
  

  

Abstract— A wearable surface capable of performing object 
recognition on objects placed on it has many applications in 
health care such as surgery, assisted living posture monitoring, 
specifically movement of body parts during sleep and etc. The 
flexibility and wearability of textile material allows its widespread 
applications in body-worn contexts. In this work, we propose a 
portable and wearable smart textile surface which is capable of 
performing object recognition on a set of prior known objects. We 
integrate data from multiple sensors to gain knowledge about 
objects in the environment. 

The uncertainty present in such systems can lead to inaccurate 
interpretation of the data which is crucial in various medical 
applications. The most significant part of this uncertainty is due 
to effects of multiple sensors on each other. We look at different 
sources of uncertainties in such systems and formulate them. We 
modify vision algorithm to account for these uncertainties and in 
the end we present precision bounds for the accuracy of the 
system.  

I. INTRODUCTION 
N this paper we present the Smart Textile Surface: a 
surface capable of performing object recognition and 

localization on objects placed on it.  This surface is made 
from E-textile material which gives the touch and feel of 
fabric. This feature enables the widespread use of this 
surface in wearable contexts as a non-intrusive device. 
Object localization is possible without the use of RFID tags 
placed on objects.  Pressure map based object recognition, is 
a complementary way of image processing based 
recognition. However, using cameras and images for 
performing object recognition is not used here in order to 
limit the system’s knowledge to specific objects. Cameras 
will provide unlimited knowledge about the environment 
under test, whereas the Smart Textile Surface limits the 
system’s knowledge to specific objects that are introduced to 
the system, not violating privacy.  Therefore the level of 
privacy can be controlled in such system based on 
application needs. Occluded object recognition is a 
challenge in image processing; however our approach can 
obtain information about blocked objects based on weight 
information. 

There are two phases for this system: learning and 
recognition. In the learning phase each object is placed from 
every possible stable position on the surface. Features 
related to each state of the object are then extracted and 
saved in the database. In the recognition phase objects can 
be placed in any location and orientation on the surface. The 
 
 

recognition algorithm will perform feature extraction and 
find the object with same or similar features in the database 
as a match. 

The Smart Textile Surface is composed of an array of 
pressure fabrics, each of which is a three layer structure 
where a resistive textile is sandwiched between two 
conductive layers. Objects placed on this surface will 
produce variable resistances at different elements of this 
sensor array, from which information about object position, 
weight and shape can be inferred.  

A smart surface capable of performing real-time object 
recognition has several applications in health care: One 
example is in a “bed sleep sensor”. Mobility measurement 
during sleep is an important consideration in assessing 
subject’s health and quality of sleep [1]. For example, body 
movements can be indicators of physical and mental health 
[13]. This information can also be used to monitor patients 
during long term illnesses. Our proposed Smart Textile 
Surface can be used as bed sheets to offer such real-time 
measurements and assessments. Smart Textile Surface, 
being made of fabric, will have no different feeling 
compared to normal sheets, but will be capable of 
performing a vast range of analysis. Each human body part 
can be considered an independent object (e.g. head, hands, 
arms, legs, etc.). From this view, the location and orientation 
of each object corresponding to each human body part can 
be monitored during subject’s sleep. This information can 
enable body movement identification [8], posture tracking 
[5], sleeping pattern identification [4], sleep quality 
assessment [7] and monitoring of specific body parts, e.g. 
Head movement caused by respiration to classify respiration 
status. Currently there are application specific products 
targeting a human body part. For example in [1] they use a 
sensor pillow system to monitor respiration. An additional 
benefit of such system would be its fabric structure which 
allows non-intrusive measurement.  

Another application of such a system is a surgery tray. 
Millions of patients undergo surgical procedures, but there 
are cases where surgical instruments are left in patient’s 
bodies causing disorders. The Agency for Healthcare 
Research and Quality (AHRQ) reports the number of 
surgical instruments such as forceps, scalpels, dilators and 
etc., left in a patient’s body after a surgery, 1 in every 7000 
surgeries [2]. In order to prevent this, instruments are 
typically counted by nurses before and after an operation 
prior to incision closure. Even so AHRQ also reports that 
this procedure is not often accurate due to staff fatigue and 
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interruptions such as changing teams. 
 With the use of our smart textile surface in surgery 

trays an accurate count of objects at all times can be 
maintained using shape and weight properties of surgery 
instruments. In addition to an accurate count, the type of the 
missing object can also be identified using object 
recognition algorithms described in section III.   

In the US near 1/3 of seniors above 65 will experience 
falls and 9500 of them will die as a result [11]. Therefore a 
good application of the Smart Textile Surface can be in 
smart floors, used for monitoring elderly living alone. The 
floor can be covered with the textile surface which allows 
identifying the location and status of the subject (walking, 
standing, not moving, falls, etc.) at any time without being 
intrusive. A similar product to this is the Smart Carpet [12]. 

As discussed earlier, the flexibility and wearability of the 
textile makes this a good platform to be used in wearable 
systems. This surface can be placed on an individual’s hand 
or used as a glove to perform object recognition possibly for 
the blind. Algorithms designed for this system should be 
designed differently to account for the orientation and 
deformation of the surface. There exists a diverse range of 
applications that can leverage this platform. Examples are 
Human Computer Interface and Security.  

There are several related platforms for tabletop interfaces. 
Most of these methods require an external object to be 
placed on the object under test, such as tags, visual markers 
or other markers. Microsoft Surface [9] is a recent tabletop 
interface that detects objects using markers called Dotcode 
and some vision algorithms.  [10] uses load sensing for 
performing object recognition.  

Our focus however is to obtain methods to account for 
uncertainties and be able to measure system accuracy. 
Therefore our contribution in this work is twofold: we first 
introduce and model the errors and uncertainties present in 
such textile based systems. Based on this modeling we 
propose an algorithm for thresholding and edge detection 
that accounts for uncertainties and results in more accurate 
data. We then present precision bounds on the accuracy of 
our proposed system.  

The rest of the paper is organized as follows. Section 2 
describes the sensor structure and the system design. The 
uncertainty and interference present in this system is 
described and modeled in the first part of Section 3. It is then 
tailored to the algorithms proposed for performing object 
recognition. In section 4 experimental results are depicted 
and finally conclusions are drawn in section 5 together with 
a description of future work. 

II. SYSTEM DESIGN  

A. Textile Technology and Characteristics  
E-textile is a composite yarn made of fibers coated with 

conductive polymer. The natural structure is loose and inside 
fibers are air gapped. The initial throughout resistor between 
the top-bottom surfaces is low. When extra pressure actuates 
on the surface, the intra fibers will be squeezed together and 

the throughout resistor becomes smaller. Here the resistor is 
inversely proportional to the pressure imposed. Given this 
characteristics, E-textile is normally used in pressure sensor 
fabrication. Considering its portability, flexibility and 
affordability, E-textile based wearable design becomes 
increasingly promising in carry-on healthcare devices. 

B. Sensor Structure and Fabrication 
An E-Textile based sensor has a three-stacked layer 

structure. The EEontex material is sandwiched within two 
conductive pads like the structure shown in Fig. 1. 

 
Fig. 1. The basic sensor structure 

 
In this sensor, E-textile acts like a pressure sensitive 

resistor. When the force is applied, the resistance of E-textile 
will decrease. The conductive layer can be conductive 
fabrics, copper foil tape or conductive threads. In order to 
maintain the flexibility of the sensor and textile feel we use 
conductive thread and conductive paper for the conductive 
layer. Fig. 2, shows the use of different conductive material. 

 
Fig. 2. Sample textile sensors 

 
Here, we also investigate the characteristic of the sensor. 

For a 10mm by 10mm sensor, Fig. 3 shows the dependence 
between applied force and resistance. 

 

 
Fig. 3. Electrical resistance over applied load 

C. Sensor Array Design 
We use the above structure as the basic sensor unit to 

build the pressure array. Orthogonal zebra patterns could get 
larger sensing density with less connection pins in sensor 
array design. In this structure, all the sensors in the same row 
or column, share the same contact pad, which makes the 
corresponding scanning circuit more complicated and less 
power efficient. For simplicity and efficiency, we built a 
large array as shown in Fig. 4. In this design, each sensor has 
an independent contact pad. In order to make this design 
easy for mass production, all the sensors share a sheet of E-
textile. This results in a dependency of sensors to each other. 
This is because a pressure applied on one sensor location 
might result in a change the resistance of the fabric in other 
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neighboring sensor locations. This neighboring effect will be 
discussed in detail in the next section. 

The current implementation of the system has a separate 
connection for each sensor location. The routing of such 
system becomes difficult with larger numbers of sensors. On 
the other hand, the size of such a system is also limited.  For 
larger numbers of sensors we can use a different design 
where columns on one row/column share the same wire. In 
this design methodology, a voltage is applied at the column 
of interest and the current flowing in each row is measured. 
The entire array is scanned column by column.  
 

 
Fig. 4. Pressure Sensor Array 

 

 
Fig. 5. System Architecture 

D. System Architecture 
Fig. 5 shows the framework of our proposed system. The 

system is composed of a client part and a host part. In the 
client part, the pressure sensor array is scanned with the use 
of multiplexors. After the sensing data is acquired by the 
microcontroller, it is packaged and transferred to the host 
receiver side through wireless RF circuit. The 
microcontroller we chose is MSP430f2274. The A/D 
converter’s resolution is 10 bits, and the sample rate is 
100kps. CC2500 is used for the wireless chip. The 
communication protocol used to transfer the data is 
SimpliciTI. SimpliciTI network protocol is a proprietary 
low-power radio frequency protocol targeting simple, small 
RF networks [3]. This network protocol can be actually a 
complement to ZigBee (suitable for larger networks). In the 
current implementation we have one client and a single host. 
The client is connected to a surface of a 16x16 array of 
textile sensors. With the SimpliciTI network protocol the 
number of end devices can be extended to 100 and each of 

the surfaces can be much larger, simply by adding 
multiplexers in front of the ADC converters. 

In the host side, the sensed data is processed by a PC 
when received by the RF chip. A UART to USB convertor 
(based on MP2010) is designed for interface compatibility. 

III. ALGORITHMS IN THE PRESENCE OF INTERFERENCE AND 
UNCERTAINTY 

Each surface reading is a two dimensional array of values 
between 0-255 representing the pressure map of the objects 
placed on it. This is very similar to the input of many 
computer vision algorithms, processing images.  

The idea of directly applying existing computer vision 
algorithms is attractive but there are significant differences 
between the two that requires major modifications in the 
algorithm design. The most important difference is sensor 
uncertainty and error existing in the system. Although errors 
of such are also apparent in images, however due to different 
sources and nature of errors the algorithms dealing with 
them are completely different. Sensor errors may present 
significance importance in cases where each sensor area is 
big relatively to the object’s area. Therefore, in this section 
we first derive a model of the errors in the system in part A 
and then present modified algorithms in parts B and C using 
this model. One assumption made here is that the textile 
surface is much larger than the objects placed on it. 

A. Uncertainty and Interference  
In this section we use an experimental approach to model 

interference existing in the system. This interference is 
mainly due to the neighboring effect which is described 
below. As described in Section II.B, a single sensing layer is 
shared among all the array sensors, and sensors are within 
certain spaces to each other. When applying pressure on one 
sensor, the effect would be inevitably posed on its 
surrounding sensors on account of mechanical linkage. Here 
note that the mechanical linkage between the sensors is 
minimal if they are not adjacent. We define the 
accumulating pressure sensed on each location due to forces 
applied not directly to itself but to its surrounding locations, 
the neighboring effect. 

 
Fig. 6. Neighboring effect 

 
The experimental setup is as follows: a range of weight 

scales were applied to one sensor location (X in Fig. 6) and 
all the values read from its 8 neighbors (N1 to N8 in Fig. 6) 
were recorded.  

Below in Table 1, these values are shown for weights 
between 50g – 250g for each of the neighbors. Note that the 
values shown for X are sensor reading and not weights. 
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TABLE I 
NEIGHBORING EFFECT ON 8 NEIGHBORS FOR WEIGHTS 50G TO 250G 

Value 
read 
from X 

 
N1 

 
N2 

 
N3 

 
N4 

 
N5 

 
N6 

 
N7 

 
N8 

10 1 4 2 6 6 1 5 1 
18 1 7 2 8 8 2 7 0 
29 1 11 3 10 11 1 12 2 
34 1 14 2 12 12 2 14 1 
46 3 18 3 15 15 2 18 2 

 
From Table 1, we can see the neighboring effect of 

locations N2, N4, N5 and N7 (above, left, right and below X) 
are similar to each other, and different from locations on the 
diagonal positions. This is better shown in Fig. 7, where 
similar locations are grouped together. Values in Fig. 7 
correspond to objects with weights in the range of 50g-1kg. 

 
Fig. 7. Regression Analysis 

 
We performed regression analysis on each set of data. 

This is shown in Fig. 7. Equations 1, 2 show the 
corresponding relationships together with square R for each 
set of locations around X.  

y = 0.0006x2 + 0.2257x + 2.2443 R2 = 0.97 (1) 
y = 3E-05 x2 + 0.0478x + 0.0896 R2 = 0.79 (2) 

B. Algorithm Overview 
Weight and shape are the two main features we use to 

recognize objects. The weight of the object is assumed to be 
consistent throughout time. But depending on the 3D shape 
of objects, they can be placed from various directions on the 
surface. Therefore the attributes we use to save information 
about objects are weight and a series of edges that represent 
objects shape. The system has two phases: a) Learning and 
b) Recognition. In the learning phase objects are placed from 
every possible stable position on the surface. The shape of 
the object is determined through an edge detection algorithm 
described in part C. This information together with the 
object weight is stored in the database for that object. 

In the recognition phase, various objects are placed on the 
surface. Our proposed edge detection algorithm determines 
boundaries of each object together with its weight. This 

information is searched in the database to find the best 
match to the measured data. Note that, at this stage we 
assume non-overlapping objects as inputs of the edge 
detection algorithm. 

C. Computing with Uncertainty 
Finding the object’s shape is based on edge detection. 

Without the presence of uncertainty in sensor data, edge 
detection is a straightforward task. A binary mapping is done 
from the value of each location based on a threshold value. 
Locations having a value higher than the threshold are set to 
1 to represent object area, while other locations below the 
threshold are set to 0. The boundary that separates the 0 and 
1 locations is identified as object’s edges. 

However, due to the presence of uncertainty and 
interference as described in part A, this process is prone to 
error. Therefore prior to edge detection we perform another 
mapping that accounts for the neighboring affect. Fig. 8 
depicts the mapping process.  

 

 

Fig. 8. Stages for edge detection 
 

Fig. 9 shows the proposed algorithm for thresholding and 
edge detection in the face of interference. Steps 1-3 in this 
algorithm perform the first mapping in Fig. 8 while step 4 
performs the binary mapping in Fig. 8. In summery the 
algorithm starts at the location with minimum weight. This 
is because this location has the least effect on its neighbors. 
Note that our main goal in the binary mapping step is to find 
correct object area and not an exact pressure value of 
locations. 

 
 

 
Fig. 9. Modified thresholding and edge detection algorithm 
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1. We first sort the locations based on their weights 
from small to large. Let wmij be the minimum 
weight location in the surface. Consider a 3x3 
window around it.  

2. For each location ij, consider the 8 surrounding 
neighbors (3 or 5 neighbors for corner and edge 
locations). 
Calculate the accumulating neighboring effect based 
on rules in part A for neighbors with larger values 
than (where ) 

  

 Make the new value of be  

 Any negative value will be mapped to zero. 
3. Let wmij be the next smallest weight location in the 

list. Go to 2 until all locations have been processed. 
4. Once all locations are processed perform 

thresholding on all locations. 
5. For performing edge detection, for each location, if 

any of its eight neighbors are 0 that location is 
marked as an edge. 
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Note that in each location analysis we only consider its 8 

neighbors. Although more distant locations might also have 
effect on location X’s data, we consider their affects 
recursively onto X’s 8 neighbors when processing X.  The 
algorithm above assumes single object detection on the 
surface. In case of multiple non-overlapping objects, a 
segmentation phase needs to be also added. In line 2 the 
reason for choosing wmij+∆ is to not calculate the effects of 
locations with similar values on each other. Here, ∆ is the 
sensor error. A simple thresholding method can be to make 
values higher than 0 become 1.  

In our proposed Smart Textile Surface we enable an 
architecture that allows sensing of objects with weights in 
different ranges. This can be done using multiple layers of 
different sensing material with different saturation levels, 
which we will not describe its details here. However, with 
the presence of uncertainty, there is a lower bound in being 
able to discriminate between objects of same shape and area. 
This lower bound gives a measure of the accuracy of the 
system.  

 The weight of an object can be calculated from 
equation 3: 

,     (3) 
In the above equation wmij is the measured weight of 

location ij after the algorithm in Fig. 9 is applied and aij is 
determined by step 4 of the algorithm (thresholding).  
However there are multiple sources of uncertainties in the 
above formula. One source of uncertainty is sensor 
uncertainty (∆) which is due to manufacturing and sensor 
degradation in time. The ADC resolution limitation is 
another kind of inherent systematic error. For example, the 
quantization error of 8-bit ADC is 0.39%. Another source of 
uncertainty is due to interference modeling. As described in 
part A, regression analysis is used to derive equations 1-2. 
Regression is not accurate and suffers from error. This error 
affects weight computation since the wmijs used in equation 3 
are computed by using the below formula. Here wm is the 
measured weight read from the sensors. 

   (4) 
And each of the Nis in this equation suffers from 

regression error. The R squared values derived in part A, 
show this error. Equations 5 and 6 formulate these 
uncertainties: 

     (5) 

    (6) 
In the above formulas, wmc and Nic are the correct value of 

wm and Ni respectively which is unknown to us. Therefore if 
we combine, equations 3-6 we will have the worst case 
uncertainty of: 

      (7) 

Here Wmx is correspondingly the exact weight of object x. 
Therefore the difference in weights of two different objects 
of size n should be at least the value of 

 in order to be able to 
distinguish them in our system. 

IV. EXPERIMENTAL RESULTS 

A. Experimental Set-up  
The Smart Textile Surface we developed for our 

experiments is a 16x16 array of 1x1cm sensors with 50mm 
spacing. The E-textile used is NW170-PI-10E4 from 
EEONYX [6]. Conductive threads were chosen for the 
conductive part.   

B. Results 
We placed several objects of different weights and shapes 

on the developed Smart Textile Surface. Fig. 10 shows the 
output of the user interface GUI developed for the edge 
detection algorithm. 

 

 
(a)                 (b) 

 
(c)       (d) 

 
(e)       (f) 

Fig. 10. Object’s sensed data and result after thresholding in algorithm. (a) 
iphone sensed data. (b) iphone data after thresholding. (c) Cup sensed data. 
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(d) Cup data after thresholding. (e) Marker pen sensed data. (f) Marker pen 
data after thresholding. 

 
In order to evaluate the effect of our proposed algorithm 

for eliminating the neighboring effect we present the details 
of our proposed algorithm, by showing each stage of our 
proposed algorithm on a wire roll object. Fig. 11.a shows the 
object under test.  

 
 

  
 

Fig. 11.    (a) Object under test            (b) Object view from above on textile 
  

Fig. 11.b shows this object from top view and how it is 
located on the surface. The reason for choosing this object is 
the middle location on the surface which suffers most from 
the neighboring effect. Fig. 12.a shows the sensed data 
obtained from the Smart Textile Surface. 
 

 
(a) 

 
  (b) 

(c) 

Fig. 12. (a) Sensed data. (b) Result of a trivial thresholding (c) The result 
and process of applying the algorithm proposed in Fig. 9. 

 
Applying a trivial thresholding and edge detection 

algorithm on the data in Fig 12.a will result in a wrong result 
(12.b). A trivial algorithm cannot distinguish any differences 
between value of locations 13 (L13) and L7, L9, L17, L19. But 

our proposed algorithm applies the Interference rules and 
from that distinguishes correct area locations.  As we see one 
sensor value has a great effect on the output of the object 
recognition phase. Please note that although the resulting 
shape is a hollow square instead of a hollow circle, we are 
able to detect the circular shape of the object by simply 
using smaller sensor sizes. The current sensor size and 
objects are used as a proof of concept. 

V. CONCLUSION AND FUTURE WORK 
In this work we developed a textile-based object 

recognition platform called the Smart Textile System. We 
modified a thresholding algorithm for this system to account 
for uncertainties such as sensor uncertainty, neighboring 
effect and modeling error. We modeled and formulated the 
uncertainties present in this system through an experimental 
approach. We also presented a precision level for system 
accuracy when comparing objects with the same object area.  

Our future work consists of extending this work on 
developing methods and algorithms to identify multiple 
overlapping objects. We will design algorithms for both 
dynamic and batch modes of object addition to our system. 
We also aim to reduce the amount of interference through 
system design optimization.  
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