference no more than 2%. It demonstrates that when
we put all the optimization strategies together, lower bound
and indexing DTW method dominates the whole optimization.
For the squared distance method, the energy comsumption of
square root operation only takes up a very small proportion, so
it does not have a big impact. While for early abandon strategy,
its performance depends on the position of the best match
with great randomness. However, lower bounding exploits the
signal’s intrinsic feature better and indexing can remove the
randomness. Therefore, lower bounding and indexing DTW
strategy plays a dominating role in the combination of all
optimization strategies.

C. Frequency Scaling on Dynamic Energy

In this part all the optimization are implemented and tested
with different CPU clock rate. For simplification, the lower
bounding method LB KIM is selected.The result is illustrated
in Fig. 7. From Fig. 7, all the energy consumption of 5 datasets
decreases as the CPU clock rate increases. Except IPD dataset,
other datasets’s energy consumption all decrease very fast as
CPU clock increases, while IPD suffers from a very slow
decreasing rate. This is related to the sequence length in the
dataset. The energy consumption increases by quadratic speed
of segment length in the dataset. We can also observe that
the absolute energy consumption of other four dataset is not
proportional to their segment length. This is involved with our
optimization strategy and intrinsic property of signal. In sum,
it clearly indicates that a higher CPU clock rate will save time
and energy at the same time.

VII. CONCLUSION AND FUTURE WORK

Within data mining, the DTW-kNN framework is a widely
used strategy in many areas. With more and more emphasis on
energy of internet of things (IOT) and mobile internet, energy
characterization of data mining method including DTW-kNN
is very critical. In this paper, the energy characterization and
optimization of DTW-kNN framework are analyzed with a
comprehensive set of experiments. And Several meaningful
results can be made:

• The bottleneck of the DTW-kNN framework is dis-
tance matrix calculation accounting for 89.14% on
average of the total energy consumption.

• The energy reduction of squared distance, early aban-
don and lower bounding methods are about 1%, from
29.5% to 89.9% and about 50% respectively.

• When all optimization methods are implemented, the
energy reduction can be as much as 74.6%.

In the future work, more optimization methods involved
with tradeoffs of speed, energy and accuracy will be discussed.
Also a benchmark work of energy characterization of distance
measures and classification methods will be presented.
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