
A Programmable Analog-to-Information Converter for Agile
Biosensing

Aosen Wang1, Zhanpeng Jin2 and Wenyao Xu1

1CSE Department, SUNY at Buffalo, NY, USA
2 ECE Department, SUNY at Binghamton, NY, USA

{aosenwan, wenyaoxu}@buffalo.edu, zjin@binghamton.edu

ABSTRACT
In recent years, the analog-to-information converter (AIC),
based on compressed sensing (CS) paradigm, is a promising
solution to overcome the performance and energy-efficiency
limitations of traditional analog-to-digital converters (AD-
C). Especially, AIC can enable sub-Nyquist signal sampling
proportional to the intrinsic information in biomedical ap-
plications. However, the legacy AIC structure is tailored
toward specific applications, which lacks of flexibility and
prevents its universality. In this paper, we introduce a novel
programmable AIC architecture, Pro-AIC, to enable effec-
tive configurability and reduce its energy overhead by inte-
grating efficient multiplexing hardware design. To improve
the quality and time-efficiency of Pro-AIC configuration, we
also develop a rapid configuration algorithm, called Rap-
Spiral, to quickly find the near-optimal parameter configu-
ration in Pro-AIC architecture. Specifically, we present a
design metric, trade-off penalty, to quantitatively evaluate
the performance-energy trade-off. The RapSpiral controls a
penalty-driven shrinking triangle to progressively approx-
imate to the optimal trade-off. Our proposed RapSpiral
is with log(n) complexity yet high accuracy, without pre-
training and complex parameter tuning procedure. RapSpi-
ral is also probable to avoid the local minimum pitfalls. Ex-
perimental results indicate that our RapSpiral algorithm can
achieve more than 30× speedup compared with the brute
force algorithm, with only about 3% trade-off compromise
to the optimum in Pro-AIC. Furthermore, the scalability is
also verified on larger size benchmarks.

1. INTRODUCTION
Analog-to-information converter (AIC) [1] revolutionizes

the design of low-power sensing micro-systems. The tra-
ditional analog-to-digital converter (ADC) is based on the
Shannon-Nyquist sampling rule, while AIC is built on the
basis of the compressed sensing (CS) theory [2]. CS en-
ables sampling signals under a sub-Nyquist rate without in-
formation loss. Specifically, the CS sampling rate is pro-
portional to the intrinsic information of signals and can
significantly reduce the data volume in acquisition, trans-
mission and analysis. Therefore, AIC can disruptively im-
prove performance-energy trade-offs in size, weight and pow-

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

ISLPED ’16, August 08-10, 2016, San Francisco Airport, CA, USA
c© 2016 ACM. ISBN 978-1-4503-4185-1/16/08. . . $15.00

DOI: http://dx.doi.org/10.1145/2934583.2934596

er (SWaP) constrained applications, such as wearable sens-
ing [3].

There are several research work on AIC architecture de-
sign and implementation in different applications. Duarte et
al. [4] fused a digital micromirror device and mathematical
compressive sampling into a single-pixel camera. Chen et
al. [5] applied the analog-to-information sampling into wire-
less electroencephalography (EEG) signal acquisition and
analyzed the power and performance of the circuit model.
Moreover, Baransky et al. [6] proposed a radar prototype
employing AIC from both hardware and algorithm perspec-
tives. However, these AIC structures are only designed for
a specific task, which cannot be conveniently adapted in d-
ifferent applications. This inspires us to investigate a novel
programmable AIC architecture to be universally applicable
for a wide range of application scenarios. Moreover, config-
urability can improve the flexibility and performance-energy
trade-off of AIC architecture.

In this paper, we present a novel programmable AIC ar-
chitecture, Pro-AIC, to improve its flexibility in biosensing
applications. The multiplexing design structure is employed
to reduce the hardware and energy overhead. Furthermore,
we propose a rapid configuration algorithm, RapSpiral, to
quickly locate the near-optimal parameter configuration for
Pro-AIC. It promotes the time efficiency, an urgent issue to
evaluate the trade-off, due to the time-consuming `1 solver in
CS reconstruction. Specifically, we identify a metric, trade-
off penalty, to quantitatively evaluate the trade-off between
performance and energy. The RapSpiral intelligently de-
ploys the strategy of parameter configuration by a penalty-
driven shrinking triangle. This technique has a rapid speed
with logarithmic time complexity and is possible to resist
the local minimum without parameter tuning. The experi-
mental results indicate that the RapSpiral can obtain more
than 30× speedup compared with the brute force algorithm,
while only compromising 3% trade-off to the optimal solu-
tion. It can also keep the scalability on larger size problem.

2. COMPRESSED SENSING THEORY
Compressed sensing is a new emerging sampling scheme

for the signals that are known to be sparse or compressible
under a certain basis. We assume x is anN -dimension vector
space and sampled using M -measurement vector y:

y = Φx, (1)

where Φ ∈ RM×N is the sensing array, which models the
linear encoding, and M is defined as the sampling rate in
N-dimensional CS. The elements in Φ are either Gaussian
random variables or Bernoulli random variables. Because of
M << N , the formulation in Eq. (1) is undetermined, and
the signal x can not be uniquely retrieved from sensing array
Φ and measurements y. However, under certain sparsity-

inducing basis Ψ ∈ RN×N , the signal x can be represented
by a set of sparse coefficients u ∈ RN :

x = Ψu, (2)

that is, the coefficient u, under the transformation Ψ, only
has few non-zero elements. Therefore, based on Eq. (1) and
(2), the sparse vector, u, can be represented as follows:

y = ΦΨu = ΘM×Nu, (3)

where ΘM×N = ΦΨ is an M × N measuring matrix. In
practical applications, original signals are analog in nature
and needs to be quantized before transmitting and digital
processing. Therefore, the compressed signal, y, should be
processed by a quantization model formulated as follows:

ŷ = Qb(y), (4)

where Qb(.) is the quantization function , and ŷ is the quan-
tized representation of y with b bits. Due to the prior knowl-
edge that the unknown vector u, is sparse, it can estimate
the value, u, based on ŷ using the `0 minimization formula-
tion as follows:

û = min ‖u‖0 s.t. ‖ŷ −Θu‖ < ε, (5)

where ε is the reconstruction error margin. The formulation
in Eq. (5) is a determined system with unique solutions.
However, `0 minimization is an NP-hard problem. One of
the methods to solve (5) is to approximate `0 minimization
formulation to `1 minimization formulation:

û = min ‖u‖1 s.t. ‖ŷ −Θu‖ < ε. (6)

Under the condition of Restricted Isometry Property (RIP) [7],
the `1 problem is provably equivalent to minimizing `0 prob-
lem. The `1 minimization is convex and can be solved within
the polynomial time. Therefore, the reconstructed signal, x̂,
is retrieved by:

x̂ = Ψû. (7)

3. PROGRAMMABLE ANALOG-TO- INFOR-
MATION CONVERTER

In this section, we present the architecture of analog-
to-information converter (Pro-AIC). We first introduce the
circuit-level details of the Pro-AIC hardware implementa-
tion, and models of performance and energy. Then we an-
alyze the computation issue of the entire framework to val-
idate the importance of the rapid speed for design space
exploration.

3.1 Architecture Overview
The analog-to-information architecture is shown as the

dashed rectangles in Figure 1. It consists of two key compo-
nents, i.e., a multiplexing randomized encoding module and
a quantization module.

In Figure 1, as the circuit-level architecture shows, ana-
log N -dimension raw sensor signal x is compressed into M -
dimension y in the random encoding module. The random
encoding module is designed adhering to the idea of time
multiplexing [8] for power reduction. An analog multiplier
is placed to calculate the product between input signal and
random variable at specific time slot, which is coordinated
by the multiplexing control logic. The time multiplexed in-
tegrator has M capacitors to store the intermediate result
of summation. The time logic is also controlled by multi-
plexing control logic module. In the quantization module,
there are a successive approximation register (SAR) [9] logic,
a b-bit register, a digital-to-analog converter (DAC) and a
comparator. When the compressed measurements come, the
SAR logic sets the valid bit for the b-bit register. Then the
digital register is transformed to analog value by DAC and

Pro-AIC

ŷ
Vref

Quantization

b -bit
Register

DAC

+

-

Comp.

S/H

×

Random

Matrix

+

-

...

x y

Multiplexing Random Encoding

M

Multiplexing

Control Logic

Amplifier

Biosignal

Sensor

Wireless

Transmitter

Wireless

Receiver

Signal

Reconstruction
Post-Processing

Back-end ŷ

Figure 1: The block diagram of programmable analog-to-
information converter architecture.

compared with the analog input signal by the comparator.
The comparing result provides feedbacks for SAR logic for
next-round bit setting. This procedure iteratively continues
from the MSB to LSB of the b-bit register to approximate
the analog input signal. A wireless transmitter streams these
measurement data to the back-end, which will reconstruct
the signal and execute post-processing.

3.2 Performance and Energy Models
We would like to introduce the models of energy and per-

formance to evaluate the analog-to-information converter ar-
chitecture. In wireless sensing applications, the wireless data
exchanging becomes the bottleneck of power consumption in
the sensor node, due to the low-power design of Pro-AIC.
Therefore, the energy consumption is proportional to the
volume of data stream in wireless communication formulat-
ed as follows:

E = C ×M × b, (8)

where M is the sampling rate, b is the bit resolution, and
C is the energy per bit in wireless communication, which is
determined by the specific protocol and usually a constant.
In addition, we adopt the normalized root-mean-square dif-
ference between reconstructed signal and original signal as
the performance metric of the entire architecture:

P =
‖x− x̂‖2
‖x‖2

× 100%, (9)

where x̂ denotes the recovered signal, and x is the original
input signal.

3.3 Challenges in Pro-AIC Configuration
The main challenge of Pro-AIC design is how to efficient-

ly find the optimal parameter configuration, i.e., sampling
rate M and bit resolution b. The power consumption in the
Pro-AIC sensor node is proportional to the total transmit-
ting bits, product of M and b. However, the performance of
the Pro-AIC framework is based on `1 minimization solver,
which is an extremely time-consuming procedure. We take
a 256-sample EEG segment reconstruction as an example.
The sizes of M and b are 256 and 16, respectively. We use
CVX toolbox [10] to solve the minimization problem on the
computer with 3.3GHz Intel i7 and 8GB RAM. The average
time to compute the reconstruction under a specific parame-
ter setup (M , b) is about 1.5 seconds. Under the brute force
algorithm, the total time is the average time multiplying the
design space size, about 1.7 hour in our example. In CVX,
the `1-norm minimization problem is solved by second-order
cone programming (SOCP) [11] method with time complex-
ity of O(N3). If the signal length increases to 1024 samples,
the brute-force needs about one and a half days. Therefore,
a method to quickly detect the optimal parameter configu-
ration is in an urgent need.

4. RAPID NEAR-OPTIMAL CONFIGURA-
TION ALGORITHM IN PRO-AIC

In this section, we first identify a design metric, trade-off
penalty to quantitatively evaluate the P-E trade-off. Then
we discuss some insights from the distribution of the trade-
off penalty in M -b space. Finally, we elaborate our rapid
spiral scheme in details.

4.1 Design Metric: Trade-off Penalty
Our ultimate goal is to evaluate the P-E trade-off with re-

spect to two parameters, sampling rate M and bit resolution
b. To remove the scale effect, we first normalize the recon-
struction error, P , and energy consumption, E, with their
maximal values. To this end, we define a trade-off penalty
Ct to indicate the endeavour to achieve a certain level of the
P-E trade-off, as the following:

Ct(M, b) = ‖(Pn(M, b), αEn(M, b))− (0, 0)‖2, (10)

where Pn is the normalized reconstruction error and En is
the normalized energy under the specific parameter config-
uration (M, b). The α is a parameter to tune the relative
weight between Pn and En, which is always decided by spe-
cific application. The Ct is the Euclidian distance between
current P-E point and the origin point.

Furthermore, if we take a close look at Eq. (10), we can
find that the origin point is the ideal case, which holds no
reconstruction error with zero energy consuming. The de-
sign space of Pro-AIC comprises all the possible P-E points.
So we can infer that a good parameter configuration toward-
s the optimal P-E trade-off in the design space is the P-E
point who holds the minimal distance to the origin. The
related problem can be formulated as the following:

(M, b)opt = argmin
M,b

Ct(M, b). (11)

The smaller trade-off penalty means better trade-off achieved
by our proposed architecture. Therefore, our objective in
Pro-AIC design is to rapidly determine the optimal param-
eter configuration who holds the smallest trade-off penalty.

4.2 Trade-off Penalty Distribution in M-b S-
pace

We have a look at the distribution of the trade-off penalty
Ct(M, b) to investigate its trend in the 2-D parameter space.
An example of a real EEG signal segment to show the re-
lationship between penalty Ct and the parameters, M and
b, is depicted in Figure 2. Our objective is to seek for the
global minimum trade-off penalty in M -b design space.

From the heat map in Figure 2, we can observe that the
largest penalty regions appear at the left bottom corner and
right top corner. The left bottom is with almost zero ener-
gy, but the configuration of small M and b will cause large
reconstruction error. The right top is with the best recon-
struction quality, but consuming the largest energy. So these
two extremes are marked as the largest penalty. The min-
imum penalty, the optimal, locates at the middle part in
this 2-D space, marked by the pink five-pointed star. We
can also see that the area around the right top corner has a
significant decreasing trend. Although the left bottom area
also has the penalty-decreasing trend, there are too many
fluctuations.

An intuitive heuristic method for trade-off penalty min-
imization is to use gradient descent (GD) algorithms. To
keep a comprehensive study, besides taking the right top as
the starting point, numbered as 1, we also randomly choose
other eight starting points, numbered from 2 to 9. We show
all the traces of GD by the white triangle marker from each
starting point, holding locally largest trade-off penalty. A

Optimal

Gradient
Descent ①

②

③

④

⑤

⑥

⑦

⑧

⑨

Figure 2: The trade-off penalty distribution in M -b space.
The x axis is the sampling rate and the y axis is the bit
resolution. Different colors indicate different penalty levels.

common trend is that the penalty decreases fast by declining
of both M and b, but it is trapped into the local minimum af-
ter just a few steps. We can observe that there are numerous
local minimum distributed in the design space, due to the
lack of dominator between M and b. Especially, the start-
ing point of case 4 and 5 are just near the optimal solution,
but they don’t have a chance to converge to the optimum.
Therefore, the GD has a poor result affected by so many
local minimum confusions, which make the rapid parameter
configuration become an extremely difficult problem.

The neighbor by neighbor searching scheme makes GD
easy to stop at a point with large penalty. The key to im-
proving the result quality is to explore the possibility to re-
sist the local minimum, yet keeping the rapid speed as GD.
Note that a prior knowledge is we already know the size of
the M -b space. It will be feasible to push penalty-driven
triangle to converge to the small penalty area.

4.3 Rapid Configuration Algorithm
Our rapid configuration algorithm, RapSpiral, maintains a

penalty-driven triangle to move towards the minimum penal-
ty area, by drifting and shrinkage alternately. We have two
rules through the proposed scheme: 1), We always choose
the longest triangle edge to evolute; 2), We adopt penalty
comparison for edge trim to generate the new triangle. This
method can jointly optimize the trade-off penalty and time-
efficiency. We provide a typical example to illustrate our
idea in Figure 3.

Initially, we place a triangle on the design space, just like
the triangle ABC in Figure 3 (a). To avoid the drawback
from neighborhood searching, we use the penalties of the
three-equal-partition points on the edge to evolute the tri-
angle. This penalty-driven triangle can efficiently peel off
the large penalty area and shrink to the area with small
penalty. So we first partition edge AB into three-equals and
compare the penalties on the two partition points, F 1

1 and
F 1
2 . Note that we use superscript to indicate the iteration

number and adopt subscript as the partition number for par-
tition points. If the penalty Ct(F 1

1) is less than Ct(F 1
2), we

replace the edge endpoint B with F 1
2 . Then if the case is

that Ct(F 1
1) is greater than Ct(F 1

2), we replace the endpoint
A with F 1

1 . If the two penalties are equal, we update two
endpoints simultaneously. In this example, we have Ct(F 1

1)
is less than Ct(F 1

2), so we delete the area BCF 1
2 . We can

observe that the small penalty area is just between CF 1
2

and CF 1
1 . There is no need to search the parameter config-

Optimal
F1

1

F2

1

A

B

C

(a) Iteration 1

Optimal
F1

1

F2

1

F1

2

F2

2

B

C
A

(b) Iteration 2

Optimal
F1

1

F2

1

F1

2

F2

2

F1

3

F2

3

B

C
A

(c) Iteration 3

Figure 3: A typical example to illustrate our RapSpiral algorithm to search for the optimal parameter configuration.

uration in BCF 1
2 . Then, the new triangle becomes CAF 1

2 .
We drastically reduce the searching burden by this penalty-
driven model. Another significant heuristic technique is we
always choose the longest edge to start the new evolution.
This is also the reason why we choose edge AB for the first
triangle updating.

Accordingly, we move to iteration 2 in Figure 3 (b). In
this iteration, we choose edge AC to evolute because it is
the longest edge in CAF 1

2 . The penalties are equal from the
both equal-partition points F 2

1 and F 2
2 . Thus, we update the

two endpoints A and C with partition points F 2
1 and F 2

2 , re-
spectively. Then the new evoluted triangle is F 2

1 F
2
2 F

1
2 . Note

that we record the minimum penalty and corresponding pa-
rameter configuration for all our visited partition points:

Ctmin = min
z
{Ct(F z

1), Ct(F z
2)}. (12)

This step is an easily ignored yet very significant measure
to empower our spiral scheme possible to avoid the local
minimum. Because our stopping criterion is the area of the
penalty-driven triangle less than a pre-defined threshold ε.
The optimal penalty may occur at anytime in the evolution
procedure. It is this technique that enlightens our method a
much higher probability to hit the optimum than GD. We will
demonstrate this in the following experiment. In iteration
3 of Figure 3 (c), we continue to execute our rapid spiral
scheme. We can observe that the penalty-driven triangle
cuts off the large penalty area continuously and converges
to the optimal penalty area. The pseudo code of the entire
algorithm is listed in Algorithm 1.

In this algorithm, line 4 chooses the longest edge of the tri-
angle. The line 6 calculates the two equal-partition points.
The two if structures from line 7 to 12 judge the penalty
comparison and make the decision of the updating for next
iteration. Finally, from line 14 to 16, we record the configu-
ration information if any one of the two points has smaller
penalty. When the iteration terminates, we find the near-
optimal parameter configuration (M, b) and corresponding
trade-off penalty.

Lemma 1. The time complexity of the rapid spiral algo-
rithm is O(log(|M | × |b|)).

Proof: In this algorithm, the area of one single triangle will
be reduced at least one third at each iteration. This pro-
cedure will continue until the area of the current triangle
is no more than the threshold ε. In the worst case, we
only need to consider the evolved triangle with two third-
s area remaining in each iteration. The recursive formu-
la is T (area)=T (2/3area)+O(1), and by the Master The-
orem [12], the rapid spiral algorithm will converge by the
time complexity of log(area) = log(|M | × |b|).

Algorithm 1 RapSpiral: Rapid Configuration Algorithm

Input: The axis of initial triangle A, B and C. Ct is the
trade-off penalty.

Output: The optimal parameter (Mopt, bopt) and the
minimum penalty Ctmin

1: Ctmin ← INF;
2: while Area(∆ABC)> ε do
3: //Choose the longest edge
4: Line ← LongestEdge(∆ABC);
5: //Spiral evolution
6: (f1, f2) ← PartitionPointFind(Line);
7: if Ct(f1)≥Ct(f2) then
8: Line.startPoint ← f1;
9: end if

10: if Ct(f1)≤Ct(f2) then
11: Line.endPoint ← f2;
12: end if
13: //Update parameters and minimum cost
14: Ctmin ← min(Ct(f1), Ct(f2), Ctmin);
15: (Mopt, bopt) ← minM,b{Ctmin};
16: UpdateTopology(∆ABC);
17: end while
18: return (Mopt, bopt), Ctmin;

5. EXPERIMENTS AND DISCUSSION
In this section, we perform extensive experiments on biosig-

nal sensing to quantitatively demonstrate the performance
of RapSpiral algorithm on configurability exploration. We
compare parameter estimation accuracy and runtime among
RapSpiral, gradient descent and brute force algorithms.

5.1 Experimental Setup
In biosignal family, EEG is a challenging representative,

so we use the public available EEG benchmarks from the
PhysioNet [13] as our testing data. We choose three lengths
of EEG signal, N=128, 256, and 512. The 128-sample EEG
has 120 segments and the other two lengths have 10 seg-
ments of each. The sampling rate of all the EEG segments
is 256 Hz. All the experiments use Bernoulli random array
as sensing array and uniform quantization strategy. The in-
verse discrete wavelet transform is taken as the orthogonal
transformation basis Ψ. The weight parameter α is set as
1. All our experiments are carried out by Matlab, with Intel
Core i7 3.4 GHz and 8 GB memory. We adopt IPv6-based
communication [14] to model energy consumption of wire-
less data transmission. By its experimental result, we can
take C = 0.4 uJ/bit in the energy model. We use sensitiv-
ity analysis [15] as the gradient descent method in discrete
domain.

5.2 Trade-off Comparison
In this part, we examine the trade-off penalty among the

RapSpiral, gradient descent and brute force algorithms. We
use 120 continuous 128-sample EEG segments as the testing
data. The maximal quantization bit resolution is 16 and the
maximal measurement number is 128. For our RapSpiral
method, we divide the entire design space into two equal
triangles by the diagonal from the left bottom to the right
top. The gradient descent starts from the right top corner,
where b is 16 and M is 128. The brute force algorithm
directly visits each possible parameter configuration. Due
to the limited space, we illustrate accuracy results of 10
segments in Figure 4.

1 2 3 4 5 6 7 8 9 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Segment Number

T
ra

d
e

−
O

ff
 P

e
n

a
lt
y

Gradient Desent RapSpiral Brute Force

Figure 4: The minimum penalty of RapSpiral, gradient
descent and brute force.

In Figure 4, the yellow bar indicates the minimal penalty
found by gradient descent, the red bar is the result of our
RapSpiral, and the black bar corresponds to the brute force
algorithm. Intuitively, the brute force algorithm obtains the
optimal solution. The penalty of our RapSpiral is much
closer to the brute force case than gradient descent method.
Specifically, the segment 6 and 9 both find their optimal
solution. But the gradient descent is with poor accuracy
without optimum hit experience. This is because gradient
descent method is easily trapped into the local minimum.

More specifically, we choose four segments, number 2, 4, 6
and 8, to show their final parameter finding in the normal-
ized P-E space in Figure 5. We can find that the three pa-
rameter configurations are very close for segment 2. For the
other three segments, the configuration of gradient descent
is far behind the brute force and our RapSpiral. Especially,
our RapSpiral hits the optimal solution in Segment 6. If we
have a closer look at the results from the four segments, a
common trend is that our RapSpiral can always be near the
inner envelop curve, while the gradient descent stops in the
middle of the P-E space. The gradient descent is sensitive
to the local minimum, which is fully distributed in the Pro-
AIC design space. This firmly demonstrates the robustness
of our RapSpiral algorithm resisting to the local minimum
towards the near-optimal P-E trade-off.

For a comprehensive comparison, we define the average
trade-off penalty ATP to the optimal configuration in the
brute algorithm for specific algorithm as, ATP = 1

L

∑
i(Ct

i
spec−

Ctibrute), where the Ctispec is the minimum penalty of the
specific algorithm, either RapSpiral or gradient descent, for
segment i. The Ctibrute is the global minimum penalty. The
average penalties are 11.41% and 3.48% for the gradient de-
scent and our RapSpiral. We use the maximal value to nor-

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Normalized Energy

N
o

rm
a

liz
e

d
 P

e
rf

o
rm

a
n

c
e

P−E

BF

RS

GD

(a) Sample 2

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Normalized Energy

N
o

rm
a

liz
e

d
 P

e
rf

o
rm

a
n

c
e

P−E

BF

RS

GD

(b) Sample 4

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Normalized Energy

N
o

rm
a

liz
e

d
 P

e
rf

o
rm

a
n

c
e

P−E

BF

GD

RS

(c) Sample 6

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Normalized Energy

N
o

rm
a

liz
e

d
 P

e
rf

o
rm

a
n

c
e

P−E

BF

RS

GD

(d) Sample 8

Figure 5: The searching result of different strategies, gra-
dient descent (GD), RapSpiral (RS) and brute force (BF).

malize each attribute in P-E space, so 3.48% makes a great
difference compared with 11.41%. This demonstrates the
high accuracy of our proposed RapSpiral algorithm.

5.3 Runtime Comparison
We design this experiment to compare the runtime of the

three algorithms. The setup is the same as the accuracy
comparison section, and the results of run time are shown
in Figure 6. Note that due to the large runtime of the brute
force case, we adopt the logarithmic scale of the runtime
axis for a clearer comparison.

1 2 3 4 5 6 7 8 9 10
10

0

10
1

10
2

10
3

Segment Number

R
u

n
 T

im
e

 (
s
)

Gradient Descent RapSpiral Brute Force

Figure 6: The runtime comparison of RapSpiral, gradient
descent and brute force.

In Figure 6, the gradient descent and RapSpiral have the
similar runtime, which are both much less than that of the
brute force case. RapSpiral has a simple yet efficient search-
ing strategy. The O(log(|M | × |b|)) time complexity enables
its rapid speed. For gradient descent in this experiment, it is
trapped into the local minimum after several steps forward-
ing. Specifically, the gradient descent method goes down
along the decreasing direction of bit resolution b. This is
because large sampling rate M makes the bit resolution b
dominate the signal reconstruction. When the gradient de-
scent comes near the area with small penalty, the numerous

local minimum terminates its searching.
More specifically, we define SPavg to to check the aver-

age runtime speedup compared with the brute force method
over all the 120 EEG segments, formulated as, SPavg =
1
L

∑
i(t

i
brute/t

i
spec), where the tbrute is the entire runtime of

the brute force algorithm and the tspec represents the run-
time of a specific method, gradient descent or RapSpiral. By
this formula, we can calculate the average runtime speedups
for gradient descent and RapSpiral as 42.94× and 38.81×,
respectively. The two speed-ups are similar. This demon-
strates the time efficiency of our RapSpiral algorithm.

5.4 Scalability
This experiment is designed to investigate the scalability

of the RapSpiral algorithm. We choose ten 256-sample EEG
segments and ten 512-sample EEG segments. We still keep
the upper bound of bit resolution b as 16. The RapSpiral
also divides the parameter M -b space into two triangles by
the diagonal from left bottom to right top. The gradient
descent begins its searching from the right top corner. The
trade-off penalty of the brute force algorithm is the ground
truth. The related trade-off penalty and runtime speedup
are illustrated in Figure 7.

128 256 512
0

0.08

0.16

0.24

0.32

Segment Length

T
ra

d
e

−
o

ff
 P

e
n

a
lt
y

0

56

112

168

224

R
u

n
ti
m

e
 S

p
e

e
d

u
p

Penalty ErrorBar

Speedup ErrorBar

Penalty of GD

Penalty of RS

Speedup of GD

Speedup of RS

Figure 7: The scalability results of different sizes of design
space.

The average penalties of GD and RapSpiral are represent-
ed by light-blue and green bars. The average speedup of GD
and RapSpiral are grey and yellow bars. We also add two
types of errorbars, i.e., the red one is the standard devia-
tion of the trade-off penalty and the blue one indicates the
standard deviation of runtime speedup. For the penalty,
our RapSpiral is much less than the gradient decent method
in all cases. As the segment length increases from 128 to
512, the average trade-off penalty of RapSpiral increases by
a small amount, about 1%. However, the gradient descent
method takes on fluctuations, which is related to the loca-
tion of the local minimum.

For our RapSpiral framework, its speedup shows a lin-
ear increasing trend as the segment length double and dou-
ble again. The time complexity of RapSpiral algorithm is
log(|M | × |b|)). As M increases by polynomial order k, we
may have the complexity as log(Mk) = klog(M). The com-
plexity is transformed into linear increasing. This demon-
strates the excellent scalability of our RapSpiral algorithm.

6. CONCLUSION AND FUTURE WORK
In this work, we investigated a programmable analog-to-

information converter architecture and RapSpiral, an algo-
rithm to rapidly optimize the configurability of Pro-AIC sen-

sor node design. We introduced the basics of compressed
sensing theory and Pro-AIC architecture. We presented a
design metric, trade-off penalty, to quantitatively evaluate
P-E Trade-off. Moreover, we proposed RapSpiral algorithm
for the near-optimal parameter configuration. This method
had no pre-training requirement and parameter tuning pro-
cedure. It guaranteed that the chosen triangle moves to-
wards the optimal area. We also carried out extensive exper-
iments on challenging EEG signals to verify the performance
of our proposed algorithm. Experimental results demon-
strated the high accuracy and fast speed of our RapSpiral.

In future work, we plan to design new efficient algorithms
to take more parameters into account in Pro-AIC design to
pursue better trade-off improvements. On the other hand,
we will consider the micro-architecture optimization of the
Pro-AIC sensor node.

7. ACKNOWLEDGMENTS
This work is in part supported by NSF grants CNS-1423061/

1422417, ECCS-1462498/146247 and CNS-1547167.

8. REFERENCES
[1] Sami Kirolos, Jason Laska, Michael Wakin, Marco Duarte, Dror

Baron, Tamer Ragheb, Yehia Massoud, and Richard Baraniuk.
Analog-to-information conversion via random demodulation. In
Design, Applications, Integration and Software, 2006 IEEE
Dallas/CAS Workshop on, pages 71–74. IEEE, 2006.

[2] David L Donoho. Compressed sensing. Information Theory,
IEEE Transactions on, 52(4):1289–1306, 2006.

[3] Aosen Wang, Zhanpeng Jin, Chen Song, and Wenyao Xu.
Adaptive compressed sensing architecture in wireless
brain-computer interface. In Proceedings of the 52nd Annual
Design Automation Conference, page 173. ACM, 2015.

[4] Marco F Duarte, Mark A Davenport, Dharmpal Takhar,
Jason N Laska, Ting Sun, Kevin E Kelly, Richard G Baraniuk,
et al. Single-pixel imaging via compressive sampling. IEEE
Signal Processing Magazine, 25(2):83, 2008.

[5] Fred Chen, Anantha P Chandrakasan, and Vladimir M
Stojanovic. Design and analysis of a hardware-efficient
compressed sensing architecture for data compression in
wireless sensors. Solid-State Circuits, IEEE Journal of,
47(3):744–756, 2012.

[6] Eliahu Baransky, Gal Itzhak, Noam Wagner, Idan Shmuel, Eli
Shoshan, and Yonina Eldar. Sub-nyquist radar prototype:
Hardware and algorithm. Aerospace and Electronic Systems,
IEEE Transactions on, 50(2):809–822, 2014.

[7] Argyrios Zymnis, Stephen Boyd, and Emmanuel Candes.
Compressed sensing with quantized measurements. Signal
Processing Letters, IEEE, 17(2):149–152, 2010.

[8] Zainul Charbiwala, Paul Martin, and Mani B Srivastava.
Capmux: A scalable analog front end for low power compressed
sensing. In Green Computing Conference (IGCC), 2012
International, pages 1–10. IEEE, 2012.

[9] Shitong Yuan, Hai Huang, Qilian Liang, and Qiang Li. Energy
efficient comparator for successive approximation register adcs
with application to wireless sensor networks. International
Journal of Sensor Networks, 17(2):122–129, 2015.

[10] Michael Grant and Stephen Boyd. CVX: Matlab software for
disciplined convex programming, version 2.1.
http://cvxr.com/cvx, March 2014.

[11] Miguel Sousa Lobo, Lieven Vandenberghe, Stephen Boyd, and
Hervé Lebret. Applications of second-order cone programming.
Linear algebra and its applications, 284(1):193–228, 1998.

[12] Salvador Roura. An improved master theorem for
divide-and-conquer recurrences. In Automata, Languages and
Programming, pages 449–459. Springer, 1997.

[13] George B Moody, Roger G Mark, and Ary L Goldberger.
Physionet: a web-based resource for the study of physiologic
signals. IEEE Eng Med Biol Mag, 20(3):70–75, 2001.

[14] Matti Siekkinen, Markus Hiienkari, Jukka K Nurminen, and
Johanna Nieminen. How low energy is bluetooth low energy?
comparative measurements with zigbee/802.15. 4. In Wireless
Communications and Networking Conference Workshops
(WCNCW), pages 232–237. IEEE, 2012.

[15] Aosen Wang, Feng Lin, Zhanpeng Jin, and Wenyao Xu. A
configurable energy-efficient compressed sensing architecture
with its application on body sensor networks. Industrial
Informatics, IEEE Transactions on, 12(1):15–27, 2015.

