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Abstract— Photoacoustic (PA) imaging is an emerging 
hybrid medical imaging modality involving the optical 
excitation of chromophores - light-sensitive molecules like 
hemoglobin and lipids, to infer underlying vascular structure. 
Supplying them energy in the form of pulsed laser results in 
rapid successive thermoelastic expansion and contraction, 
resulting in the generation of ultrasound, which can then be 
measured using transducer arrays. Raw sensor data is 
represented in k-Space from which the Cartesian equivalent is 
reconstructed using rule-based algorithms. These 
reconstructions tend to be noisy and have artifacts, but the 
recent widespread adoption of deep learning has facilitated the 
post-processing of reconstructions to significantly improve 
them. UNet, in particular, has had a far-reaching impact on the 
medical imaging domain, and PA imaging has been no 
exception, seeing a myriad of solutions based on it. In this 
paper, we investigate the efficacy of replacing convolution-
based feature generation for post-processing PA 
reconstructions with a Vision Transformer-based (ViT) 
approach owing to its recent success in computer vision. 
Specifically, we examine the ability of Shifted Window (Swin) 
ViTs to restore an artifact-free vascular image from an 
artifact-heavy image reconstructed using the time-reversal 
algorithm.  

Keywords—deep learning, photoacoustic computed 
tomography, artifact removal, SwinIR, swin transformer 

I. INTRODUCTION 

PA signals, as measured by ultrasonic transducer arrays, 
are represented in k-space, which encodes the time taken by 
sound to reach the transducer in the spatial-frequency 
domain. This representation needs to be transformed into 
Cartesian space to be interpretable for medical diagnostic 
use. Deterministic reconstruction algorithms like back-
projection and time-reversal, which have been the standard, 
yield low-resolution, noisy results that amplify the artifacts 
introduced by the hardware setup. Reconstructed results from 
scans using linear array transducers are especially susceptible 
to limited-view artifacts, which manifest as curved stripe 
features around the object being imaged[1].  

Convolution-based architectures like UNet for post-
processing reconstructions from deterministic methods have 
proven effective at reducing artifacts. However, compared to 

convolution-based methods, Vision-Transformer (ViT) [2] 
based methods that embed patches of a given image have 
proven superior in the ability to capture long-range 
dependencies that exist beyond a convolutional receptive 
field[3], [4]. This is achieved by modeling image patches like 
text and generating embeddings that map each patch into a 
global semantic space. 

We propose to use a ViT-based architecture – SwinIR[5], 
which is an image-to-image mapping technique primarily 
targeted at image superresolution and denoising that uses a 
type of ViT called a Shifted Window (Swin) Transformer[6]. 
The motivation for this approach is the potential for the 
model to learn when vasculature is implicitly continuous, 
unlike in convolution-based methods, which often yield 
results with gaps in vasculature. Our results show that 
SwinIR outperforms existing state-of-the-art methods like 
WGAN-GP. 

One of the major reasons behind the ubiquity of UNet has 
been the accuracy it affords while also being memory 
efficient, and most attempts to improve upon accuracy have 
been at the cost of this efficiency[7]. Furthermore, there is a 
lack of data owing to the nascence of the PA field, and due to 
the nature of the problem, it is prohibitive to visualize the 
ground truth vascular structure being imaged except through 
the use of alternative imaging modalities, which is why the 
domain sees extensive use of simulated data to train models. 

Swin Transformers addressed the computational 
complexity and scalability challenges intrinsic to ViTs, as a 
result of which, the application of transformer-based 
architectures became viable while also being comparable to 
UNet with regard to inference speed and memory efficiency. 

This paper investigates the viability of using ViT-based 
architectures as an alternative to conventional convolution-
based architectures for artifact removal from reconstructed 
photoacoustic images. Specifically, we propose to use 
SwinIR to post-process reconstructed photoacoustic images 
of Two-Photon Microscopy (TPM) brain scans to denoise 
them and reduce limited-view, limited bandwidth, and sparse 
sampling artifacts. 

This work was supported by grants from the National Institutes of 
Health (Nos. R01EB029596 and R01EB028978). 
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II. BACKGROUND AND PRELIMINARIES 

A. PACT Theory and Methods 

A typical photoacoustic imaging setup consists of a 
pulsed energy source - particularly, 1064nm laser pulsed at 
10HZ - for optical excitation, and ultrasonic transducer 
arrays that measure the pressure distribution resulting from 
rapid thermoelastic expansion and contraction of lipids and 
hemoglobin. Multiple form factors of ultrasound transducer 
arrays are documented in contemporary literature - linear 
arrays, 2D arrays, and ring arrays [8] being a few of the most 
commonly discussed. Linear arrays are the most economical 
and are used in consumer ultrasound owing to their cost-
effectiveness, convenience of scanning, and the relative ease 
with which k-space signals can be reconstructed. 

B. Deep Learning-based methods 

Deep learning-based approaches have enabled rapid 
advancements in PA reconstruction quality by doing away 
with the necessity for hand-crafted deterministic algorithms 
while matching or improving upon computational 
performance. Waibel et al. [9] broadly categorize deep 
learning-based approaches into post-processing and direct 
reconstruction, where the former consists of models that take 
the result of a deterministic approach as the input and further 
process them, whereas the latter operates directly on sensor 
data in k-space. 

C. Dataset 

To train and evaluate SwinIR, we use Vu et al.’s adapted 
Two-Photon Microscopy (TPM) brain vasculature dataset 
from [1] since the vasculature structures are similar to PACT 
target vascular structures in their complexity and 
distribution. In addition to the TPM images themselves, the 
dataset contains TPM structures processed in the k-Wave 
toolbox in MATLAB to generate simulated sensor readings. 
These are then subjected to random addition of noise, 
reconstructed using a deterministic method - the results of 
which constitute what we refer to as bipolar domain inputs 
and contain limited-view and limited-bandwidth artifacts. 
These bipolar domain inputs are converted to the unipolar 
domain using the Hilbert transform, subjected to random 
addition of Gaussian noise, and normalized between 0 and 1. 
Models trained and evaluated in [1] use the Hilbert-
space/unipolar images as inputs and TPM images as targets. 
We do the same for SwinIR and P-SwinIR to compare 
performance. 

TABLE I.  SIMULATION PARAMETERS 

Parameter Value 

Transducer elements 128 

Central frequency 5MHz 

60% detection bandwidth 3MHz 

Speed of sound 1540ms-1 

 

 

Fig. 1. The SwinIR architecture consists of a shallow feature extraction 
convolution layer followed by the deep feature extraction block and a final 
upsampling convolution layer. The output of the shallow feature extraction 
is concatenated with the output of the deep feature extraction block.  

 

Fig. 2. The architecture of the deep feature extraction block is comprised 
of Residual Swin Transformer Blocks (RSTBs), which in turn are 
built by stacking Swin Transformer Layers (STLs). Each STL uses 
Multihead Self-Attention (MSA) followed by MultiLayer 
Perceptrons (MLPs) with Layer Normalization. 

The simulation parameters in k-Wave are configured to 
approximate the L7-4 linear transducer array specification, as 
outlined in Table 1. 

III. MATERIALS AND METHODS 

In this paper, we propose the use of a SwinIR – a 
transformer-based deep neural architecture designed for 
image restoration, denoising, and mapping; to post-process 
PA images reconstructed by time-reversal. 

A. Swin Transformer 

Swin (Shifted Window) Transformers[6] were introduced 
as a solution to challenges unique to adapting Transformers – 
initially introduced to solve natural language processing 
problems by modeling a latent language space and 
embedding tokens within it. Vision Transformers (ViTs) 
were the first solution to adapt Transformers to the image 
domain without using any form of convolution. ViTs split an 
image into patches of a constant dimensionality and embed 
them along with their position using a standard transformer 
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encoder. While its results were promising, the high variance 
in the scale of objects and the generally higher resolution of 
information to be modeled compared to language remained 
to be addressed. Swin Transformers, by dividing the image 
into patches of multiple scales, can model long-range 
dependencies within the input image while simultaneously 
being capable of handling large images owing to local 
attention.  

B. SwinIR 

SwinIR was proposed as a baseline method for image 
restoration using attention instead of convolution as the 
“spatial token mixer” - following the nomenclature from [3]; 
similar to how UNet has become the de-facto baseline for 
most medical imaging tasks as reported in [7]. It is a three-
stage architecture that performs shallow and deep feature 
extraction followed by image reconstruction. The deep 
feature extraction block consists of Residual Swin 
Transformer Blocks (RSTBs), which, we hypothesize, are 
more effective at modeling vasculature than convolution-
based methods owing to a larger effective receptive field 
(ERF)[4]. SwinIR was chosen as the foundation for 
investigating the effectiveness of transformer-based image 
reconstruction for PA images on the basis of its performance 
on standard benchmarks in the computer vision domain. 
Since it is built upon Swin Transformers, it solves the 
problem of modeling long-range dependencies within an 
image and is content-aware, unlike convolution-based 
methods like UNet. 

 

We minimize the Charbonnier loss function (1) using the 
AdamW[10] optimizer to guide the training process. The use 
of Charbonnier loss allows for the benefits of L1 loss, 
yielding sharper results than L2 while avoiding division by 0 
through the addition of a small constant ϵ term set to 1e-9 
following the original SwinIR implementation. We use 6 
RSTBs with 6 Swin Transformer Layers (STLs) each, where 
each STL has a Multilayer Perceptron (MLP) ratio of 2. We 
set the embedding dimension to 180 to allow for effective 
modeling of the variance of the distribution of vascular 
structures. Patches of size 128x128 were used to train the 
model, with a window size of 8x8, resulting in a larger ERF 
than in conventional convolution-based models. The 
optimizer’s learning rate was set to 5e-5 with a weight decay 
factor of 0.01 and a learning rate scheduler that halves the 
learning rate every 20 epochs. Training was performed on a 
single Nvidia RTX 2080Ti using the PyTorch framework. 
The total dataset consisted of 9531 TPM images with their 
corresponding TR reconstructions of simulated PACT. This 
dataset was then subjected to a train-test split of 80:20, 
resulting in a training set of 7625 image pairs and a test set of 
1906 image pairs. The model was trained for 85 epochs over 
a span of 64 hours. 

 

IV. RESULTS 

Structural Similarity (SSIM), Peak Signal-to-Noise Ratio 
(PSNR), and Multiscale Structural Similarity (MS-SSIM) 
were calculated using the predictions of each method for 
each sample and averaged over the test set. SwinIR achieves 
significantly higher quality than UNet, which is reflected in 
the 1dB improvement in PSNR, and the positive changes in 
SSIM and MS-SSIM. SwinIR also outperforms WGAN-GP 
on all three metrics.  

SwinIR is able to implicitly learn the continuity intrinsic 
to vessel structures by modeling it in a manner similar to 
natural language using the attention mechanism, allowing it 
to outperform purely convolution-based feature extraction 
methods. 

 

 

Fig. 3. Post-processing results from models. a) PACT image reconstructed 
using the deterministic Time Reversal algorithm. b) Two Photon 
Microscopy (TPM) vascular image of the brain used as ground truth for the 
models. c), e), and g) are predictions from UNet, WGAN-GP, and SwinIR, 
respectively, with their corresponding squared error maps d), f), and h). The 
insets highlight the ability of SwinIR to recover true vessel structure even 
when limited view artifacts – manifested as curved stripe features around 
the imaged object, are present. 
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TABLE II.  QUANTITATIVE METRICS 

Model PSNR (dB) SSIM MS-SSIM 

UNet 25.96 ± 2.51 0.64 ± 0.11 0.86 ± 0.07 

WGAN-GP 26.14 ± 2.16 0.64 ± 0.08 0.87 ± 0.05 

SwinIR 26.93 ± 2.74 0.66 ± 0.11 0.89 ± 0.06 

V. CONCLUSION 

In this work, we propose the use of SwinIR – an image-to-
image mapping model originally developed to solve image 
denoising and superresolution problems in the computer 
vision domain – for post-processing PACT images that are 
reconstructed using conventional algorithms like Time 
Reversal. We demonstrate that SwinIR is effective at 
removing noise from the reconstructions and also recovering 
vessel structures that are otherwise obscured due to 
hardware constraints like limited view and limited 
bandwidth. Our approach outperforms existing methods like 
UNet, which is the de facto baseline for most medical 
imaging-related deep learning solutions, and WGAN-GP, 
which was introduced for the express purpose of reducing 
artifacts in PACT reconstructions. 
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