
PBench: A Benchmark Suite for Characterizing 3D
Printing Prefabrication

Fan Yang†, Feng Lin†, Chen Song†, Chi Zhou ‡, Zhanpeng Jin§, Wenyao Xu†
† Computer Science and Engineering, University at Buffalo (SUNY), New York 14260
‡ Industrial and System Engineering, University at Buffalo (SUNY), New York 14214

§ Electrical and Computer Engineering, Binghamton University (SUNY), New York 13902
Email: {fyang24, flin28, csong5, chizhou, wenyaoxu}@buffalo.edu, zjin@binghamton.edu

Abstract—3D printing is revolutionizing the next-generation
manufacturing industry. With increasing design complexity, com-
putation in the prefabrication process is becoming the bottleneck
of 3D printing. For example, a multi-scale, multi-material 3D
design (e.g., a bionic bone) takes a few hours or even days to
complete the prefabrication computation. Therefore, it is prudent
to improve the performance of 3D printing prefabrication. In
this paper, we investigate the computational challenges in 3D
printing. First, we develop the PBench, an open-source standard
benchmark suite for 3D printing prefabrication. To the best
of our knowledge, this is the first benchmark suite for 3D
printing prefabrication. Second, we study the properties of
PBench using TotalChar, a proposed benchmark characteriza-
tion framework analyzing PBench from three complementary
dimensions, i.e., (1) microarchitecture independent analysis, (2)
architecture bottleneck analysis and (3) functional performance
analysis. Experiments show that 3D printing prefabrication can
be potentially optimized through specified function accelerator
design or parallelism exploration. Overall, this work establishes
the potential for accelerating 3D printing prefabrication.

Keywords: 3D printing, Prefabrication algorithms, Bench-
mark.

I. INTRODUCTION

3D printing, also known as additive manufacturing, refers to
a process which builds a three-dimensional (3D) object layer
by layer from digital data [11]. As an advanced manufacturing
technique, 3D printing holds the merit of affordability and
customizability. It has been changing the market trends, and
resulting in an efficient, responsive, robust and sustainable
production paradigm in a wide range of applications including
aerospace, automobile, defense, biomedical, health and energy
industries [20].

There are two steps in the standard 3D printing process.
The process input usually is a 3D design model, which is
usually designated by 3D design tools (e.g., Solidworks) or
produced by a 3D scanner. The 3D design is represented as a
triangle mesh in the STereoLithography (STL) format. There
are two main steps in the fabrication process. The first step
is a computing process that transforms a 3D design file into
a set of instruction codes, G-code, which a 3D printer can
execute. This process for a 3D printer is similar to a compiler
for a CPU, or a synthesizer for an Field-Programmable Gate
Array (FPGA). This step is also known as prefabrication or
process planning [16]. The second step is the manufacturing
process, in which the 3D printer fabricates the physical object
according to the instruction codes.

Fig. 1. The process time changes as 3D printing technology advances.

The primary fabrication time in 3D printing contains two
parts, i.e., computing time in prefabrication and processing
time in manufacturing. Our preliminary study has surveyed
the fabrication time evolution of 3D printing in the past
three decades [24], [32], [9]. Figure 1 depicts our survey
results, indicating the tremendous changes in terms of fabri-
cation resolution, design complexity and application domains.
The advances in material, process and machine development
has moved the 3D printing process from rapid prototyping
to rapid manufacturing with significantly improved manu-
facturing speed and production throughput [2]. The recent
breakthrough continuous 3D printing technology decreases the
manufacturing time by orders of magnitudes [24]. However,
the unprecedented design complexity introduced by the ex-
panded design freedom poses a significant challenge in terms
of prefabrication computation [8]. Nowadays, prefabrication
time is increasingly significant and becomes the dominating
factor in the entire 3D printing process. According to our
literature review, there are few in-depth studies focusing on
the acceleration of 3D Printing prefabrication.

The purpose of this study is to introduce the 3D printing
computation challenge within the computer society. The first
step is to understand the computational characteristics in 3D
printing prefabrication. To this end, we develop the PBench, an
open-source standard benchmark suite of 3D printing prefab-

95978-1-5090-3896-1/16/$31.00 ©2016 IEEE

rication. PBench contains a set of prefabrication algorithms,
including slicing, path planning and support generation in 3D
printing, and a group of 3D design STL files. Specifically, both
coverage and representativeness are considered in the bench-
mark design, which establishes a baseline in this application.

To comprehensively understand the PBench characteristic
and provide intuition for acceleration in hardware design,
we propose TotalChar, an end-to-end performance character-
ization framework. TotalChar has three analytic dimensions:
(1) microarchitecture independent analysis, (2) architecture
bottleneck analysis and (3) functional performance analysis.
Microarchitecture independent analysis provides the funda-
mental characteristics of 3D printing prefabrication, including
computing, memory and control behaviors. Architecture bot-
tleneck analysis is to analyze the efficiency at the application
level. We find that an average 66.24% of the CPU pipeline
slots are used for useful computation, and only 3.74% slots
are dedicated to resolving branch misprediction. This result
indicates that 3D printing prefabrication can be potentially
optimized through specified function accelerator design or
parallelism exploration. In functional performance analysis, we
divide the PBench benchmarks into multiple common function
blocks. Experiments implies that the intersection and distance
computing blocks are dominant computational bottlenecks.

The contribution of this work are summarized as follows:
• We develop the PBench, a benchmark suite for the 3D

printing prefabrication. It encompasses six prefabrication
algorithms and six 3D design sets.

• We propose a comprehensive characterization frame-
work, TotalChar, which evaluates PBench from three
dimensions, including the invariant property, architecture
character and functional behavior. TotalChar can provide
comprehensive evaluation of a benchmark and potential
methods for hardware improvement.

• We analyze the characteristics of 3D printing manufac-
turing, discussing the pitfalls, challenges and direction of
accelerating 3D printing prefabrication.

II. BACKGROUND AND MOTIVATION

In the section, we introduce the background of 3D printing
prefabrication and highlight the motivation of this work.

A. Acceleration of 3D Printing Prefabrication

Prefabrication is a mandatory step in the 3D printing pro-
cess, and its research has a long history since the birth of addi-
tive manufacturing technologies. In recent years, a few studies
have emerged on designing time-efficient prefabrication algo-
rithms in the 3D printing process. For example, Vatani et al.
enhanced the slicing algorithm using nearest distance analysis
[26]. Muller et al. presented a method to accelerate slicing
in prefabrication through downsampling of design resolution
[18]. Gregori et al. proposed an asymptotically optimal algo-
rithm for slicing [12]. Zhou et al. developed an efficient path
planning algorithm to decrease the overhead in prefabrication
[34]. These proposed methods all claims that they can improve
the time-efficiency of 3D printing prefabrication. However, in

demonstrating performance of their algorithms, these studies
employed different 3D design input files. There is a lack of
a common standard benchmark to compare the work with a
baseline. In addition, all these works study acceleration of 3D
printing fabrication from the algorithm perspective. There is no
study to address this challenge through the design of advanced
architecture and hardware.

B. Benchmark Characterization

In recent years, domain-specific acceleration has become
a research trend in computer science [7]. A few studies have
investigated benchmark design and characterization on specific
applications [19], [14], [23], [28]. For instance, Reagen et
al. proposed MachSuite for accelerator design and customized
architectures [19]. This work analyzes the microarchitecture-
dependent character of MachSuite, but it lacks direct insight on
architectural optimization. Kanev et al. profiled the character
of a warehouse-scale computer [14]. This work presents the
detailed architecture information of a warehouse-scale com-
puter and analyzes the potential methods to improve a specific
architecture. However, this method cannot be generously ap-
plied to other benchmark designs because it only focuses on
the optimization strategy towards a special type of architecture.
Therefore, to provide insights on both the invariant characters
and the methods for improving architectures, it needs a com-
prehensive benchmark characterization framework.

III. BENCHMARK SUITE DESIGN

In this study, the benchmark suite consists of two parts. One
is a set of prefabrication algorithms, and the other is a group
of appropriate input datasets of 3D design. In 3D printing
prefabrication, the input data sets are in the STL format. In
the remaining part of this section, we will discuss in detail the
design of the benchmark suite and input testbench.

A. Prefabrication Algorithm Selection

Design Space: 3D printing prefabrication contains slicing,
path planning, support generation, orientation,
repairing, packaging etc. Slicing is a computing process
converting a 3D design model to a set of 2D planar layers. It
intersects all the triangles with each slice plane and connects
the resulting segments with a group of properly oriented
closed contours. Path planning transforms a 2D sliced
contour into 1D paths, which directs the printing tools to
form the desired shape. Support generation adds physical
support to the regions that need to form the shape during the
printing process. Orientation changes the direction of the
3D object to form a more robust and concrete printing result.
Repairing corrects the input data if they are not complete
or have fault. Packaging wraps up multiple 3D design files
when multiple objects are manufactured. PBench’s design is
based on two objectives: coverage and representativeness.
Rational Design: We design PBench with respect to tow
objectives, i.e., coverage and representativeness. Coverage
requires including main computing patterns in 3D printing
prefabrication [19]. In general, there are two types of processes

96

in 3D printing prefabrication workloads: basic operations
and auxiliary operations. Basic operations include slicing
and path planning, which are required in all 3D printing
processes. Auxiliary operations include support generation,
orientation, repairing, packaging, etc., which are required
for the specific printing object. In this study, PBench is
designed to contain all the basic operations, as well as the
most frequently used stage in auxiliary operations, support
generation [5], [25], [10]. In total, PBench contains three
types of operations, slicing, path planning and support
generation. Representativeness requires the chosen bench-
mark implementation to be able to substitute other similar
workloads [3]. Therefore, we choose mainstream implemen-
tation [31], [34], [24], [4] of three operations in PBench.
Specifically, PBench includes three types of slicing algorithm
implementation, two types of path planning algorithm imple-
mentation and one support generation algorithm implementa-
tion. The details are described in Section 4.

B. 3D Design Testbench

The other part of the PBench design is to include a group
of 3D design files (in STL format) to test the prefabrication
algorithms. These design testbenches are important because
different inputs can lead to significantly diverse computing
behaviors and demands. According to our literature review,
many studies use existing design testbenches. For the sake of
efficiency, we use a in total six testbenches in this study.

The inputs are selected according to the following proce-
dure: First, we collect a diverse existing 3D testbench as an
input STL pool. To form the STL pool, we search through the
internet for open-source STL files and develop a base STL pool
with 65 different STL files [15]. Second, we organize the input
STL pool with selection criteria. In this study, the criteria are
coverage, diversity and representativeness. The chosen STLs
should be able to represent the diversity of the entire STL pool.
We achieve this by constructing a two-dimension matrix for
each STL, one representing the size and the other indicating
the domain. Finally, we select these criteria to choose a pre-
defined number of STL files. The clustering strategy is adopted
in the selection process. The implementation and selected
results will be elaborated on the next section.

IV. BENCHMARK DESCRIPTION

In this section, we describe the PBench implementation in
detail through the design approach in Section 3. Specifically, in
this study we implement the prefabrication algorithm as single
thread benchmarks considering it is the most commonly used
case in practice. For 3D design testbench implementation, the
K-means algorithm [13] is employed to categorize these STL
files, and the chosen STLs are the centers of each group. We
execute K-means multiple times and choose the groups with
highest frequency.

A. Algorithm Description

Closest distance slicing (cds): Slicing cuts a 3D model layer
by layer and generates the 2D contour information [26]. The

input for slicing is STereoLithography (STL). STL contains
triangle mesh that describes the 3D object [30]. The output of
slicing is a Common Layer Interface (CLI) file, which
depicts the contour information of each layer [30]. Closest
distance slicing is the most fundamental and popular al-
gorithm for slicing [31], [26], [17]. This algorithm iterates
through all layers by computing the intersection segments
of STL with the current layer, which forms an intersection
queue. Then these segments are connected to contours using
the closest distance search through the intersection queue. The
core computation of this algorithm is the comparison with all
other segments to find the neighbor segment.
Marching slicing (ms): Slicing can also be computed
through marching, which comprises geometry information to
shorten the time for the neighboring search [21], [22]. It is
implemented by first constructing a half-edge data structure
(HEDS) to represent the geometry information of STL. Similar
to the closest distance slicing, it also slices the STL layer
by layer and connects these intersection segments to closed
contours. The difference is the method for finding the neighbor
segment. Instead of comparing through the intersection queue,
marching slicing checkes HEDS and locates the neighbor
segment.
Sampling-based slicing (sbs): Sampling-based slicing is
especially designed for continuous printing, which is an evolv-
ing technique in 3D printing that can print one entire layer
at a time [24], [33], [6]. Most 3D printers need to know
the location of points as well as the movement of printing
heads for manufacturing. This specific printer for continuous
printing only requires the information of points. Sampling-
based slicing reads the data from the STL file. First, this
algorithm rasterizes the data, changing the format from triangle
mesh to point cloud. The X and Y coordinates of each point
are defined by pixel centers (position). Second, this algorithm
converts the sampling point cloud to the image profile (point
location). It is achieved by sorting all the sampling points
according to Z-coordinates. For each position, all the sampling
points below the current slicing plane and on or above the
previous slicing plane are considered and operate on the pixel
matrix for previous layers according to the norm of each point.
If the facing down position, we enter the object, and there
should be a point at this position. If facing up, we leave the
object and there should be no point at this location. Using this
method we can produce the point location of each layer.
Rasterization path planning (rpp): Path planning specifies
the movement of the printing head based on the contours
computed by slicing [16], [34]. The input for path planning
is the CLI file, and the outputs are the points indicating the
moving location of the 3D printer head. One common method
to implement path planning is rasterization. It applies pre-
computed contours to a fine-grained mesh and computes the
intersections, and then connects the intersecting points to fill
the inside of contours. The coordinates of these connecting
lines represent the position of the printer head.
Contour offsetting path planning (copp): Another method
to implement path planning is contour offsetting [27], [4].

97

Fig. 2. Design testbench profile. From left to right, these images are cylinder,
club, bull, ring, cam and impeller, respectively.

TABLE I
DESIGN TESTBENCH DESCRIPTION.

Name Size Triangle Layer Description
Cylinder 54 KB 1088 100 Simple geometry
Club 165 KB 3290 20 Daily supply
Bull 620 KB 12400 26 Animal
Ring 1.2 MB 23254 204 Daily supply
Cam 4.3 MB 86360 183 Daily supply
Impeller 28.5 MB 570982 175 Industry part

Contours are constructed by segments. Moving all segments
of a contour inward a certain distance will result in a smaller
contour of the same shape. The Contour offsetting method
repeats these steps until reaching the inner contour, or all the
regions constrained by the contour have been filled up. These
offsetting contours indicate the locations of the printer head.
Support generation (sg): Support generation computes the
positions requiring support during the manufacturing process
[5]. The input is the CLI file, and the output is a set of points
showing the support position. Support generation comprises
three steps. First, calculating the self-support regions, then
computing the regions requiring support for each layer, and
finally the complete support structure of the 3D object is
computed. In PBench, it is implemented by first augmenting
the contours of the current layer a certain range representing
self-support, then computing the difference between the cur-
rent and the previous layer as the regions requiring support.
Finally adding support from the top to the bottom to derive
the complete support structure.

B. Testbench Description

The selected testbenches are shown in Figure 2, and char-
acterized in Table I. It can be observed that the chosen design
of the testbenches range from kilobyte to megabyte in size, as
well as cover four different domains. These testbenches meet
the requirements of coverage, diversity and representativeness.
Cylinder is a simple geometry product, the height of which
is 10 centimeters. Club is a daily tool model. It is relatively
small in size, and the height is 2 centimeters. Bull is an
animal design model. The size of bull is 2.6 centimeters. Ring
and Cam are two kinds of ring knots, and cam is relatively
more complex in structure. Their heights are 20.4 and 18.3
centimeters, respectively. Radial impeller is an industry part
which is prevalent in industry engineering, and its height is
17.5 centimeters.

V. BENCHMARK CHARACTERIZATION

To explore the characteristics of PBench, and provide in-
sights into improving hardware architecture for 3D printing

Fig. 3. TotalChar characterization method.

prefabrication domain, we evaluate PBench using a new char-
acterization method, TotalChar, which profiles benchmarks in
three dimensions.

The diagram of TotalChar is shown in Figure 3. Each
dimension of analysis in TotalChar have different focuses on
the properties of the PBench. Microarchitecture independent
analysis aims to seek the character which is invariant on dif-
ferent architectures; architecture bottleneck analysis inspects
the architecture in detail to detect where the time is spent;
functional performance analysis finds the performance of each
function block. From each of these three analysis, we gain
different insights for hardware improving. Microarchitecture
independent analysis forms a solid base understanding of
PBench; architecture bottleneck analysis detects which method
is appropriate for enhancing performance; functional per-
formance analysis reveals the target function block which
plays the most significant role in system performance. In this
paper, we first perform microarchitecture independent analysis,
then architecture bottleneck analysis and finally the functional
performance analysis.

A. Microarchitecture Independent Analysis

The microarchitecture independent characters of a bench-
mark depict the invariant properties that remains constant
under different architectures. Analyzing these characters is
not only a good first-order measurement that provides insight
into the benchmark itself, but also forms a solid basis for
future architecture bottleneck analysis. The matrix we use for
analysis is focused on three main categories: compute, memory
and control [23].

We evaluate these properties using gem5. The gem5 simula-
tor is an open-source simulation platform for computer-system
architecture research, encompassing system-level architecture
as well as processor micro-architecture [1]. With gem5 we can
trace the flow of every instruction as well as the movement of
data, which provides the opportunity to inspect the properties
of the benchmark. Because the target properties in this section
are microarchitecture independent characters, it makes no
difference no matter which CPU configuration we use. So we
choose the default out-of-order CPU with X86 ISA in gem5.

98

Fig. 4. Instruction mix of PBench.

1) Compute: The first category we want to study is the
compute behaviors, which analyze the instruction sequences
of programs and explore their execution patterns. In this
category, we will focus on instruction mix which break
down the executed instructions into compute, memory and
control categories [23]. We average the instruction mix of
the six input STL files for each benchmark in PBench. As
shown in Figure 4, each bar represents the average instruction
mix of each benchmark. In general, PBench encompasses a
relatively high portion of compute instructions, and a low
portion of control instructions. Specifically, the overall average
percentage of compute, memory and control instructions of
PBench are 59.51%, 31.81% and 8.68%, respectively. Since
the control percentage is small, it is likely that PBench is
highly predictable, which will be confirmed in the analysis of
control behavior.

The difference of instruction mix between benchmarks
indicates their difference in computing behavior. For exam-
ple, marching slicing has a relatively larger percentage of
memory instructions than closest distance slicing, specifi-
cally, 33.61% for marching slicing and 22.33% for closest
distance slicing. This results from the fact that marching
slicing needs to create a half edge data structure to store
all the input data, but closest distance slicing does not.
Referencing and searching through this large structure requires
multiple memory access operations. This results in more
memory operations for marching slicing.

2) Memory: The invariant memory property of a program
has significant impact on architecture performance including
cache miss and memory operation latency. Benchmarking
the memory behavior will not only provide insight into the
memory constrain of a benchmark itself, but also establish
foundations for future architecture bottleneck analysis. We
will discuss three memory metrics in this section, memory
footprint, spatial locality and temporal locality.

a) Memory footprint: Memory footprint measures the
total memory space a program requires for execution. We
execute all PBench benchmarks with all input data sets, and
the memory footprint is shown in Figure 5.

This figure shows the scalability of the memory footprint of
PBench. Each line represents the memory footprint required

Fig. 5. Memory footprint of PBench.

Fig. 6. Spatial locality of PBench.

for running this benchmark given the specific input STL file.
Since the STL files are arranged according to the size, it
can be observed that as the input data size increases, the
memory required by each benchmark also increases. The av-
erage memory footprint required for executing the six PBench
benchmarks for each STL file is 8.754, 9.046, 9.638, 11.144,
11.536 and 47.171 megabytes, respectively. Moreover, there is
a turning point in this figure after which the memory footprint
grows dramatically. This is because the memory footprint of a
benchmark is determined by two factors. The first is the space
required for processing the input data, and the second is the
routine operations the program execute independent of the size
of data. When the size of STL file is small, the second factor
dominates the memory footprint, but as the size of STL file
gets larger, the first factor becomes more important, and these
result in the turning point in figure 5.

b) Spatial locality: Spatial locality measures how far
away the benchmark’s memory access occurs relative to the
previous memory access. This matrix is important for hard-
ware optimization because once we understand the strides
between each memory access, we can design caches with
lower miss rate. We show the spatial locality of PBench by
averaging the execution results of the six STL files in PBench
testbenches. The experimental result is indicated in Figure 6.

This figure shows the cumulative percentage of memory
access of each benchmark. The X coordinate indicates the
distance between each memory access in number of words (32

99

Fig. 7. Temporal locality of PBench.

bits). It can be observed that these benchmarks have an initial
jump, then rising with different slopes. These are resulted from
the multiple loops of these benchmarks. In the outer loop, the
benchmarks traverse through the input data set with stride-one
access pattern, which resulted in the initial jump. In the inner
loop, these benchmarks operate on the data choosing from the
outer loop, which caused the rising of spatial locality after the
initial jump.

Take the benchmark of closest distance slicing for ex-
ample. In the outer loop, it traverses through point arrays
to choose the closest points. In the inner loop, it connects
the closest point pairs to closed contours. The traversing in
the outer loop caused the initial jump. In the inner loop, it
operates on the choosing point pairs, and the memory location
of where the choosing pairs are influences the stride of spatial
locality. In our experience, the choosing pairs can be adjacent,
or separating far away in the points array. This makes the
memory stride can be any number from 1 to the size of the
point array, which explains the continuous raising of spatial
locality.

c) Temporal locality: Temporal locality measures the
interval distance of memory accessing the same address. This
is also a very important matrix for hardware architectures since
it explores the degree of reusability. Typically, a benchmark
with a high portion of memory access that have small reuse
distance usually has a low miss rate. We perform temporal
locality analysis on PBench and the result is shown in Figure
7.

Temporal locality presents an overall trend of ascending
and saturating at some thresholds, which are also resulted
from multiple loops in PBench. In the outer loops, these
benchmarks will traverse through the data and select some
target points for further operations. This operation has little
re-usability. In the inner loops, these benchmarks perform
operations on the selected data, which causes the data reuse.
Using rasterization path planning as an example, in the
outer loop, this algorithm traverses through the input contours
to compute the intersection points with the rasterization nets.
In the inner loop, it sorts and traverses these intersection
points. The re-usability comes in the operations on these
intersection points, and the size of the intersection points

Fig. 8. Branch entropy of PBench.

influences the reuse distance. In our experience, the size of
the intersection points varies from several points to dozens of
points, which causes the reuse distance continuously ascending
from 2 to 128 as indicated in Figure 7.

Both spatial locality and temporal locality analysis provide
the hint that PBench contains multiple loops, which are
many fixed function blocks. Following this hint we observe
interesting property in architecture bottleneck analysis and we
show that there are opportunities for fixed function accelerator
design for hardware improvement of PBench.

3) Control: A modern superscalar CPU always specula-
tively execute instructions to achieve higher performance,
which requires predicting the control flow of a benchmark. The
control flow measurement quantifies the degree of predictabil-
ity of a program. We use branch history entropy to describe
the predictability of PBench. This method was proposed by
Yokota et al in 2008, which combines Shannon’s entropy with
branch prediction [29]. In general, branch predictions largely
depend on the randomness of the pattern of branches. The
more regularity of a serial of branch results, the more likely
branch predictors produce the correct prediction result.

We measure the randomness of control patterns in every
10 consecutive branches, and the result is shown in Figure 8.
Each bar represents the average entropy of executing six input
testbenches of Pbench. It is observed that all benchmarks have
a very low branch entropy. This confirms our assumption in the
section of compute analysis that the predictability of PBench
is high.

B. Architecture Bottleneck Analysis
Microarchitecture independent analysis forms a solid base

understanding of PBench. Only utilizing this analysis, how-
ever, does not reveal architecture detail performance. In order
to provide more knowledge on architecture properties and
insights for architecture improvement, we perform architecture
bottleneck analysis on PBench.

Architecture bottleneck analysis focuses on one specific
CPU. Without loss of generality, we choose the most prevalent
and representative CPU in PCs, Intel i7 processor. We run
this experiment in real machine, and the detailed system
information is shown in Table II. The method we use for
inspecting architecture properties is Top-Down analysis. Top-
Down analysis is a method developed by Yasin A in Intel

100

TABLE II
REAL MACHINE SYSTEM CONFIGURATION.

Component Configuration
Processor Intel Core I7-4790 CPU @ 3.60GHz
Memory 7.7 GB
Operating System Ubuntu 14.04 LTS

which can quickly identify true bottlenecks in out-of-order
processors [28]. It utilizes the counters in the hardware perfor-
mance counter unit available in Intel processors to measure the
performance of benchmark. The approach is to first categorize
the execution time into different domains, and then drill down
to the domains of interest. There are four domains in top
level: Frontend Bound, Bad Speculation, Retiring and Backend
Bound, which are as follows:

• Frontend Bound: Slots when the pipeline’s fornt end
under-supplies the back end. Front end is the portion of
the pipeline responsible for delivering operations to be
executed later by the back end.

• Bad Speculation: Slots wasted due to all aspects of
incorrect speculations.

• Retiring: Slots utilized by useful operations.
• Backend Bound: Remaining stalled slots due to lack of

required back-end resources to accept new operations.

We apply all benchmarks in PBench with each input STL
file for architecture bottleneck analysis, and the top level result
is shown in Figure 9. This figure shows the diversity of PBench
in the architecture performance. The average percentage of
frontend bound, bad speculation, backend bound and retiring
for PBench is 5.23%, 3.74% 24.79% and 66.24%, respectively.
We can observe that both the frontend and bad speculation
take relatively small percentages in the total pipeline slots. The
reason for the small frontend bound is because all these bench-
marks have multiple repetitive functions like loop, which is
indicated in the memory section of microarchitecture indepen-
dent analysis. These repetitive functions, with their code size
within the range of L1 code cache, result in large portion of L1
cache hits in instruction fetch, which makes the frontend bound
not a bottleneck in the architecture performance. A small
percentage of bad speculation indicates that the control flow
of these benchmarks are predictable. Hence bad speculation is
negligible in architecture performance, which is also consistent
with our points in the control section of microarchitecture
independent analysis. The backend bound of these benchmarks
consumes a relatively large portion of pipeline slots. This
is reasonable because backend bound represents slots stalled
due to lack of computing resources or the delay in memory
operation. So this stage should consume a considerable amount
of pipeline slots. The interesting observation is that most
of the benchmarks in PBench spend a majority of slots in
retiring. Retiring represents the useful work committed by
this processor. The higher ratio of retiring compared to the
total slots is, the higher instructions per cycle the processor
achieves. This indicates how efficient a processor executes a
program.

Fig. 9. Accumulative run time of PBench. Each benchmark is divided to four
pipeline slots: frontend bound (FB), bad speculation (BS), backend bound
(BB) and retiring (R).

The top level analysis of PBench reveals multiple ways
for performance improvements. The first is the utilization
of specialized function hardware. The low portion of bad
speculation shows that the control predictability of PBench
is high. The low frontend bound ratio infers the instruction
of PBench has a relatively small size and large re-usability.
These benchmarks have a high percentage of retiring, which
means the processor issuers short instructions intensively, with
less wait time. A predictable control flow, multiple iterative
functions, as well as compact and intensive instruction ex-
ecution, all these properties provide potential possibility of
using fixed function hardware, e.g., instruction set extension
or specialized processing unit. Another method for potential
performance enhancement is to explore the parallelism. There
are multiple levels of parallelism, and PBench utilizes most of
instruction-level parallelism and thread-level parallelism. The
reasons are as follows: the low frontend bound shows these
programs have multiple loops, as indicated in their algorithm
design, each benchmark utilizes loops in different levels. An
outer loop for the operation of different layers, and many inner
loops for iterative operations of the data of the current layer.
On the other hand, the high retiring rate reveals that most
of the time the processor can execute instructions without
waiting for data, which indicates a low data dependency. Given
the low data dependency, it is promising to use different
levels of parallelism to improve the architecture performance
of PBench. One strategy is that we can apply thread-level
parallelism to the outer loop, and instruction-level parallelism
to the inner loop.

C. Functional Performance Analysis

From microarchitecture independent analysis and architec-
ture bottleneck analysis, we establish a concrete understanding
of the intrinsic behaviors and architecture performance of
PBench, and we know which methods are appropriate to
improve 3D printing prefabrication. But architects would ben-
eficial more if they could know which function of a program
is the bottleneck by designing hardware accelerating this
bottleneck. In order to provide this convenience, we perform
functional performance analysis on PBench.

101

TABLE III
MAPPING OF FUNCTION BLOCKS TO BENCHMARKS

Benchmark Function blocks
cds FileIO, intersection, distance
ms FileIO, intersection, sorting, traverse
sbs FileIO, intersection, sorting, traverse
rpp FileIO, intersection, sorting
copp FileIO, contour offset
sg FileIO, traverse

Functional performance analysis defines multiple common
function blocks for PBench, and divides each benchmark into
these blocks. Then the information of runtime and energy
consumption of each function block of each program can be
collected. The function blocks are defined as follows:

• File I/O represents the process of read the input data and
store the output result.

• Intersection is a ubiquitous operation in PBench. It de-
notes the operation of computing the intersection between
two geometry object, e.g. the intersection of triangle and
line, or the intersection of contour with mesh.

• Distance computes the Euclidean distance of two vertex.
This function is only executed in shortest distance
slicing algorithm.

• Sorting is a method of computing the sequence of an
array. In PBench, the element of the array could be
integers, or different data structures.

• ContourOffset represents the function of moving the
contour inward certain distances. It is uniquely used in
contouroffset path planning.

• Traverse is an operation regarding a specific segment or
the whole regions of a data block. It traverse through the
data block, meanwhile executing simple arithmetic and
logic operations, e.g., add, minus, or, etc.

Each benchmark in PBench can be regarded as the com-
bination of multiple function blocks in certain sequence. The
mapping of each benchmark to these function blocks is shown
in Table III.

1) Runtime analysis: In order to provide accurate result,
we evaluate the run time of PBench on real machines. The
system configuration is the same as the experimental setup
in architecture bottleneck analysis (as shown in Table II).
On one hand, we want PBench to have diversity, so that
each benchmark will explore something new. On the other
hand, we eager to find the common behavior of PBench,
which will provide insight into the methods for improving
3D printing prefabrication. So we perform runtime analysis in
two dimensions. The first is dissimilarity, which characterizes
the difference among benchmarks. The other is commonality,
which shows the common behavior and the scalability of
PBench.

To characterize the property of dissimilarity, we apply each
benchmark of PBench with each design file into this system.
We average the run time over each benchmark, and split the
time fraction to each function block. The performance result
is shown in Figure 10. Each bar represents the average run

Fig. 10. Average runtime split for each function block.

Fig. 11. Accumulative runtime of PBench.

time a benchmark takes for executing each design STL in
the input set of PBench. The average run time for executing
the six testbenches are 4.09, 1.02, 3.67, 1.43, 2.19, 1.42
seconds for closest distance slicing, marching slicing,
sampling based slicing, rasterization path planning,
contour offset path planning and support generation,
respectively. Different regions of the bar indicate the portion
of time each function block consumes. This figure shows the
diversity of computing patterns for PBench by exploring the
difference of function blocks in each benchmark. Although
different benchmarks may share the same function block, the
combinations of blocks and percentage of the run time for
each function block are different, which results in different
bottlenecks for each benchmark. Closest distance slicing
is dominated by distance computing block. There are two
dominant function blocks in marching slicing, traverse
and intersection computing. In sampling based slicing,
most of the time is spent in FileIO. The bottleneck func-
tion of rasterization path planning and contour offset
path planning are intersection processing and contour
offsetting block each. Support generation is mainly influ-
enced by traversing. It can also be inferred that among these
six benchmarks, closest distance slicing and sampling
based slicing are the two most time consuming algorithms,
and these two benchmarks are all in the stage of slicing. This
indicates that slicing is the bottleneck among the three stages
in prefabrication.

102

To analyze the characteristics of commonality and scala-
bility, we apply all programs in PBench with each design
document file, and compute the aggregated run time of each
function block. The results are shown in Figure 11. Each
bar indicates the total time spent executing PBench for each
STL file, and the segments of the bar reflect the aggregated
run time for each function block. The total run time for
performing the six benchmarks are 3.31, 0.89, 1.24, 8.51,
22.56, 46.45 seconds for the STL file of cylinder, club, bull,
ring, cam and radial impeller, respectively. It is observed
that the run time of certain function blocks are constant
or have little variation for different STL file, e.g., FileIO
changes slightly for the STL file of ring, cam and radial.
This is because of two reasons. Firstly, although FileIO is
directly affected by the size of STL file, it is also influenced
by the number of layers cut for the design STL file. The
size of radial is larger than cam and ring, but the layers
of ring and cam is more than radial. Secondly, there are
many routine operations for FileIO such as the standard input
and output format processing. These operations are constant
when applied with different STL files. These two reasons
makes the FileIO of these three STL files virtually the
same. We also observe some interesting behavior from Figure
11. When STL size is small, the run time is dominated by
FileIO. As STL grows larger and more complex, the function
block of intersection and distance consume an increasingly
significant portion of total run time. The reasons are as follows:
Because FileIO has many routine operations, when STL is
small, these operations become important and make FileIO
the bottleneck. When STL grows larger, the data processing
blocks become dominant. The data processing blocks are
mainly intersection and distance computing in 3D printing
prefabrication. Intersection is a popular function in PBench,
e.g., closest distance slicing, marching slicing, sampling
based slicing, rasterization path planning. Distance is
only utilized by closest distance slicing, but as shown in
Figure 10, it consumes a large percentage of time. So both
the ratios of intersection and distance grow tremendously
as STL size becomes large. The trend of STL design file is that
it will become larger, more complex and more refinement. It
can be predicted that in the future, 3D printing prefabrication
will be dominated by intersection and distance computing
blocks.

The dissimilarity and commonality analysis of PBench pro-
vide insights for hardware optimization. For the task of dealing
with tongs of small size STL files, hardware improvement
will be significant if architects focus on the optimization of
FileIO function. On the other hand, when the goal is to
increase the speed for executing large design documents, or to
design a hardware benefiting the next-generation 3D printing
prefabrication, we should pay more attention to intersection
and distance function blocks.

2) Energy analysis: In order to provide solid hardware
comparison baseline, we also provide energy analysis for
PBench. We again perform this experiment on real machine of
the same system configuration. The result is shown in Figure

Fig. 12. Energy consumption of PBench.

12. Each line represents the energy consumption of each
benchmark for the given input STL file. The first observation
is that the energy consumption has an overall increasing
trend as STL size grows larger. Specifically, the total energy
consumption of PBench is 34.12, 9.20, 12.17, 84.20, 300.25,
769.81 Joules for cylinder, club, bull, ring, cam, radial,
respectively. The overall increasing trend is resulted from the
relationship between energy and runtime. Comparing Figure
11 and Figure 12, energy consumption is proportional to the
runtime, which is affected by the size, complexity and number
of layers of the design file. As STL evolves larger, the overall
energy consumption also increases. We also observe that the
energy dominating benchmark among PBench varies as STL
changes. This is because sampling based slicing has more
data independent operations than closest distance slicing
and marching slicing. When STL size is small, these routine
operations dominant, which make sampling based slicing
dominate energy consumption. When STL grows larger, data
dependent operations become dominant and this makes the
closest distance slicing and marching slicing spend more
energy. We also observe that there are some exception points in
this figure. The STL files are arranged based on their size, but
the energy consumption of club and bull is less than cylinder.
This is because the energy consumption is not only affected
by the size, but also by the number of layers of a STL file. The
layers of club and bull is significantly smaller than cylinder,
which result in the energy consumption of these two STL files
smaller.

D. Summary

The TotalChar framework reveals many interesting prop-
erties of this benchmark suite. Specifically, microarchitecture
independent analysis shows the invariant characters of PBench
in instruction mix, memory behavior and branch entropy.
Architecture bottleneck analysis presents PBench to a pop-
ular modern computer system and discusses the architecture
bottleneck of PBench. On the basis of this analysis, we
conclude that 3D printing prefabrication has great potential
to improve through accelerator design and parallelism explo-
ration. Functional performance analysis divides PBench into
several function blocks and examines the high level character
of each block. This analysis provides the insight that we should

103

focus on intersection and distance function blocks for next-
generation 3D printing prefabrication performance optimiza-
tion. In sum, microarchitecture independent analysis forms a
base understanding of PBench, architecture bottleneck analysis
provides the method for hardware performance improvement,
and functional performance analysis indicates the object for ar-
chitecture design. These three dimension analysis approaches
work collaboratively to characterize PBench and identify the
potential on accelerating 3D printing prefabrication.

VI. CONCLUSION

In this paper, we investigated the computational challenge
in the 3D printing prefabrication. We developed PBench, an
open-source benchmark suite to establish the standard eval-
uation on 3D printing prefabrication. Also, we characterized
PBench using TotalChar, which study PBench from three di-
mensions: microarchitecture independent analysis, architecture
bottleneck analysis and functional performance analysis. The
experimental results showed that there is a significant potential
to accelerate 3D printing prefabrication by specified function
accelerator design and parallelism exploration.

ACKNOWLEDGMENT

We thank our shepherd Dr. Brandon Lucia and the anony-
mous reviewers for their insightful comments on this paper.
This work was in part supported by NSF grant CNS-1547167.

REFERENCES

[1] N. Binkert, B. Beckmann, G. Black, S. K. Reinhardt, A. Saidi, A. Basu,
J. Hestness, D. R. Hower, T. Krishna, S. Sardashti, et al. The gem5
simulator. ACM SIGARCH Computer Architecture News, 39(2):1–7,
2011.

[2] D. L. Bourell, M. C. Leu, and D. W. Rosen. Roadmap for additive
manufacturing: identifying the future of freeform processing. The
University of Texas at Austin, Austin, TX, 2009.

[3] M. B. Breughe and L. Eeckhout. Selecting representative benchmark
inputs for exploring microprocessor design spaces. ACM Trans. Archi-
tecture and Code Optimization, 10(4):37, 2013.

[4] X. Chen and S. McMains. Polygon offsetting by computing winding
numbers. In ASME Int’l Design Eng. Technical Conf. and Computers
and Information in Eng. Conf., pages 565–575, 2005.

[5] Y. Chen, K. Li, and X. Qian. Direct geometry processing for telefab-
rication. J. Computing and Information Science in Eng., 13(4):041002,
2013.

[6] Y. Chen and C. C. Wang. Layer depth-normal images for complex
geometries: Part oneaccurate modeling and adaptive sampling. In
ASME 2008 International Design Engineering Technical Conferences
and Computers and Information in Engineering Conference, pages 717–
728, 2008.

[7] J. Cong, V. Sarkar, G. Reinman, and A. Bui. Customizable domain-
specific computing. IEEE Design & Test of Computers, (2):6–15, 2010.

[8] M. De Berg, M. Van Kreveld, M. Overmars, and O. C. Schwarzkopf.
Computational geometry. Springer, 2000.

[9] A.-V. Do, B. Khorsand, S. M. Geary, and A. K. Salem. 3d printing
of scaffolds for tissue regeneration applications. Advanced healthcare
materials, 4(12):1742–1762, 2015.

[10] J. Dumas, J. Hergel, and S. Lefebvre. Bridging the gap: Automated
steady scaffoldings for 3d printing. ACM Transactions on Graphics,
33(4):98, 2014.

[11] I. Gibson, D. W. Rosen, B. Stucker, et al. Additive manufacturing
technologies. Springer, 2010.

[12] R. M. Gregori, N. Volpato, R. Minetto, and M. V. Da Silva. Slicing
triangle meshes: An asymptotically optimal algorithm. In 2014 14th
International Conference on Computational Science and Its Applications
(ICCSA), pages 252–255. IEEE, 2014.

[13] J. A. Hartigan and M. A. Wong. Algorithm as 136: A k-means clustering
algorithm. Journal of the Royal Statistical Society. Series C (Applied
Statistics), 28(1):100–108, 1979.

[14] S. Kanev, J. P. Darago, K. Hazelwood, P. Ranganathan, T. Moseley,
G.-Y. Wei, and D. Brooks. Profiling a warehouse-scale computer. In
ACM/IEEE 42nd Int’l Symp. Computer Architecture (ISCA), pages 158–
169. IEEE, 2015.

[15] H.-J. Kim, K.-H. Wie, S.-H. Ahn, H.-S. Choo, and C.-S. Jun. Slicing
algorithm for polyhedral models based on vertex shifting. International
Journal of Precision Engineering and Manufacturing, 11(5):803–807,
2010.

[16] P. Kulkarni, A. Marsan, and D. Dutta. A review of process planning tech-
niques in layered manufacturing. Rapid Prototyping Journal, 6(1):18–35,
2000.

[17] B. Mueller. Additive manufacturing technologies–rapid prototyping to
direct digital manufacturing. Assembly Automation, 32(2), 2012.

[18] S. Mueller, S. Im, S. Gurevich, A. Teibrich, L. Pfisterer, F. Guimbretière,
and P. Baudisch. Wireprint: 3d printed previews for fast prototyping. In
Proc. 27th ACM Symp. User Interface Software and Technology, pages
273–280, 2014.

[19] B. Reagen, R. Adolf, Y. S. Shao, G.-Y. Wei, and D. Brooks. Machsuite:
Benchmarks for accelerator design and customized architectures. In
Workload Characterization (IISWC), 2014 IEEE International Sympo-
sium on, pages 110–119. IEEE, 2014.

[20] F. Rengier, A. Mehndiratta, H. von Tengg-Kobligk, C. M. Zechmann,
R. Unterhinninghofen, H.-U. Kauczor, and F. L. Giesel. 3d printing
based on imaging data: review of medical applications. International
journal of computer assisted radiology and surgery, 5(4):335–341, 2010.

[21] S. J. Rock and M. J. Wozny. Utilizing topological information to increase
scan vector generation efficiency. In Proc. Solid Freeform Fabrication
Symp., pages 3–5, 1991.

[22] S. J. Rock and M. J. Wozny. Generating topological information from
a bucket of facets. In Proceedings of Solid Freeform Fabrication
Symposium, Austin, TX, Aug, pages 3–5. Citeseer, 1992.

[23] Y. S. Shao and D. Brooks. Isa-independent workload characterization
and its implications for specialized architectures. In IEEE Int’l Symp.
Performance Analysis of Systems and Software, pages 245–255, 2013.

[24] J. R. e. a. Tumbleston. Continuous liquid interface production of 3d
objects. Science, 347(6228):1349–1352, 2015.

[25] J. Vanek, J. A. Galicia, and B. Benes. Clever support: Efficient support
structure generation for digital fabrication. In Computer graphics forum,
volume 33, pages 117–125. Wiley Online Library, 2014.

[26] M. Vatani, A. Rahimi, F. Brazandeh, and A. S. Nezhad. An enhanced
slicing algorithm using nearest distance analysis for layer manufactur-
ing. In Proceedings of World Academy of Science, Engineering and
Technology, volume 37, pages 721–726, 2009.

[27] B. R. Vatti. A generic solution to polygon clipping. Communications
of the ACM, 35(7):56–63, 1992.

[28] A. Yasin. A top-down method for performance analysis and counters
architecture. In IEEE Int’l Symp. Performance Analysis of Systems and
Software, pages 35–44, 2014.

[29] T. Yokota, K. Ootsu, and T. Baba. Potentials of branch predictors: From
entropy viewpoints. In Architecture of Computing Systems–ARCS 2008,
pages 273–285. Springer, 2008.

[30] K. Zeng, N. Patil, H. Gu, H. Gong, D. Pal, T. Starr, and B. Stucker. Layer
by layer validation of geometrical accuracy in additive manufacturing
processes. In Proceedings of the Solid Freeform Fabrication Symposium,
Austin, TX, Aug, pages 12–14, 2013.

[31] Z. Zhang and S. Joshi. An improved slicing algorithm with efficient
contour construction using stl files. The International Journal of
Advanced Manufacturing Technology, 80(5-8):1347–1362, 2015.

[32] H. Zhao, C. C. Wang, Y. Chen, and X. Jin. Parallel and efficient boolean
on polygonal solids. The Visual Computer, 27(6-8):507–517, 2011.

[33] C. Zhou, Y. Chen, Z. Yang, and B. Khoshnevis. Digital material
fabrication using mask-image-projection-based stereolithography. Rapid
Prototyping Journal, 19(3):153–165, 2013.

[34] C. Zhou, H. Ye, and F. Zhang. A novel low-cost stereolithography
process based on vector scanning and mask projection for high-accuracy,
high-speed, high-throughput, and large-area fabrication. Journal of
Computing and Information Science in Engineering, 15(1):011003,
2015.

104

	Message from the General Chair
	Message from the Program Co-Chairs
	IISWC 2016 Organization
	IISWC 2016 Sponsors and Supporters
	Running on Empty: Getting Work Done on Battery-Free Energy Harvesting Platforms
	The Convergence of Physical/Digital Worlds: Implications on Workloads & Architecture
	TailBench: A Benchmark Suite and Evaluation Methodology for Latency-Critical Applications
	Hetero-Mark, A Benchmark Suite for CPU-GPU Collaborative Computing
	Measuring and Modeling On-Chip Interconnect Power on Real Hardware
	Characterization of Quantum Workloads on SIMD Architectures
	Characterizing the Workload of a Netflix Streaming Video Server
	Characterization and Mitigation of Power Contention across Multiprogrammed Workloads
	Container Management as Emerging Workload for Operating Systems
	Overhead of Deoptimization Checks in the V8 JavaScript Engine
	Workload Characterization for Microservices
	PBench: A Benchmark Suite for Characterizing 3D Printing Prefabrication
	ANMLZoo: A Benchmark Suite for Exploring Bottlenecks in Automata Processing Engines and Architectures
	SPEC-AX and PARSEC-AX: Extracting Accelerator Benchmarks from Microprocessor Benchmarks
	Rebalancing the Core Front-End through HPC Code Analysis
	Quantitative Characterization of the Software Layer of a HW/SW Co-Designed Processor
	Fathom: Reference Workloads for Modern Deep Learning Methods
	ID-Cache: Instruction and Memory Divergence Based Cache Management for GPUs
	Evaluating the Effect of Last-Level Cache Sharing on Integrated GPU-CPU Systems with Heterogeneous Applications
	GPU Concurrency Choices in Graph Analytics
	Memory Controller Design Under Cloud Workloads
	A Simulation Analysis of Reliability in Primary Storage Deduplication
	Quantifying the Performance Impact of Large Pages on In-Memory Big-Data Workloads
	Analyzing Power Consumption and Characterizing User Activities on Smartwatches: Summary
	Resilience Characterization of a Vision Analytics Application Under Varying Degrees of Approximation
	Identifying Representative Regions of Parallel HPC Applications: a Cross-architectural Evaluation
	Power-Aware Characterization and Mapping of Workloads on CPU-GPU Processors
	Treelogy: A Benchmark Suite for Tree Traversal Applications
	Characterizing Memory Bottlenecks in GPGPU Workloads
	Untitled

