
XPro: A Cross-End Processing Architecture for Data Analytics in
Wearables

Aosen Wang1 Lizhong Chen2 Wenyao Xu1

1 State University of New York at Buffalo, NY, 14260, USA
2 Oregon State University, OR, 97331, USA

{aosenwan,wenyaoxu}@buffalo.edu,{chenliz}@oregonstate.edu

ABSTRACT
Wearable computing systems have spurred many opportunities to

continuously monitor human bodies with sensors worn on or im-

planted in the body. These emerging platforms have started to revolu-

tionize many fields, including healthcare and wellness applications,

particularly when integrated with intelligent analytic capabilities.

However, a significant challenge that computer architects are fac-

ing is how to embed sophisticated analytic capabilities in wearable

computers in an energy-efficient way while not compromising sys-

tem performance. In this paper, we present XPro, a novel cross-end

analytic engine architecture for wearable computing systems. The

proposed cross-end architecture is able to realize a generic classi-

fication design across wearable sensors and a data aggregator with

high energy-efficiency. To facilitate the practical use of XPro, we

also develop an Automatic XPro Generator that formally generates

XPro instances according to specific design constraints. As a proof

of concept, we study the design and implementation of XPro with six

different health applications. Evaluation results show that, compared

with state-of-the-art methods, XPro can increase the battery life of

the sensor node by 1.6-2.4X while at the same time reducing system

delay by 15.6-60.8% for wearable computing systems.

CCS CONCEPTS
• Computer systems organization → Architectures; Other archi-
tectures; Heterogeneous (hybrid) systems;

KEYWORDS
Cross-End Architecture, Low Power, Data Analytics, Wearable De-

vices.

ACM Reference format:
Aosen Wang1 Lizhong Chen2 Wenyao Xu1 1 State University of New

York at Buffalo, NY, 14260, USA 2 Oregon State University, OR, 97331,

USA . 2017. XPro: A Cross-End Processing Architecture for Data Analytics

in Wearables. In Proceedings of ISCA ’17, Toronto, ON, Canada, June 24-28,
2017, 12 pages.

https://doi.org/10.1145/3079856.3080219

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

ISCA ’17, June 24-28, 2017, Toronto, ON, Canada
© 2017 Association for Computing Machinery.
ACM ISBN 978-1-4503-4892-8/17/06. . . $15.00
https://doi.org/10.1145/3079856.3080219

1 INTRODUCTION
Advancement in technology has led to continued miniaturization

of sensing, computing and communication devices. This enables

wearable systems [31] for a broad range of new applications in

a number of important domains, such as wellness and healthcare

[4, 50]. Due to their increasing impact on various aspects of our

lives, wearable computing systems have become a growing area in

the global electronic markets, hitting a market value of $14 billion

in 2016 and likely reaching $34 billion by 2020 [22].

Early applications of wearable computing systems mostly focus

on health monitoring [39, 49]. As shown in Fig. 1, a body sensor

network (BSN)-based wearable computing system is usually com-

prised of a body sensor (e.g., an ECG pulse wristband) and a data

aggregator (e.g., smartphone). The body sensor acquires body sig-

nals and wirelessly streams the data to the local aggregator. The data

aggregator then uploads the personal body events to cloud servers for

health information analytics. Therefore, the early wearable computer

systems only focus on the acquisition of health data [56].

Recently, there is an increasing demand to push analytic capabil-

ities to wearable computing systems locally [52]. Performing data

analysis locally in the aggregator can enable real-time feedback

and timely intervention to chronic longitudinal care. For example,

326,200 people experienced cardiac arrests in the U.S. in 2015 and

only 10.6% survived [1]. A wearable heart monitor with an abnor-

mality analytic engine [33], rather than in the cloud and relying on

Internet access, can detect cardiac arrests in real-time and signifi-

cantly increase the chance of rescuing the victims. More broadly,

there is a pressing need to support real-time analysis of a variety

of vital body signals, such as heart signals, brain signals and mus-

cle signals, right in the BSN system and other wearable computing

systems alike.

Conventionally, the widely used approach to achieve real-time

analysis of various body signals is the generic classification algo-

rithm, which is originally designed for the mainstream non-wearable

biomedical applications (e.g., [6]). Unfortunately, the typical generic

classification designs usually employ a computing-intensive struc-

ture consisting of a set of feature extractors and classifiers [38]. Early

work [36] has indicated that a generic classification implementation

can drain a 40mAh battery (which is standard in wearable sensor

nodes such as the ECG pulse wristband) in less than 6 hours, which

greatly handicaps the longitudinal healthcare services of wearable

computing.

Research Problem: In this work, the key problem that we aim to

solve is how to efficiently embed a generic classification scheme into
wearable computing systems without compromising sensor battery

69

ISCA ’17, June 24-28, 2017, Toronto, ON, Canada A. Wang et al.

Figure 1: The architecture of a wearable computing system that
consists of a body sensor and a data aggregator.

lifetime and system performance. Our goal of optimizing energy-

efficiency with time constraint raises a significant challenge for

existing efforts on analytic engine designs. To date, analytic engine

designs mainly fall into two categories, i.e., in-sensor approach and

in-aggregator approach. In-sensor approach implements the analytic

module as a whole into the front-end sensor [32]. By performing

data analysis in the sensor, this approach reduces the data volume

that needs to be transmitted on wireless channels, thus reducing the

energy consumption in wireless communication. However, the lim-

ited computing capacity and energy budget in the sensor node only

empower simple analysis algorithms (e.g., supporting vector ma-

chine (SVM) with linear kernel [46]) to be executed in the analytic

engine, and running a full-fledged generic classification would drain

the sensor battery extremely fast. On the other hand, in-aggregator

approach embeds the entire analytic module in the back-end data

aggregator [27], such as a smartphone, to leverage the increased

computational resource and looser energy constraint in the aggre-

gator. However, this approach requires the sensor node to transmit

a large amount of raw data wirelessly to the aggregator, thus still

putting a great challenge on the battery life of the sensor node as

well.

Cross-end Architecture: As neither the in-sensor front-end ap-

proach nor the in-aggregator backend approach can efficiently realize

the generic classification, we propose to explore the viability of a

cross-end architecture that is potentially very promising in address-

ing the time-constrained energy issue. The concept of cross-end

designs have been broadly applied in the system levels (e.g., mobile-

cloud cross-end), but the opportunities of applying this concept in

the hardware/architecture level, i.e., embedding the generic classifi-

cation to wearable computing, has largely been unexplored. Specif-

ically, in the cross-end architecture, an analytic engine is divided

into fine-grained computing primitives, each of which is mapped to

either the front-end or the back-end. By performing an appropriate

level of processing in the front-end to reduce the data volume to be

sent over wireless channels, the overall energy consumption can be

greatly reduced.

Nevertheless, two key challenges must be addressed to enable

cross-end architecture. One major challenge is how to design energy-

efficient finer-grained computing primitives, as there are substantial

function variations among primitives and enormous circuit-level

design parameters. The other major challenge is the rapid explo-

ration of architectural design space, i.e., different partitioning and

distributing schemes for the computing primitives. First, the par-

titioning quality must be guaranteed as it decides both the energy

consumption and delay in wearable computing systems. Second,

the design space of analytic engine partitioning is extremely large,

which requires highly efficient exploration methods.

Our Work: In this paper, we present a novel configurable cross-end

architecture named XPro, to efficiently implement generic classifica-

tion in wearable computing systems. The proposed XPro architecture

can formally partition the generic classification into two parts: one

on the wearable sensor node and the other on the aggregator. The

two parts collectively implement the full functionality of the generic

classification, while minimizing the energy consumption of sensor

nodes. Specifically, we devise the generic framework with a set of

configurable fine-grained functional cells. We investigate three de-

sign rules to improve the energy efficiency of the functional cell

implementation in XPro. To facilitate the practical use of XPro, we

also design an Automatic XPro Generator. It formulates the problem

of partitioning functional cells across two ends with system delay

constraint, into a closed-analytic form, and automatically generates

the XPro implementation by solving a graph theory problem. In

the experiments, we perform an in-depth evaluation on the XPro

performance in 6 health monitoring applications, and the results

demonstrate the advantage of XPro in improving the energy effi-

ciency of sensor nodes as well as the overall system delay, compared

with the state-of-the-art single-end approaches. Furthermore, it can

be theoretically proven that XPro has the advantage over single-end

approaches, as the in-sensor and in-aggregator implementations are

essentially two extreme design cases (i.e., pushing all functional

cells into one end in XPro) in the XPro design and implementation

space.

Our contribution in this paper is three-fold:

• We propose a configurable cross-end architecture, XPro,

that addresses the challenging issue of integrating generic

classification engine into wearable systems without com-

promising system delay.

• We propose three heuristic design rules to optimize energy

efficiency from the perspective of the single functional cell.

We consider a functional cell as an asynchronous comput-

ing unit and optimize cell ALU mode and resource reuse

strategy.

• We develop an Automatic XPro Generator for the proposed

XPro, which can find the optimal partitioning for the cross-

end architecture in polynomial time. We achieve this by

formulating the design space searching problem into a stan-

dard graph theory problem.

2 BACKGROUND AND XPRO OVERVIEW
XPro is a cross-end architecture that implements generic classifica-

tion in wearable computing systems. The generic classification is

fully realized between a wearable sensor and a data aggregator. In

70

XPro: A Cross-End Processing Architecture for Data Analytics in Wearables ISCA ’17, June 24-28, 2017, Toronto, ON, Canada

Wireless
Link

Generic Classification XPro: Configurable Cross-end Architecture Wearable Computing System: XPro Implementation

ECG:

EEG:

EMG:

Features

Classifier

Max Min Mean

Var Std CZero

KurtSkew DWT

SVM

Score
Fusion

Functional Cells

Energy Library

Graph Theory
(Time Constraint)

XPro Automatic
Generator

Energy-Efficient
Design

Sensor Node Aggregator

SVM-1
Time

Domain

DWT
(Level 1)

DWT
(Level 2)

SVM-2

SVM-3

Score
Fusion

Max
Var Std

CZero
Kurt

Min

Kurt
Skew

Max

Skew
Min

Var Std

In-Aggregator Analytic PartIn-Sensor Analytic Part

Communication
Link

Biosignals

Figure 2: An example of the proposed XPro architecture to embed a generic biosignal classification into a wearable computing system.
XPro includes three key components: functional cells, communication link and an automatic generator. In the wearable computing
system, the red graph cut line divides the generic framework into the in-sensor and in-aggregator analytic parts.

this section, we first introduce two basic modules in the generic clas-

sification, i.e., feature extractors and classifiers (Section 2.1). Then

we describe the XPro architecture overview, including the design

goal and opportunities (Section 2.2).

2.1 Generic Classification Framework
The generic classification aims to cover diverse types of mainstream

vital biosignals, such as Electrocardiography (ECG), Electroen-

cephalography (EEG) and Electromyography (EMG) signals. Dif-

ferent biosignals often have their own descriptive attributes. For

example, ECG has salient features in the time-domain [12], EEG

is with a good data representation under discrete wavelet transform

(DWT) [35], and EMG is more sensitive to the classifier [18]. In

this work, we target a generic classification framework with a light-

weight statistical feature set on the time domain and DWT domain,

and a widely used random subspace [21] method as the classifier.

The chosen feature set is the union of all the preferred features of

different biosignals, and the selected classifier can automatically find

the favorable features for specific biosignal type in the training phase.

Below is more information on this specific feature set and classifier,

but the proposed XPro is applicable to other generic classification

frameworks as well.

Feature Set: We include 8 hardware-friendly statistical features,

including maximal value (Max), minimal value (Min), mean value

(Mean), variance (Var), standard deviation (Std), zeros crossing

value (Czero), skewness (Skew) and kurtosis (Kurt). These features

can provide a meaningful representation of biosignals and be com-

puted with low hardware cost. Besides time domain, we also extract

these statistical features on the multiple levels of discrete wavelet

transform (DWT) domain. DWT can provide multi-scale observa-

tions for signal analysis and has shown good performance in biosig-

nal applications [20].

Random Subspace: The classifier is based on the random subspace

method. It consists of an ensemble of base classifiers. We use sup-

porting vector machine (SVM) as the base classifier for its robust

performance. In a generic classification framework, different types

of biosignals usually have different preferred feature subsets. Ran-

dom subspace method can identify their preferences by training base

classifiers on random subsets from the complete statistical set. This

makes the random subspace method more suitable for generic classi-

fication frameworks than other popular ensemble methods, such as

bagging [14] and Adaboost [44].

2.2 XPro Architecture Overview
Without loss of generality, Figure 2 depicts an example of a typical

XPro architecture to embed the generic classification into a wear-

able computing system. XPro consists of three major components:

functional cells, communication links and an automatic generator.

Functional cells are the basic computing units in XPro, which in-

clude all the modules that form the generic classification framework.

The communication links present the connection among functional

cells. The automatic generator is to allocate functional cells and their

data links across the sensor end and the aggregator end (Section 3.2).

The subset of functional cells that are assigned in the sensor end is

referred to as “in-sensor analytic part”, whereas the complementary

cell subset in the aggregator end is called “in-aggregator analytic

part”. These three components are explained a bit more below, while

the detailed designs are illustrated in the next section.

Functional Cell: To provide flexibility in adjusting workloads and

energy consumption between the sensor node and the aggregator, the

generic classification framework is divided into fine-grained func-

tional cells. All the functional cells are organized by their execution

order in the generic classification (i.e., data-driven execution [34]).

Each functional cell can be on either the sensor node or the aggrega-

tor. Note that the two special cases of pushing all the cells to either

end form the in-sensor approach and the in-aggregator approach

mentioned previously. Thus, our proposed cross-end architecture ex-

plores a large design space that contains the two existing approaches

to improve energy efficiency. Another emphasis on the functional

cells is that not all the statistical features are necessarily used in the

time domain or different DWT scales. This is because the number of

functional cells is decided by the feature set and random subspace

training.

Communication Link: The communication link has two types, i.e.,

intra-end and inter-end. The functional cells in the same end use

intra-end communication. In the in-sensor analytic part, intra-end

71

ISCA ’17, June 24-28, 2017, Toronto, ON, Canada A. Wang et al.

communication always uses hardware connection, while in the in-

aggregator analytic part, it is through memory accessing. The en-

ergy consumption of intra-end communication on either the sensor

node or the aggregator is usually very small compared with other

components under consideration [15]. In the BSN applications, the

inter-end communication indicates data exchanging between the

sensor node and the aggregator, which is done via near-field commu-

nication protocol [5, 29, 30]. The energy consumption of inter-end

communication is large and can even be dominant.

Automatic XPro Generator: The proposed automatic generator

plays a significant role in the energy efficiency of the sensor node

as it determines which functional cells are placed into the in-sensor

analytic part. The energy consumption of the sensor node consists of

two aspects. One is the computing energy in executing the required

computation. The other is the communication energy in transmitting

data from a predecessor to a successor along the generic classi-

fication topology. Due to the complexity of the partitioning, it is

compute-intensive to explore the optimal distribution, particularly

under delay constraint. Thus, a more efficient way is much needed.

Opportunities: The ultimate goal of the proposed cross-end archi-

tecture is to improve the energy efficiency of the sensor node while

not compromising delay and system performance. To achieve that,

we maximize the energy efficiency at both the functional cell level

and architecture level. On the functional cell level, we optimize the

single functional cell implementation based on low-energy design

techniques. On the architecture level, we improve energy efficiency

by exploring functional cell distribution schemes using the proposed

automatic generator. The next section elaborates our designs at these

two levels.

3 XPRO DESIGN DETAILS
In this section, we present the design and implementation of XPro.

Specifically, we investigate the design of functional cells consider-

ing the data flow model, pipeline/parallel units and module reuse

(Section 3.1). We also devise an automatic generator for XPro to opti-

mally and efficiently configure XPro according to design constraints

(e.g., energy model and delay constraint). The XPro optimization

on cross-ends is formulated into a closed form and resolved by a

graph-theory problem (Section 3.2).

3.1 Functional Cells in XPro
In this subsection, we discuss the design rules to improve the energy-

efficiency of single functional cell implementation. The entire ana-

lytic engine in XPro is divided into an in-sensor analytic part and

an in-aggregator analytic part. The in-aggregator analytic part is

implemented in software, as the aggregator (e.g., a smartphone)

typically contains a general-purpose CPU. The in-sensor analytic

part is usually based on specialized hardware, such as FPGA or

ASIC, to reduce the hardware redundancy (and the associated energy

overhead) of general computing platforms. The implementation of

the in-sensor analytic part has a large design space. In what follows,

we discuss the design space exploration in terms of the primitive

computing unit, ALU mode and resource reuse, and present three

heuristic design rules.

3.1.1 Asynchronous Computing Unit. Our first design rule is to

implement each functional cell as an independent and asynchro-

nous micro-computing unit. The functional cell is the smallest unit

prompted by data-driven processing in our XPro architecture. It

needs to finish the task independently once its input data is avail-

able. Therefore, every functional cell is a micro system with private

specialized ALU (S-ALU), cache/buffer and clock. The circuit-level

details of our implementation for the functional cell are shown in

Figure 3.

Data Ready 1

Input Data 1

Input Data N

S-ALU

Clock

Buffer

Output
Buffer

Enable

MUX

ACK

Data Ready N

●
●
●

Figure 3: The circuit-level functional cell implementation.

The functional cell has two states, idle and working, which are

controlled by the “Enable” module in the figure. The S-ALU module

is the core of computation, working with the Buffer module. When

the needed input data are not available, the cell is in the idle state.

In this state, its input channel passively waits for the data arriving,

and all other processing modules are powered off via power gat-

ing. When data are ready, the state transitions from idle to working,

and all the modules are woken up, including private clock, multi-

plexer, S-ALU and buffer. Functional cells use asynchronized clocks.

This can reduce the static energy consumption of clock tree. The

S-ALU comprises both basic arithmetic operations and super com-

putation, which support exponent, square root and reciprocal needed

by generic classification algorithms.

3.1.2 ALU Mode in S-ALU Implementation. Our second design

rule for the functional cell is to use energy-efficient monotonic work-

ing mode for the specialized ALU module. A component in XPro

(e.g., Max) may consist of multiple functional cells, each of which

has an S-ALU module. An S-ALU can typically work in three modes,

i.e., serial, parallel and pipeline. Serial processing reduces power

consumption, but may compromise timing. The parallel mode incurs

more power consumption but increases throughput. The pipeline

mode is similar to the parallel mode, but it cannot achieve a scale as

large as the parallel. As a result, there is a problem of selecting the

mode for each S-ALU in every component of XPro. Because XPro is

designed for low-energy wearable computing systems, which mon-

itor and analyze the sparse biosignal events at low sampling rates

with typical values of several thousand of hertz, the timing bound

is relatively loose. However, it is still complicated to search for the

best energy efficiency design if mix-mode is allowed. Considering

the time efficiency of exploration, we propose to use a monotonic

ALU mode for all the functional cells within one component, but

different components may use different ALU mode.

We have performed a preliminary study to investigate the best

energy-efficient ALU mode for each component in XPro. Our evalu-

ation criterion for the ALU modes is based on energy/event, where

the event indicates a signal segment analysis. Note that the energy

72

XPro: A Cross-End Processing Architecture for Data Analytics in Wearables ISCA ’17, June 24-28, 2017, Toronto, ON, Canada

Figure 4: Energy characterization of three ALU modes of the functional cells for each module, with the energy unit as pJ/event. The
red star indicates the optimal ALU mode of functional cells for a module.

is the product of power and time, so an ALU-mode with the lowest

power does not necessarily lead to the lowest energy. We simulate

the function cells under 90nm TSMC library with random input

data generation. As plotted in the logarithmic scaled Figure 4, most

components are most energy-efficient in serial working mode, as

indicated by the red star markers (with some simple operations,

such as Max, Min and Czero, being similar to the pipeline mode).

However, std and DWT have the best energy efficiency under the

pipeline mode. This is because std has only a square root operation

and the DWT is a matrix multiplication, and in both cases the serial

mode has an extremely large delay. We can also observe that the

parallel mode of DWT has tremendous energy overhead, about two

orders of magnitudes larger than the serial mode. This is because

the monotonic parallel mode needs a large number of multipliers to

compute simultaneously.

3.1.3 Functional Cell Level Reuse. Resource reuse strategy is

usually a thorny problem to be addressed in hardware design. Larger-

extent resource reuse can reduce implementation duplication and

save energy. However, reuse in a larger scale always needs more

complex control logic to schedule the resource using. In our individ-

ual functional cell design, we apply our third design rule that adopts

resource reuse only at the functional cell level, i.e., the reused part

must be a single functional cell. A typical example is that the stan-

dard deviation feature can reuse the entire variance feature, which

is shown in Figure 5. Thus, only a square root operation is needed

additionally in std. The functional cell level reuse can improve the

energy efficiency without complex extra control logic and without

imposing additional complexity on generating XPro instances.

Var Cell Variance

Std Cell Standard
Deviation

Square
Root

Variance

Var Cell Standard
Deviation

Std Cell
Non-Cell Reuse Var Cell Reuse

Figure 5: An example to reuse Var cell in Std Cell.

3.2 Automatic XPro Generator
In this section, we formulate the problem of functional cell distri-

bution scheme between the sensor node and aggregator. Our goal

is to minimize the energy consumption of sensor node while not

compromising processing delay. Specifically, we first introduce our

energy models for design space exploration. We then formulate the

cell distribution scheme into a standard graph cut problem without

considering the delay. Finally, when delay constraint is added, we

transform the distribution problem into a standard max-flow min-cut

problem.

3.2.1 Energy Model. The ultimate goal of our cross-end architec-

ture, XPro, is to minimize the energy consumption of the sensor node.

The energy consumption in sensor node comprises the energy of

analytic computing part, Ea, the energy on wireless communication,

Ew, and the energy of sensing, Es, as the followings:

E = Ep +Ew +Es. (1)

However, the energy from biosignal sensing, Es, can be reduced to

an extremely small level [7] compared to the other two components,

so our energy model mainly focuses on analytic computing and

wireless communication.

We first identify the energy model for the computation of the

analytic engine. It can be represented as the multiplication between

power consumption and run time, as the following formula shows:

Ep = Σn
i=1 Pi × ti, (2)

where Pi is the power of the i-th functional cell, ti is the time delay

of the i-th functional cell and n indicates the number of functional

cells of the in-sensor analytic part. With finer-grained functional

cells and implementation details, we can simulate each functional

cell independently with the help of ASIC/FPGA development tools,

which can provide us the power consumption information and critical

path. By the critical path, we can calculate how many clocks the

delay is.

For a wireless transceiver, transmission and reception are two

different modes and their energy consumption usually differs. We

model this difference into our wireless communication energy con-

sumption as follows:

Ew = Nt ×B×Ct +Nr ×B×Cr, (3)

where Nt is the sample number in transmission task, B is the bit width

of each sample and Ct is the average energy model for 1-bit data

transmission, which is decided by the specific transceiver design and

technology [53]. The Nr and Cr are the corresponding parameters

for the data receiving process.

3.2.2 Problem Formulation without Delay Constraint. Our aim

in this part is to find a functional distribution scheme between the

sensor node and the aggregator, making the energy consumption

73

ISCA ’17, June 24-28, 2017, Toronto, ON, Canada A. Wang et al.

of the sensor node minimal. For the simplicity of presentation, we

take a basic example of feature-based classification framework to

illustrate our formulation. The example is shown in Figure 6.

Data

Feature 1

Feature 2

Feature 3

Classifier

(a) Computing topology of signal clas-
sification.

d1=1

D

1 3

2

4

E1=0.2 nJ

E2=0.8 nJ

d2=1

E3=0.2 nJ

d3=5

E4=0.3 nJ

d0=12

(b) Functional cell topology graph.

Figure 6: An example of a generic signal classification and its
functional cell topology graph.

Modeling: Figure 6a shows the computing topology with three fea-

tures and one classifier and Figure 6b is the functional cell topology

graph. In this example, we assume that the energy consumption of

functional cells corresponding to feature 1, feature 2, feature 3 and

classifier are E1=0.2 nJ, E2=0.8 nJ, E3=0.2 nJ and E4=0.3 nJ, respec-

tively. The output dimension of feature 1, feature 2 and feature 3 are

d1=1, d2=1 and d3=5 samples. The source data have 12 samples. All

samples are 1 bit. The transmission model in the wireless transceiver

is Ct=0.1 nJ/bit and reception model is Cr=0.11 nJ/bit.

It can be observed from the topology graph in Figure 6b that

feature 1 and feature 3 are both calculated from the original data seg-

ment. We refer to them as “grouped”. It can be shown that grouped

functional cells must be placed in the same end in an energy-minimal

distribution. This is because, if they are in different ends (e.g., 1 in

the sensor node and 3 in the aggregator), it means that the original

data segment has already been sent to the aggregator (e.g., for the

processing of 3). In that case, if we re-arrange and move the re-

maining functional cells in that group (e.g., 1) from the sensor node

to the aggregator, it would not increase the wireless transmission

energy but would reduce the computing energy in the sensor node,

thus resulting in less total energy consumption of the sensor node.

Therefore, “grouped” functional cells must stay in the same end.

S-T Graph: We continue to build an s-t graph as shown in Figure 7

based on this functional cell topology graph. We use an “F” node to

indicate the front-end sensor node and a “B” node for the back-end

aggregator.

In Figure 7, functional cells are all between the “F” node and “B”

node. All the functional cells connect to the aggregator with their

energy overhead of computation as the weight. Only the functional

cells who connect to the original data can build edges to the sensor

node. However, a direct connection will not guarantee their “grouped”

property, so we propose to add a dummy node “D” to indicate the

original source data. The sensor node connects to the “D” node

with a weight of the total energy of all samples transmitted to the

aggregator. The “D” node connects to the “grouped” functional cell

nodes with weights of infinite energy consumption. Since the min-

cut will not be on the infinite edges, this technique can properly

F D

1

2

4

3

B
1.2

∞

∞

E1 (0.2)

E2 (0.8)

E4 (0.3)

E3 (0.2)

Cut-1

0.10.11

0.1 0.11

0.55 0.5

Cut-2
Cut-3

Figure 7: The s-t graph of the generic classification in XPro.
Cut-1 is equal to an in-aggregator design; Cut-2 is equal to an
in-sensor design; Cut-3 is a general cross-end design.

capture the “grouped” functional cells. According to the topology

graph, some functional cell pairs have data dependency relationship.

We build two directed edges between such two functional cells to

model the energy consumption on wireless communication if they

are placed on different ends. The weight of a directed edge from a

predecessor to a successor in the topology graph is the transmission

energy consumption and the weight of the reverse edge indicates the

energy consumption of the reception. In this way, we accomplish

the s-t graph building.

Min-Cut Solution: The interesting property of this s-t graph is

that if we take a graph cut between the sensor node, “F”, and the

aggregator node, “B”, the cut capacity is equal to the total energy

consumption of sensor node under this cut. Therefore, the XPro

design without delay constraint can be solved by a standard min-cut

solution. After cutting, the functional cells which can reach the “F”

node are placed in the in-sensor analytic part and other functional

cells connecting to the aggregator are placed in the in-aggregator

analytic part.

Examples: Figure 7 depicts three cut examples. Cut-1 disconnects

“F” with the source data node, so all the sensing data needs to be

transmitted to the aggregator and all the functional cells are in the ag-

gregator. This cut essentially represents the in-aggregator approach.

Cut-2 is along the edges between each functional cell and “B”. The

total energy consumption is the sum of the computation energy

from all the functional cells, which essentially forms the in-sensor

approach. Cut-1 and Cut-2 are not min-cut. Finally, Cut 3 finds a

subset of edges that involve computation energy and wireless com-

munication energy. This is the minimum cut in this example, and

thus represents the minimal energy for the sensor node. We can

see that the functional cells are distributed across the front-end and

back-end in Cut-3. The automatically generated XPro guarantees

“not worse” solution than traditional approaches.

3.2.3 Minimizing Energy with Delay Constraint. Delay constraint

is another important design consideration in XPro to keep the real-

time processing of analytic engines. To take the delay constraint

into the formulation, our solution is to add another attribute, delay,

for each edge in the previous s-t graph. To this end, we have two

attributes in total for each edge, i.e., energy and delay. If we take

energy (objective) as the cost and delay (constraint) as the flow

in the s-t graph, we can transform the optimal cut problem with

74

XPro: A Cross-End Processing Architecture for Data Analytics in Wearables ISCA ’17, June 24-28, 2017, Toronto, ON, Canada

delay constraint into a standard max-flow min-cut problem. Note

that, in this case, energy is no longer taken as the flow. It is now

the cost of the flow, and the delay acts as the flow. Essentially, the

min-cut part minimizes the energy consumption, and the max-flow

part guarantees the delay to be under a maximum limit. Also, the

updating rule of our flow is to use the maximizing operation, not the

accumulating operation anymore.

We use the end-to-end processing time of a signal segment in the

wearable computing system from data sensing, to data transmission,

to data analysis as the delay. Due to the real-time processing con-

sideration of XPro, we set the delay limit in the max-flow min-cut

problem as follows:

TXPro =min{TF ,TB}, (4)

where TF and TB are the delays for the in-sensor approach and in-

aggregator approach, respectively. In this way, the solution found

by the XPro generator would have a delay that is at least as good

as the better one between the in-sensor and in-aggregator approach.

Similarly, we can always guarantee the existence of a solution, i.e.,

the in-sensor or the in-aggregator in the worse case, although for all

the evaluated cases in this work, the Automatic XPro Generator is

able to find better functional cell distributions than the two.

4 EVALUATION METHODOLOGY
4.1 Biosignal Dataset
We evaluate the proposed cross-end XPro architecture in the gen-

eral problem of binary biosignal classification. Binary classifica-

tion of biosignals is a critical procedure in physiological activity

analysis [51]. It not only benefits the automatic abnormal event de-

tection, but also provides basic statistics for high-level biosignals

understanding. We select the following testing benchmarks of biosig-

nals. Electrocardiography (ECG), Electroencephalography (EEG)

and Electromyography (EMG) are three widely-used representative

biosignals [18]. ECG can provide information of the heart state of

human beings. It may also provide some underlying information

about people’s emotions. EEG signal is the activity recordings of our

brains and EMG can monitor the muscle behaviors. For a compre-

hensive demonstration, we choose five datasets of biosignals from

UCR Time Series [9], neural spike data [40] and UCI machine learn-

ing Repository [43]. The detailed information of test cases from the

datasets is listed in Table 1.
Table 1: Attributes of 6 test cases from 5 Biosignal Datasets.

Dataset Symbol Segment Segment
Length Number

ECGTwoLead [9] C1 82 1162

ECGFivedays [9] C2 136 884

EEGDifficult01 [40] E1 128 1000

EEGDifficult02 [40] E2 128 1000

EMGHandLat [43] M1 132 1200

EMGHandTip [43] M2 132 1200

Based on these datasets, we extract six testing cases in total,

i.e., TwoLeadECG (C1), ECGFivedays (C2), EEGDifficult01 (E1),

EEGDifficult02 (E2), EMGHandLat (M1) and EMGHandTip (M2).

All the cases are directly from their corresponding datasets. For

EEGDifficult, due to different data characteristics, we use the first

two categories of data as EEGDifficult01 and the last two categories

as EEGDifficult02. The EMGHandLat case tends to use the move-

ment data of lateral and spherical, while EMGHandTip is to identify

the movements between tip and hook.

4.2 Wireless Transceiver Models
Energy model in wireless communication is an important factor

impacting the implementation of XPro. In this study, we develop

a wireless transceiver simulator by adopting the energy model sta-

tistics from three ultra-low power wireless transceivers [5, 29, 30],

which are specifically designed for medically implanted applications.

The three devices are all validated in practical biosignal monitoring

applications. The first one [5] is a 350μW FSK/MSK direct modu-

lation transmitter and a 400μW OOK super-regenerative receiver

design for medical implants. It can achieve 2.9nJ/bit on transmis-

sion and 3.3nJ/bit on reception. The second model [29] incorporates

a new current-reuse structure and an inductor-sharing technique

to drastically reduce energy consumption. Its energy efficiency is

1.71nJ/bit on the receiver and 1.53nJ/bit on the transmitter at 2Mbps

data rate. The last model [30] is an optimized 2Mbps implantable

OOK transceiver with 0.42nJ/bit on transmission and 0.295nJ/bit

of receiving energy consumption. The simulator employs a com-

mon communication protocol and considers an 8-bit header in each

payload. Note that we did not include the Bluetooth low energy

(BLE) model. While BLE is a popular low-energy design, prior

research [47] has shown that it is still orders of magnitude higher

than the required μW level sensor hardware design, thus not being

suitable for our targeted applications.

4.3 Sensor Node Hardware
We use Synopsys Design Suite [2] to accomplish functional cell

designs and exploration. We take TSMC 45nm, 90nm and 130nm

standard cell libraries [42] and implement the functional cells in

Verilog with Verilog Compile Simulator (VCS). We also carry out

the logic simulation of XPro and record the logic toggles in the

SAIF file during the simulation of VCS to achieve an accurate power

estimation. Power-gating overhead is appropriately accounted for,

although we have a similar observation as prior research [19] that

the energy and delay overhead from power gating is very limited

and does not affect the design and conclusion of the proposed cross-

end architecture. Design Compiler (DC) is adopted to synthesize

the Verilog design and Power Compiler is used to report the power

consumption. Given the typically low duty cycle of biosignals [23],

the XPro designs are simulated at a 16MHz clock frequency in this

study.

4.4 Approaches under Comparison
We evaluate and compare three design approaches: in-sensor ap-

proach (referred to as sensor node engine), in-aggregator approach

(referred to as aggregator engine), and the proposed cross-end engine

(XPro) under different implementation technologies in biosignal clas-

sification tasks. All the six biosignal testing benchmarks are used,

i.e., TwoLeadECG (C1), ECGFivedays (C2), EEGDifficult01 (E1),

EEGDifficult02 (E2), EMGHandLat (M1) and EMGHandTip (M2).

Due to the size of input biosignals, we choose 5-level DWT trans-

formation, whose lengths on different levels are 64, 32, 16, 8 and 4,

75

ISCA ’17, June 24-28, 2017, Toronto, ON, Canada A. Wang et al.

Figure 8: Battery life of the sensor node under 130nm, 90nm and 45nm process technologies with wireless Model 2 for the sensor node
engine, aggregator engine and cross-end engine.

Figure 9: Battery life of the sensor node under three wireless channel models under 90nm process technology for the sensor node
engine, aggregator engine and cross-end engine. The three models have the wireless transmission and reception energy of (2.9nJ/bit,
3.3nJ/bit), (1.53nJ/bit, 1.71nJ/bit) and (0.42nJ/bit, 0.295nJ/bit), respectively.

respectively. Note that the 5-th level has two 4-sample segments. All

the statistical features are normalized to range [0, 1]. We adopt 32-bit

fixed-number with 16-bit integer and 16-bit decimals for functional

cells. We choose a binary SVM classifier with radial basis function

(RBF) as its kernel. The random subspace takes weighted voting

scheme which is trained by the least square method, and 12 features

are randomly chosen for each base classifier training. We repeat this

procedure 100 times and choose the top 10% on accuracy as the

final base classifiers. For each testing case, we randomly choose

75% of the entire data entries as the training set and the other 25%

as the testing set. A 10-fold cross-validation technique is applied

to train random subspace classifier on each training set. We repeat

the training set generation 50 times and choose the classifier with

the highest classification accuracy as the final classifier. The delay

constraint of the Automatic XPro Generator is set to be the minimal

delay value of the sensor node engine and the aggregator engine.

5 EVALUATION RESULTS AND ANALYSIS
5.1 Impact of Process Technology on Battery

Lifetime
We first study the impact of process technology on the lifetime of

the sensor node in three process setups, including TSMC 130nm,

90nm and 45nm. A typical wireless channel model with 1.53nJ/bit

for transmission and 1.71 nJ/bit for reception is used for all the

testings here (the impact of wireless models is evaluated in the

next subsection). We follow the popular Polymer Li-Ion battery

model [8] to estimate the lifetime of sensor node. Figure 8 compares

the lifetime results normalized to the aggregator engine approach.

It can be seen that the proposed cross-end architecture not only

correctly embeds a complex and energy-hungry analytic engine

into the BSN system, but also manages to significantly improve the

lifetime of the sensor node by an average of 2.4X and 1.6X com-

pared with the state-of-the-art aggregator engine and the sensor node

engine, respectively. As process technology advances, the energy

consumption of analytical computation decreases and, consequently,

the energy consumption of wireless communication gradually be-

comes the dominant factor in limiting the lifetime of the sensor

node. This trend can be observed in the figure. In the 130nm case,

the lifetime of both sensor node engine and aggregator engine is

similar, but when it comes to 90nm and 45nm, the lifetime of sensor

node engine is much better than the aggregator engine. This is due

to the fact that the aggregator engine requires large raw data to be

transmitted, thus consuming an increasing percentage of energy in

wireless communication. However, in all three process technologies,

the proposed XPro has a substantial advantage over the other two

approaches, indicating that the cross-end architecture is a promising

candidate for years to come.

5.2 Impact of Wireless Models on Battery
Lifetime

The wireless model is another major factor that influences the life-

time of the sensor node. To investigate the impact of wireless models,

we compare the three wireless designs mentioned in Section 4.2 that

76

XPro: A Cross-End Processing Architecture for Data Analytics in Wearables ISCA ’17, June 24-28, 2017, Toronto, ON, Canada

are specifically for medical applications. All the models are low-

power but, relatively, Model 1 is “high-energy” with 2.9nJ/bit for

transmission and 3.3nJ/bit for the reception. Model 2 is “medium-

energy” about twice energy-efficient as Model 1, with 1.53nJ/bit

for transmission and 1.71nJ/bit for the reception. Model 3 is ultra-

low power and “low-energy”, with only 0.42nJ/bit for transmission

and 0.295nJ/bit for reception. For the process technology, we select

90nm as the common setup. The results in Figure 9 are normalized

to the aggregator engine approach under Model 1.

We can see from the figure that analytic engine implementations

are sensitive to wireless models. In wireless Model 1, as the wire-

less communication takes up the majority of energy consumption,

the sensor node engine which performs all the computation in the

sensor can greatly reduce the energy on the wireless channel and

is much better than the aggregator engine. The proposed cross-end

engine can further improve the lifetime by 26.6% on top of the

sensor node engine. In wireless Model 2, the energy consumption

of computation and wireless communication are evenly matched.

The sensor node engine is slightly better than the aggregator engine;

whereas the cross-end engine can explore the best configuration to

help improve energy efficiency, thereby having the longest battery

lifetime. In wireless Model 3, the energy on wireless communica-

tion is tremendously reduced due to its ultra-low power wireless

model. An intuitively good solution is to transmit all the data back

to the aggregator via the cheap wireless channel (i.e., the aggregator

engine). This can be confirmed in Figure 9 where the aggregator en-

gine reserves the trend in the previous two wireless models, and now

has 74.6% longer lifetime than the sensor node engine. However,

by splitting and distributing fine-grained functional cells across the

sensor and aggregator, the cross-end architecture is able to beat the

intuitively good solution by a large margin, with 73.7% improvement

over the aggregator engine and 302% over the sensor node engine,

on average. Overall, the proposed cross-end engine successfully em-

beds the generic classification and achieves the best lifetime across

the 3 wireless models and 6 test cases. In the remainder of the evalu-

ation section, unless otherwise stated, we use the "medium-energy"

wireless Model 2 and the TSMC 90nm process technology.

5.3 Delay Analysis
The delay in processing an event by the wearable computing system

is also a key issue besides energy efficiency. To assess the delay of

the aggregator engine (A), sensor node engine (S), and cross-end

engine (C), we present the detailed breakdown of the delay. The

delay includes all the time it takes to process an event (e.g., a signal

segment analysis) which can be spent on the computation in front-

end, computation in back-end, and wireless communication. The

aggregator engine (A) approach does not have computation in front-

end, whereas the sensor node engine (S) approach does not have

computation in back-end. The delay breakdown results of the three

approaches are plotted in Figure 10.

As can be seen, the delays of all the testing cases of the three

engine approaches are less than 4 ms. They can all meet the real-time

processing of biosignal streams, considering that the signal sampling

rate is typically well below a thousand of hertz. The aggregator

engine (A) has the largest delay for all the six test cases, as its

delay is dominated by the wireless communication and back-end

Figure 10: Delay comparison for the aggregator engine (A), sen-
sor node engine (S) and cross-end engine (C).

functional cell processing. It does not assign functional cells in front-

end. In contrast, the wireless delay of the sensor node engine (S)

is extremely small because it only sends classification result to the

back-end. We provide a zoom-in view to highlight this. Finally, the

cross-end XPro reduces the delay by 60.8% over the aggregator

engine and 15.6% over the sensor node engine on average. The

insight behind this improvement is our cross-end approach moves

some computations from sensor node to the aggregator. The 15.6%

improvement of delay shows that this reduction can well compensate

for the increased data transmission delay. This highlights that the

proposed XPro is not only able to improve the energy efficiency but

at the same time also reduce the delay in processing and analyzing a

signal segment.

5.4 Energy Breakdown on Sensor Node
In this subsection, we perform a detailed analysis on the energy

consumption of the sensor node and illustrate why XPro saves more

energy. Specifically, we examine the contributing factors of the

computation (i.e., functional cells) and wireless communication of

the sensor node battery lifetime. The energy consumption breakdown

is shown in Figure 11, assuming 90nm and wireless Model 2.

Figure 11: Energy comparison of the aggregator engine (A), sen-
sor node engine (S) and cross-end engine (C).

77

ISCA ’17, June 24-28, 2017, Toronto, ON, Canada A. Wang et al.

In this setting, the aggregator engine (A) has the largest energy

consumption. It needs to transmit all the sensing data from the sensor

node to the aggregator, which is also why its energy consumption on

the sensor node is equal to the energy consumption of data transmis-

sion. The sensor node engine (S) can reduce an average of 36.6% of

the energy consumption compared with the aggregator engine (A).

In the breakdown, the energy of the wireless communication of the

sensor node engine (S) is hardly visible (shown in the zoom-in), as

it only sends classification results back to the aggregator. As for the

proposed cross-end engine (C), it achieves the best energy efficiency

among the three types of engines in all the six benchmarks. The main

reason is that the cross-end engine exploits the large design space

of distributing functional cells between the wearable sensor and the

aggregator, which the aggregator engine (A) and the sensor node

engine (S) cannot take advantage of. Compared with the sensor node

engine (S) approach, XPro can reap an additional energy saving of

31.7% (and 56.9% compared with the aggregator engine).

5.5 Effectiveness of Automatic XPro Generator
In this subsection, we take a closer look at the XPro design and inves-

tigate the effectiveness of the Automatic XPro Generator in dividing

the generic classification and determining the partitioning (i.e., plac-

ing a cut). Figure 12 compares the battery lifetime of four cuts. The

aggregator engine and the sensor node engine are two extreme cuts

where all the functional cells are placed to the back-end and the

front-end, respectively. Also shown in the figure is an intuitive way

of placing the cut when applying the proposed cross-end approach.

This trivial cut is placed between the feature extractors and the clas-

sifier, because the features are usually a compact representation of

the data and can reduce the energy of wireless communication if put

together. The bars labeled as "Cross" correspond to the cut that is

obtained with the Automatic XPro Generator.

Figure 12: Lifetime comparison for four possible cuts.

First, we can see that by using the cross-end approach directly,

even a trivial cut can increase the lifetime in some cases (C2 and M2).

However, this improvement is not very consistent, as the lifetime of

the trivial cut falls between the aggregator engine and the sensor node

engine for C1, E2 and M1, and is worse than both in E1. Second,

significant and consistent improvement can be achieved when the

Automatic XPro Generator is applied. As shown in the figure, the

cut produced by the generator arranges a basic SVM classifier to the

sensor node and some light-weight features onto the aggregator to

achieve the best energy efficiency. Such cuts are difficult to search

through conventional heuristic algorithms, but can be obtained in the

proposed generator that cleverly formulates the search into a graph

theory problem. Note that some basic SVM classifiers have fewer

supporting vectors due to the good data separability of the dataset.

When their inputs need some energy-hungry features, such as Skew
or Kurt, placing the classifiers in the sensor node may reduce the

energy consumption in computation, with a relatively small energy

overhead on the wireless channel. The above results show that the

proposed cross-end architecture is a promising approach to improve

the lifetime of the sensor node, and the Automatic XPro Generator

provides a useful way to obtain a practical XPro design automatically

and effectively.

5.6 Energy Overhead of XPro on Aggregator
In wearable computing, the energy impact on the aggregator is much

less sensitive compared to the sensor node because 1) the aggregator

can be equipped with a large-capacity battery (e.g., 3000mAh in

aggregator vs. 40mAh in sensor), and 2) it is very convenient for

the aggregator to recharge or replace batteries. To increase the com-

prehensiveness of our evaluation for XPro, we also quantitatively

evaluate the energy overhead on the aggregator. Considering that the

sensor node engine has no functional cells in the aggregator, we fo-

cus on the comparison between the aggregator engine and cross-end

engine here.

We use gem5 [3] to simulate a widely-used mobile CPU, ARM

Cortex A8. We also adopt McPAT [25] to collect the power consump-

tion of the functional cells in the aggregator that are implemented

with C++ library (implementing the back-end functional cells in soft-

ware provides the flexibility for the aggregator such as a smartphone

to work with different sensor nodes). As shown in Figure 13, the

energy overhead of the proposed cross-end architecture is less than

half of the aggregator engine. Compared with the aggregator engine,

the cross-end engine has potentially fewer functional cells in the

aggregator and also allows the aggregator to enter into low-power

states when the data are being processed in the sensor node. As an

example, if the aggregator has a 2900mAh battery (iPhone 7) with

3.5V voltage, the aggregator can empower XPro for more than 52

hours, and this lifetime can be easily extended beyond 100 hours if

operating at a lower sampling and analyzing rate. Given this low im-

pact on the aggregator, the proposed XPro is a highly viable design

in practice.

5.7 Discussion
Extension to multi-classification: The binary classification is used

as an example throughout the paper. If multi-classification is needed,

we can simply add more base classifiers that extend only the topology

of generic classification. The rest of the proposed methodology can

be applied directly.

Extension to other wireless models: Three representative wire-

less models are simulated in this work to demonstrate the energy-

efficiency of XPro. While more detailed wireless communication

models can be used to increase the evaluation accuracy, this work

78

XPro: A Cross-End Processing Architecture for Data Analytics in Wearables ISCA ’17, June 24-28, 2017, Toronto, ON, Canada

Figure 13: Energy overhead on the aggregator.

presents an important study to assess the general potential of using

cross-end implantation for generic classification in BSN systems.

Extension to multiple sensor nodes: A BSN with one sensor node

is used in this paper as a case-in-point study to illustrate the essential

design principles of XPro. The proposed cross-end approach and the

Automatic XPro Generator can also be used with minimal modifi-

cations for the case of multiple sensor nodes associated with a data

aggregator. MIMO [37] or other specialized wireless protocol can

be applied to avoid potential information conflict on the aggregator

end.

6 RELATED WORK
Body sensor networks. Miniaturized wearable sensor devices along

with a data aggregator (e.g., a smartphone) can form a body sensor

network [55]. These devices on different body locations collabo-

ratively provide pervasive health monitoring. Due to the energy

constraint on wearable sensors, limited analytic capabilities can be

integrated into the sensor node. Therefore, most of the prior work

focuses on how to transmit data from the wearable sensors to the data

aggregator [10] that has more energy budget and computational re-

sources to implement sophisticated data processing algorithms [41].

However, as discussed in this work, this in-aggregator approach is

not sufficient to achieve the needed energy-efficiency of wearable

nodes.

Ultra-low power data processing. With the growth of wearable and

mobile computers, data processing has been considered to shift from

cloud end to user end [45, 54]. Orthogonal to conventional research

effort on designing general ultra-low power [16] or even energy-

harvesting [24] techniques, a recently popular topic is to devise a

specific data processing method, such as a convolutional neural net-

work (CNN), into an energy-efficient implementation [11]. Although

significant research thrusts in the computer architecture community

have advanced the CNN unit for mobile applications [28], CNN is

mainly used for image recognition rather than biosignal processing.

There is no in-depth work towards optimizing the power consump-

tion of the generic classification framework for biosignals.

Hardware/Software Partitioning. Hardware/software partitioning

is a system approach to implementing an integrated design of hard-

ware and software components in embedded systems [48]. The main

foci in software/hardware partitioning is to identify the bottleneck

of computing by software profilers [13] and design skilled tech-

niques [17] to optimize the throughput on a hybrid platform (e.g.,

CPU + FPGA [26]), where the reconfigurable hardware and soft-

ware computing components are physically connected. However,

in wearable computing, wearable sensors and the aggregator are

physically located on different body parts and networked through

wireless communication. Considering the energy disparity between

wearable sensors and the aggregator [7], the optimization criteria

and techniques in wearable computing are very different from the

integrated hybrid platforms.

7 CONCLUSIONS
Wearable computers, equipped with sensors, are transforming health-

care applications. Integrating analytic engines with wearable com-

puters is in urgent demand. In this work, we investigate a cross-end

approach that has largely been unexplored, and present XPro, a cross-

end analytic engine architecture for wearable computing. It is able to

realize a generic classification and also improve the battery lifetime

of wearable sensors without compromising the delay in the wearable

computing system. We also developed an Automatic XPro Generator

that can efficiently and effectively generate XPro according to the

design constraints. Evaluation results demonstrate significant advan-

tages of XPro in both energy-efficiency and processing delay over

state-of-the-art approaches. Evaluation results show that XPro can

increase the battery life by 2.4X and reduce delay by 60.8% over the

in-aggregator approach, and improve the battery life by 1.6X and

reduce delay by 15.6% over the in-sensor approach.

REFERENCES
[1] AHA Releases 2015 Heart and Stroke Statistics. http://www.sca-aware.org/

sca-news/aha-releases-2015-heart-and-stroke-statistics. (????). Accessed: 2016-
08-01.

[2] Himanshu Bhatnagar. 2007. Advanced ASIC Chip Synthesis: Using Synopsys®
Design CompilerTM Physical CompilerTM and PrimeTime®. Springer Science
& Business Media.

[3] Nathan Binkert, Bradford Beckmann, Gabriel Black, Steven K Reinhardt, Ali
Saidi, Arkaprava Basu, Joel Hestness, Derek R Hower, Tushar Krishna, Somayeh
Sardashti, and others. 2011. The gem5 simulator. ACM SIGARCH Computer
Architecture News 39, 2 (2011), 1–7.

[4] Jit Biswas, Andrei Tolstikov, Maniyeri Jayachandran, Victor Foo, Aung
Aung Phyo Wai, Clifton Phua, Weimin Huang, Louis Shue, Kavitha Gopalakr-
ishnan, Jer-En Lee, and others. 2010. Health and wellness monitoring through
wearable and ambient sensors: exemplars from home-based care of elderly with
mild dementia. Annals of telecommunications-annales des télécommunications
65, 9-10 (2010), 505–521.

[5] Jose L Bohorquez, Anantha P Chandrakasan, and Joel L Dawson. 2009. A
350μW CMOS MSK transmitter and 400μW OOK super-regenerative receiver
for medical implant communications. IEEE Journal of Solid-State Circuits 44, 4
(2009), 1248–1259.

[6] Sheryl Brahnam. 2010. Advanced Computational Intelligence Paradigms in
Healthcare 5: Intelligent Decision Support Systems. Vol. 5. Springer Science &
Business Media.

[7] Benton H Calhoun, John Lach, John Stankovic, David D Wentzloff, Kamin White-
house, Adam T Barth, Jonathan K Brown, Qiang Li, Seunghyun Oh, Nathan E
Roberts, and others. 2012. Body sensor networks: A holistic approach from
silicon to users. Proc. IEEE 100, 1 (2012), 91–106.

[8] Min Chen and Gabriel A Rincon-Mora. 2006. Accurate electrical battery model
capable of predicting runtime and IV performance. IEEE transactions on energy
conversion 21, 2 (2006), 504–511.

[9] Yanping Chen, Eamonn Keogh, Bing Hu, Nurjahan Begum, Anthony Bagnall,
Abdullah Mueen, and Gustavo Batista. 2015. The UCR Time Series Classification
Archive. (July 2015). www.cs.ucr.edu/~eamonn/time_series_data/.

[10] Yajing Chen, Shengshuo Lu, Hun-Seok Kim, David Blaauw, Ronald G Dreslinski,
and Trevor Mudge. 2016. A low power software-defined-radio baseband processor
for the Internet of Things. In 2016 IEEE International Symposium on High
Performance Computer Architecture (HPCA). IEEE, 40–51.

79

ISCA ’17, June 24-28, 2017, Toronto, ON, Canada A. Wang et al.

[11] Yunji Chen, Tao Luo, Shaoli Liu, Shijin Zhang, Liqiang He, Jia Wang, Ling
Li, Tianshi Chen, Zhiwei Xu, Ninghui Sun, and others. 2014. Dadiannao: A
machine-learning supercomputer. In Proceedings of the 47th Annual IEEE/ACM
International Symposium on Microarchitecture. IEEE Computer Society, 609–
622.

[12] P De Chazel and RB Reilly. 2000. A comparison of the ECG classification
performance of different feature sets. In Computers in Cardiology 2000. IEEE,
327–330.

[13] Rolf Ernst, Jörg Henkel, and Thomas Benner. 1993. Hardware-software cosyn-
thesis for microcontrollers. IEEE Design & Test of computers 10, 4 (1993),
64–75.

[14] Mikel Galar, Alberto Fernandez, Edurne Barrenechea, Humberto Bustince, and
Francisco Herrera. 2012. A review on ensembles for the class imbalance problem:
bagging-, boosting-, and hybrid-based approaches. Systems, Man, and Cybernetics,
Part C: Applications and Reviews, IEEE Transactions on 42, 4 (2012), 463–484.

[15] Martijn JR Heck and John E Bowers. 2014. Energy efficient and energy pro-
portional optical interconnects for multi-core processors: Driving the need for
on-chip sources. IEEE Journal of Selected Topics in Quantum Electronics 20, 4
(2014), 332–343.

[16] Mark Hempstead, Nikhil Tripathi, Patrick Mauro, Gu-Yeon Wei, and David
Brooks. 2005. An ultra low power system architecture for sensor network applica-
tions. In ACM SIGARCH Computer Architecture News, Vol. 33. IEEE Computer
Society, 208–219.

[17] Jörg Henkel and Rolf Ernst. 2001. An approach to automated hardware/software
partitioning using a flexible granularity that is driven by high-level estimation
techniques. IEEE Transactions on Very Large Scale Integration (VLSI) Systems 9,
2 (2001), 273–289.

[18] Ulf Jensen, Matthias Ring, and Bjoern Eskofier. 2012. Generic features for
biosignal classification. Sportinformatik 2012 (2012), 112.

[19] Hailin Jiang, Malgorzata Marek-Sadowska, and Sani R Nassif. 2005. Benefits and
costs of power-gating technique. In 2005 International Conference on Computer
Design. IEEE, 559–566.

[20] Parmod Kumar and Devanjali Agnihotri. 2010. Biosignal denoising via wavelet
thresholds. IETE journal of Research 56, 3 (2010), 132–138.

[21] Ludmila I Kuncheva, Thomas Christy, Iestyn Pierce, and P Mansoor Sa’ad. 2011.
Multi-modal biometric emotion recognition using classifier ensembles. In Modern
approaches in applied intelligence. Springer, 317–326.

[22] P Lamkin. 2016. Wearable Tech Market To Be Worth $34 Billion By 2020. Forbes
(2016).

[23] Shuenn-Yuh Lee, Chih-Jen Cheng, Cheng-Pin Wang, and Shyh-Chyang Lee. 2009.
A 1-V 8-bit 0.95 mW successive approximation ADC for biosignal acquisition
systems. In 2009 IEEE International Symposium on Circuits and Systems. IEEE,
649–652.

[24] Chao Li, Wangyuan Zhang, Chang-Burm Cho, and Tao Li. 2011. SolarCore: Solar
energy driven multi-core architecture power management. In 2011 IEEE 17th
International Symposium on High Performance Computer Architecture. IEEE,
205–216.

[25] Sheng Li, Jung Ho Ahn, Richard D Strong, Jay B Brockman, Dean M Tullsen,
and Norman P Jouppi. 2009. McPAT: an integrated power, area, and timing
modeling framework for multicore and manycore architectures. In Proceedings
of the 42nd Annual IEEE/ACM International Symposium on Microarchitecture.
ACM, 469–480.

[26] Yanbing Li, Tim Callahan, Ervan Darnell, Randolph Harr, Uday Kurkure, and
Jon Stockwood. 2000. Hardware-software co-design of embedded reconfigurable
architectures. In Proceedings of the 37th Annual Design Automation Conference.
ACM, 507–512.

[27] Wei Liang, Yinlong Zhang, Jindong Tan, and Yang Li. 2014. A novel approach
to ECG classification based upon two-layered HMMs in body sensor networks.
Sensors 14, 4 (2014), 5994–6011.

[28] Robert LiKamWa, Yunhui Hou, Julian Gao, Mia Polansky, and Lin Zhong. 2016.
RedEye: Analog ConvNet Image Sensor Architecture for Continuous Mobile
Vision. In ACM/IEEE International Symposium on Computer Architecture (ISCA).
ACM/IEEE.

[29] Junhua Liu, Chen Li, Long Chen, Yehui Xiao, Jiayi Wang, Huailin Liao, and
Ru Huang. 2011. An ultra-low power 400MHz OOK transceiver for medical
implanted applications. In ESSCIRC (ESSCIRC), 2011 Proceedings of the. IEEE,
175–178.

[30] Li-Chen Liu, Ming-Han Ho, and Chung-Yu Wu. 2011. A medradio-band low-
energy-per-bit CMOS OOK transceiver for implantable medical devices. In
Biomedical Circuits and Systems Conference (BioCAS), 2011 IEEE. IEEE, 153–
156.

[31] Paul Lukowicz, Tnde Kirstein, and Gerhard Troster. 2004. Wearable systems
for health care applications. Methods of Information in Medicine-Methodik der
Information in der Medizin 43, 3 (2004), 232–238.

[32] W Marnane, S Faul, C Bleakley, R Conway, E Jones, E Popovici, M de la Guia So-
laz, F Morgan, and K Patel. 2010. Energy efficient on-sensor processing in
body sensor networks. In 2010 Annual International Conference of the IEEE

Engineering in Medicine and Biology. IEEE, 2025–2029.
[33] Roshan Joy Martis, U Rajendra Acharya, and Lim Choo Min. 2013. ECG beat

classification using PCA, LDA, ICA and discrete wavelet transform. Biomedical
Signal Processing and Control 8, 5 (2013), 437–448.

[34] George Matheou and Paraskevas Evripidou. 2015. Architectural support for
data-driven execution. ACM Transactions on Architecture and Code Optimization
(TACO) 11, 4 (2015), 52.

[35] Hasan Ocak. 2009. Automatic detection of epileptic seizures in EEG using discrete
wavelet transform and approximate entropy. Expert Systems with Applications 36,
2 (2009), 2027–2036.

[36] Chulsung Park, Pai H Chou, Ying Bai, Robert Matthews, and Andrew Hibbs.
2006. An ultra-wearable, wireless, low power ECG monitoring system. In 2006
IEEE Biomedical Circuits and Systems Conference. IEEE, 241–244.

[37] Arogyaswami J Paulraj, Dhananjay A Gore, Rohit U Nabar, and Helmut Bolcskei.
2004. An overview of MIMO communications-a key to gigabit wireless. Proc.
IEEE 92, 2 (2004), 198–218.

[38] Benjamin Pfundt, Marc Reichenbach, Björn Eskofier, and Dietmar Fey. 2013.
Smart sensor architectures for embedded biosignal analysis. In Design and Archi-
tectures for Signal and Image Processing (DASIP), 2013 Conference on. IEEE,
174–181.

[39] Rosalind W Picard and C Du. 2002. Monitoring stress and heart health with a
phone and wearable computer. Motorola Offspring Journal 1 (2002), 14–22.

[40] R Quian Quiroga, Zoltan Nadasdy, and Yoram Ben-Shaul. 2004. Unsupervised
spike detection and sorting with wavelets and superparamagnetic clustering. Neu-
ral computation 16, 8 (2004), 1661–1687.

[41] Yvan Saeys, Iñaki Inza, and Pedro Larrañaga. 2007. A review of feature selection
techniques in bioinformatics. bioinformatics 23, 19 (2007), 2507–2517.

[42] Michael Sanie, Michel Côté, Philippe Hurat, and Vinod Malhotra. 2001. Practical
application of full-feature alternating phase-shifting technology for a phase-aware
standard-cell design flow. In Design Automation Conference, 2001. Proceedings.
IEEE, 93–96.

[43] Christos Sapsanis, George Georgoulas, and Anthony Tzes. 2013. EMG based
classification of basic hand movements based on time-frequency features. In
Control & Automation (MED), 2013 21st Mediterranean Conference on. IEEE,
716–722.

[44] Robert E Schapire. 2013. Explaining adaboost. In Empirical inference. Springer,
37–52.

[45] Ryota Shioya, Masahiro Goshima, and Hideki Ando. 2014. A front-end execu-
tion architecture for high energy efficiency. In Proceedings of the 47th Annual
IEEE/ACM International Symposium on Microarchitecture. IEEE Computer Soci-
ety, 419–431.

[46] Mohammed Shoaib, Kyong Ho Lee, Niraj K Jha, and Naveen Verma. 2014. A
0.6–107 μW Energy-Scalable Processor for Directly Analyzing Compressively-
Sensed EEG. Circuits and Systems I: Regular Papers, IEEE Transactions on 61,
4 (2014), 1105–1118.

[47] Matti Siekkinen, Markus Hiienkari, Jukka K Nurminen, and Johanna Nieminen.
2012. How low energy is bluetooth low energy? comparative measurements
with zigbee/802.15. 4. In Wireless Communications and Networking Conference
Workshops (WCNCW), 2012 IEEE. IEEE, 232–237.

[48] Greg Stitt, Roman Lysecky, and Frank Vahid. 2003. Dynamic hardware/software
partitioning: a first approach. In Proceedings of the 40th annual Design Automa-
tion Conference. ACM, 250–255.

[49] Mingui Sun, Lora E Burke, Zhi-Hong Mao, Yiran Chen, Hsin-Chen Chen, Yicheng
Bai, Yuecheng Li, Chengliu Li, and Wenyan Jia. 2014. eButton: a wearable
computer for health monitoring and personal assistance. In Proceedings of the
51st Annual Design Automation Conference. ACM, 1–6.

[50] Nagender Kumar Suryadevara and Subhas Chandra Mukhopadhyay. 2012. Wire-
less sensor network based home monitoring system for wellness determination of
elderly. IEEE Sensors Journal 12, 6 (2012), 1965–1972.

[51] EM Tamil, HM Radzi, MYI Idris, and AM Tamil. 2008. A Review on Fea-
ture Extraction & Classification Techniques for Biosignal Processing (Part II:
Electroencephalography). In 4th Kuala Lumpur International Conference on
Biomedical Engineering 2008. Springer, 113–116.

[52] Naveen Verma, Zhuo Wang, and Jintao Zhang. 2015. A look at signal analysis
in resource-constrained medical-sensor applications. In Biomedical Circuits and
Systems Conference (BioCAS), 2015 IEEE. IEEE, 1–4.

[53] Andrew Y Wang and Charles G Sodini. 2004. A simple energy model for
wireless microsensor transceivers. In Global Telecommunications Conference,
2004. GLOBECOM’04. IEEE, Vol. 5. IEEE, 3205–3209.

[54] Mark Woh, Sangwon Seo, Scott Mahlke, Trevor Mudge, Chaitali Chakrabarti, and
Krisztian Flautner. 2009. AnySP: anytime anywhere anyway signal processing.
In ACM SIGARCH Computer Architecture News, Vol. 37. ACM, 128–139.

[55] Guang-Zhong Yang and Magdi Yacoub. 2006. Body sensor networks. (2006).
[56] Ya-Li Zheng, Xiao-Rong Ding, Carmen Chung Yan Poon, Benny Ping Lai Lo,

Heye Zhang, Xiao-Lin Zhou, Guang-Zhong Yang, Ni Zhao, and Yuan-Ting Zhang.
2014. Unobtrusive sensing and wearable devices for health informatics. IEEE
Transactions on Biomedical Engineering 61, 5 (2014), 1538–1554.

80

