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ABSTRACT
Continuous authentication is of great importance to maintain the
security level of a system throughout the login session. The goal
of this work is to investigate a trustworthy, continuous, and non-
contact user authentication approach based on a heart-related bio-
metric that works in a daily-life environment. To this end, we
present a novel, continuous authentication system, namely Car-
diac Scan, based on geometric and non-volitional features of the
cardiac motion. Cardiac motion is an automatic heart deformation
caused by self-excitement of the cardiac muscle, which is unique
to each user and is difficult (if not impossible) to counterfeit. Car-
diac Scan features intrinsic liveness detection, unobtrusiveness,
cost-effectiveness, and high usability. We prototype a remote, high-
resolution cardiac motion sensing system based on the smart DC-
coupled continuous-wave radar. Fiducial-based invariant identity
descriptors of cardiac motion are extracted after the radar signal
demodulation. We conduct a pilot study with 78 subjects to evaluate
Cardiac Scan in accuracy, authentication time, permanence, evalua-
tion in complex conditions, and vulnerability. Specifically, Cardiac
Scan achieves 98.61% balanced accuracy (BAC) and 4.42% equal
error rate (EER) in a real-world setup. We demonstrate that Cardiac
Scan is a robust and usable continuous authentication system.
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1 INTRODUCTION
Continuous authentication improves upon one-pass validation by
continuously verifying over the lifetime of a session that the system
is operated by the same user as at initial login. It can prevent access
by adversaries when the legitimate user is away or overwhelmed.
Governments and private companies [14, 15] increasingly demand
more secure authentication, because of credential compromises due
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to weak cryptographic mechanisms (hacking, password theft, etc.)
and user carelessness. In 2014 alone, more than one billion personal
records were illegally accessed including, health, financial, email
and home address data, and other personal information like social
security numbers [85].

Existing solutions for continuous authentication have certain
limitations. Specifically, traditional methods demand the user to
intentionally engage with the authentication system, such as scan a
fingerprint or enter in a password after a certain period. Regardless
of the vulnerability, these methods hurt the usability in practice.
Several studies also have proposed advanced continuous authenti-
cation mechanisms based on the user’s behavioral biometrics, such
as keystroke dynamics and gaze pattern. However, keystroke dy-
namics [63, 73] require the user to keep typing on the keyboard,
while gaze patterns [23, 54] requires the user to face and continu-
ously look at the screen. Other methods, such as continuous face
recognition [9] on Windows 10 Hello [20], are also reported to be
vulnerable to spoofing or replay attacks [1]. Recently, the physio-
logical biometrics-based approaches are emerging for continuous
authentication, such as pulse response [67], however, they all re-
quire the human body to make contact with certain devices.

As a live individual trait, heart-based biometric is unique (i.e.,
distinguishable across subjects), measurable (i.e., hard to hide), non-
volitional (i.e., unknown to the user), secure (i.e., difficult to coun-
terfeit), and present in all living individuals (i.e., intrinsic liveness).
Different from electrocardiogram (ECG) [70], we explore the car-
diac motion, which is a heart-based functional behavior determined
by the intrinsic geometric structure of the heart. We aim to de-
velop a cardiac-motion-based continuous authentication scheme in
a non-contact way. Specifically, there are three challenges involved:
1) how to obtain the high-resolution cardiac motion information
unobtrusively? 2) how to extract invariant geometric-based fea-
tures for each heart with regard to the cardiac motion mechanism?
3) how to examine the usability and security of the continuous
authentication scheme?

To this end, we propose Cardiac Scan, a secure and trustworthy
continuous user authentication scheme via non-contact cardiac
motion sensing. Fig. 1 shows the working paradigm of transforma-
tive Cardiac Scan. The authentic user’s credential is stored in the
database prior to authentication, a new incoming cardiac motion
will be matched to the stored credential to make the decision as to
whether the access request is from an authorized user or a mali-
cious adversary. Specifically, our work focuses on: 1) developing a
smart DC-couple continuous-wave (CW) Doppler radar sensor to
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continuously capture the high-resolution cardiac motion informa-
tion from the distance; 2) identifying fiducial descriptors of cardiac
motion based on the heart geometric characteristics; 3) conducting
intensive evaluations (e.g., accuracy performance, usability and
complex use conditions) to validate its performance and examine
its security against replay attacks. Through a pilot study with 78
subjects, Cardiac Scan achieves 98.61% balanced accuracy (BAC)
and 4.42% equal error rate (EER). All these studies demonstrate
that Cardiac Scan is a robust and usable continuous authentication
system. Moreover, Cardiac Scan can be conveniently integrated with
existing one-pass user verification techniques (e.g., personal identifi-
cation number [PIN], fingerprint, iris scan, and face) to enhance the
continuous authentication capability of existing systems.

In sum, our contribution in this work is two-fold:
1) We explore new cardiac motion-based biometrics for continuous
authentication. Cardiac Scan exploits the unique and non-volitional
components of individual cardiac motion and identifies users in a
non-contact, unobtrusive, and secure manner. This approach holds
the potential to transform existing authentication systems into a
more undeceivable, disclosure-resistant and user-friendly solution.
2) We evaluate Cardiac Scan through a set of multi-scene evalua-
tions, including authentication with unaligned sensors, authentica-
tion with different emotional states, authentication in motion, and
authentication under replay attack.

Figure 1: A novel continuous authentication method using
cardiac motion captured by a non-contact radar.

2 DESIGN CONSIDERATIONS
2.1 Design Goals
A successful biometric system should possess some necessary prop-
erties. When designing our Cardiac Scan system, we have taken
into account the following aspects.
Intrinsic Liveness: An essential requirement for a biometric sys-
tem is intrinsic liveness detection, i.e., it should be able to distin-
guish if the authentication sample is a “live” user or a replay attack.
Cardiac motion exists only in a “live” user and represents heart
deformation when the heart is in contraction and relaxation states.
Unobtrusive Authentication: The authentication system should
identify an authentic user in an unobtrusive way so that the user
has no obligation to change his/her behavior to adapt to the sys-
tem. Continuous authentication further requires the authentication
process to be unobtrusive so that the user does not need to in-
terrupt current work to authenticate. Cardiac Scan can perform
unobtrusive authentication through a human-safe radio signal.
Highly Secure: The biometrics should be highly secure and unique,
making it difficult to be forged and stolen. Cardiac Scan measures

the live cardiac motion, which depends on the cardiac muscle struc-
ture of the user and therefore is impossible to completely mimic.
Cost-effective and Easy-to-Use: Some biometrics seem to have
reliable and robust features, but the information acquisition requires
expensive devices and specific conditions, such as an iris/retina
authentication system. Cardiac Scan uses low-cost off-the-shelf
components to build the radar sensor and is easy to use at a distance
because of the propagation of the radio signal.
Resilient to Background Noise and Use Conditions: The bio-
metric system should also be resilient to background noise and use
conditions, no matter what the surrounding environmental condi-
tions are. Camera-based systems, including face and iris recognition,
usually have deteriorated performance with either too strong or too
weak illuminations. Cardiac Scan uses a radio signal that is robust
to the environmental change and can penetrate through obstacles
to accurately sense the cardiac movement. Also, due to the essence
that the sensing relies on the Doppler effect, static surrounding
materials barely have an impact on the system performance.

2.2 Non-contact Cardiac Motion Sensing
2.2.1 Rationale. This work investigates cardiac motion as a new

biometric to secure user authentication. Cardiac motion is a 3D
automatic heart deformation caused by the self-excitement of the
cardiac muscle [27]. As shown in Fig. 2(a), the human heart contains
two upper cavities (atria) and two bottom chambers (ventricles) [33].
The successive contraction (systole) and relaxation (diastole) of both
atria and ventricles circulate the oxygen-rich blood throughout the
whole human body. The contraction and relaxation comprise the
cardiac motion. In one cardiac cycle, ventricles relax and passively
fill with the blood in approximately 70% of their total volume from
atria through the open mitral valve. Then atria contract with heart
muscles and pump blood. At the same time, ventricles continuously
fill blood with the remaining 20%. (Ventricles, at least, free up 10%
of the volume for the contraction.) After that, ventricles start to
contract with all valves closed, and the blood volume remains un-
changed. When the intraventricular pressures exceed the pressures
within the aorta or pulmonary artery, blood is ejected and the heart
volume reduces rapidly [8].

As shown in Fig. 2(b), one cardiac motion cycle consists of five
distinct stages including: 1) ventricular filling (VF), 2) atrial systole
(AS), 3) isovolumetric ventricular contraction (IC), 4) ventricular
ejection (VE), and 5) isovolumetric ventricular relaxation (IR) [8].
These cycle stages are significantly different in volumes, surface
shape, moving dynamics (speed, acceleration, etc.) and 3D defor-
mation of the heart [12]. These stages vary from person to person
due to the change in size, position, anatomy of the heart, chest
configuration and various other factors [43]. No two persons have
exactly the same heart, blood circulation system and other related
tissues. Therefore, the cardiac motion is a unique identity marker
for each individual [27]. Moreover, since cardiac motion is intrin-
sically connected to multiple biological functions, it is extremely
difficult to counterfeit or to be hidden for a living individual.

2.2.2 Feasibility. Non-contact monitoring of human body mo-
tion, such as respiration and heartbeat rates using a Doppler radar
motion sensor, has gone through a few decades of scientific study
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(a) Heart structure. (b) Cardiac motion stages.

Figure 2: Heart structure and dynamics.

[16, 21, 41, 48, 49]. Efforts have been devoted to the development
of radar front-end hardware, signal processing algorithms, and sys-
tem on-chip/on-board integration. Compared with other techniques
such as non-contact laser vibrometer [72] and infrared imager [53]
that can only detect motion at body surface, it has been shown
that the Doppler radar sensor can directly measure the motion of
internal organs [62] and heart [68, 92]. However, research results
in those works are incomprehensive for a real authentication sys-
tem, e.g., the impact of random body movement is not considered.
Although random body movement and clutter noise still require sig-
nificant efforts to resolve, some progress has been achieved [40, 82]
and preliminary clinical studies have been reported [35]. However,
existing cancellation approaches either compromise the quality of
the baseband signals [40] or require sweeping the carrier frequency
and adjusting the target position [82], which is not applicable to cap-
ture the high-fidelity cardiac motion in a real-world setup. Because
of the sensitivity required for the detection along with difficulty
in maintaining the original motion pattern during demodulation,
most research using biomedical radar sensors have focused on de-
tecting heart rate [49]. Recently, some of our research results have
proved that DC-coupled interferometry radar and Doppler radar
with digital-IF architecture can avoid frequency-selective signal
distortion and thus make it possible to recover accurate motion
patterns using continuous-wave (CW) Doppler radar sensors.

3 CARDIAC SCAN PROTOTYPE
3.1 System Overview
Bymeasuring the signal phase shift caused by physiological motion,
biomedical radar can reveal heartbeat and respiration information.
Compared with conventional biomedical radars that can only mea-
sure the rate of the heartbeat signal, the main novelty of the radar
sensor developed in this work is using distortion-free front-end
architecture and demodulation to measure cardiac motion pattern.
A smart DC-coupled radar architecture was employed in the radar
front-end to eliminate undesired DC offset and preserve the desired
cardiac motion characteristic information.

3.2 Architecture with Dynamic DC Tuning
To monitor cardiac motion pattern, a smart DC-coupled CW radar
sensor was employed by taking advantage of real-time signal pro-
cessing and mixed-signal design in modern devices. For cardiac
motion sensing, the DC offset due to reflection from other parts
of the body not related to cardiopulmonary activities may easily
saturate the receiver and create frequency-dependent distortion,

and is an important factor for the central intelligence unit to handle.
Details of hardware innovation are discussed below.

3.2.1 Smart DC tuning. As shown in Fig. 3, the DC-coupled
adaptive tuning architecture includes RF coarse-tuning and base-
band fine-tuning. For RF tuning, the electronically controlled phase
shifter and attenuator add a portion of the transmitted signal to the
receiver signal to cancel most of the DC offset caused by clutter
reflections. However, due to quadrature imbalance, the phase varia-
tion of the received signals, and the limited resolution of the phase
shifter and the attenuator, the RF tuning cannot completely remove
all the DC offsets. To further eliminate the remaining DC offsets, a
baseband fine-tuning block was implemented to dynamically adjust
the amplifier bias to the desired level that allows the maximum dy-
namic range. With the above DC tuning realized by a smart center
in real time, the radar will precisely measure cardiac motion pattern.
The integration of the DC-tuning technique into portable devices
will be addressed with the help of logic control circuits coordinated
by the I2C bus and CMOS-integrated calibration DACs.

Figure 3: Doppler radar sensor with adaptive DC tuning.
3.2.2 Optimal carrier frequency. Besides manipulating the pen-

etration depth, radar carrier frequency also determines the modula-
tion sensitivity. Experiments were first carried out to compare the
performance of carrier frequencies ranging from 2.4 GHz to 40 GHz.
It should be noted that increasing the carrier frequency beyond 40
GHz may not help because as the wavelength approaches physio-
logical motion amplitude, strong nonlinear phase modulation will
generate harmonic interference [38] .

3.2.3 Electronic beam control. In this work, cardiac sensing will
be realized from different angles to obtain sufficient information
for biometrics applications. Also, multiple radars around a subject
may “probe" cardiac signals simultaneously. To achieve this, it is
essential that a radar can configure the radiation beam to precisely
point at the location of interest. As shown in Fig. 3, digital beam
control was implemented on the radar front-end. Conventional
beamforming systems directly adjust the phase and amplitude of
the signal of each element antenna.We demonstrated that it is much
more convenient to simultaneously adjust the phase and amplitude
in the complex domain than to adjust them separately. For a complex
signal x = exp(−j2π f t) sent into each element antenna (where f
is the signal frequency), a vector multiplier was used to realize
phase and amplitude modulation by first splitting the signal into
in- and out-of-phase components and then by multiplying each
one using a variable gain amplifier. Finally, by adding the amplified
in- and out-of-phase components together, complex modulation to
the original signal can be achieved thus effectively realizing radar
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Figure 4: The flowchart of Cardiac Scan, a heart-biometric-based continuous user authentication system.

beam control. To align the radar beam with the user, a laser pointer
can be used to indicate the beam direction.

4 RADIO SIGNAL PROCESSING SCHEMES
4.1 Scheme Overview
In this section, we elaborate on the radio signal processing schemes
and correspondingly investigate user authentication methods to
achieve secure and usable authentication results. As depicted in Fig.
4, our proposed approach is mainly comprised of three modules.
First, the original sequential signal was preprocessed for noise
reduction. Second, we performed de-noising aware radar signal
demodulation. Third, we extracted fiducial-based descriptors using
heart geometry features. Lastly, we obtained authentication results.
Note that the existing heart-based biometrics, such as ECG, are
recording the electrical activity of the heart, whose descriptors are
extracted on the basis of the QRS complex [10]. As a new biometric
modality, our non-contact cardiac motion is substantially different
from the typical ECG signal in that it is a direct heart motion activity
measured by an RF sensor. Therefore, it is crucial to explore new
approaches in the non-contact cardiac motion authentication. To
the best of our knowledge, no such work exists in the literature.

4.2 Pre-processing
Pre-processing is to reduce the noise level in the cardiac signal
and simultaneously prevent the waveform from distortion. The
noise includes low-band components (e.g., baseline wander), high-
band components (e.g, power-line interference) and unpredictable-
band components (e.g., arbitrary motion in the scene). Considering
diverse and known frequency bands of the noise spectrum, we have
addressed the noise level reduction in two areas: 1) one-pass noise
reduction techniques (e.g., a Butterworth bandpass filter) and 2)
adaptive noise canceling techniques [86] (e.g., a normalized least
mean square adaptive filter [87]). These techniques have also been
successfully applied in bio-artifact reduction [19, 87].

4.3 De-noising-aware Radar Demodulation
A novel signal demodulation is critical for distortion-free cardiac
motion sensing because traditional Doppler radar is optimized
for speed detection, which faces challenges when the movement
pattern has very low frequency or stationary components [93].

4.3.1 Challenges in signal demodulation. The Doppler radar sen-
sor transmits the continuous-wave signal T (t):

T (t) = AT cos(ωt + ϕ(t)). (1)

Then, the received signal is represented as R(t):

R(t) = AR cos[ωt − 4πd0
λ

− 4πx(t)
λ
+ ϕ(t − 2d0

c
)], (2)

whereA is the amplitude, λ is the wavelength. c is the speed of light.
ω represents the angular velocity. ϕ(t) is the time-varying phase.
d0 is the distance between the Doppler radar and the subject. x(t)
denotes the time-varying displacement caused by cardiac motion.
Then two baseband signals, the in-phase signal I (t) and quadrature
signal Q(t) can be derived from R(t) [47]:

I (t) = AI cos[
4πx(t)

λ
+
4πd0
λ

− ϕ(t − 2d0
c

)] + DCI , (3)

Q(t) is the quadrature signal:

Q(t) = AQ sin[4πx(t)
λ
+
4πd0
λ

− ϕ(t − 2d0
c

) + ϕ0)] + DCQ , (4)

where AI and AQ are the amplitude of the in-phase signal and the
quadrature signal, respectively. DCI and DCQ are the DC offsets in
I/Q channels, respectively. ϕ0 is the phase offset between I (t) and
Q(t). The baseband radar signals, I (t) and Q(t), are sampled by NI
USB-6008 at 100 Hz.

For simplicity, we neglect the constant phase offset 4πd0/λ +
ϕ(t − 2d0/c) in Eq. (3) and Eq. (4). We assume that the gain imbal-
ance is 1 (i.e., the ratio ofAI andAQ is 1), and phase imbalance (ϕ0)
is 0. Thus, Eq. (3) and Eq. (4) can be simplified as:{

I (t) = A0cos( 4πx (t )λ ) + DCI
Q(t) = A0sin( 4πx (t )λ ) + DCQ

. (5)

According to trigonometric identities, we can transform Eq. (5) into
Eq. (6)

( I (t) − DCI
A0

)2 + (
Q(t) − DCQ

A0
)2 = 1, (6)

which can be interpreted that the samples of I/Q channels stay on
a circle whose center is (DCI ,DCQ ) with a radius of A0. Then the
least squares optimization [89] is employed to obtain the circle and
obtain the three unknown parameters: DCI , DCQ , and A0.

After identifying the DC component offsets, the displacement sig-
nal x(t) can be derived using the arctangent demodulation method:

x(t) = arctan(
Q(t) − DCQ

I (t) − DCI
) × 4π

λ
. (7)

Traditionally, to detect the weak physiological signal x(t), the
small-angle approach was used [21, 40, 41, 48], which suffers from
two inherent problems. First, when the distance between the tar-
get and the radar sensor changes, the detection sensitivity will
also change, resulting in alternating optimum and null points [21].
Second, nonlinear harmonics and intermodulation products would
appear when movement amplitudes are comparable to the carrier
wavelength [37]. To solve this problems, an arctangent demodula-
tion approach was proposed by calculating arctan[Q (t )

I (t ) ], assuming
DCI and DCQ can be properly calibrated [61]. Unfortunately, a
direct arctangent function has a co-domain range of (− π

2 ,
π
2 ). Once
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the demodulation exceeds this range, phase unwrapping is required,
which is challenging in practical detection when noise is strong and
the movement amplitude is large [29]. This is especially a problem
when random body motion exists, which introduces a significant
phase change that could easily go beyond multiples of 2π .

4.3.2 Phase demodulation solution. To overcome the limit of
arctangent demodulation, we have investigated an extended differ-
entiate and cross-multiply (DACM) algorithm to avoid the phase
unwrapping problem. The algorithm computes a derivative to the
arctangent-demodulated phase information first:

ω(t) = d
dt

[arctan Q(t)
I (t) ] =

I (t) ÛQ(t) − ÛI (t)Q(t)
I (t)2 +Q(t)2

, (8)

where ω(t) is related to the velocity function of the cardiac mo-
tion, and ÛQ(t) and ÛI (t) denote the time derivative of Q(t) and I (t),
respectively. To reconstruct the desired phase information, which
represents cardiac motion, integration can be applied to the above
result. Therefore, the signal phase can be recovered in the digital
domain as:

Φθ [n] =
n∑

k=2

I [k]∆Q[k] − ∆I [k]Q[k]
I2[k] +Q2[k]

, (9)

where I [k] and Q[k] are the discrete samples of the I/Q channel
outputs. ∆I [k] = I [k] − I [k − 1] and ∆Q[k] = Q[k] −Q[k − 1]. The
operation block diagram is also included in the “smart center” of
Fig. 3. By introducing an accumulation procedure, noises can be
effectively suppressed. Once Φθ [n] is obtained, the cardiac motion
x[n] can be linearly obtained based on a single scale calibration.

5 CONTINUOUS AUTHENTICATION
5.1 Heart Geometric Features

5.1.1 Segmentation. To extract the invariant descriptors from
the cardiac motion signal of the subject, we segmented the period-
ical signal sequence into discrete frames. For fiducial descriptors,
there exist literature [3, 44, 50, 64] where multiple cardiac cycles
were used. We have investigated the performance with various
numbers of cardiac motion cycles. Though each segment (see Fig.
5) includes all five heartbeat motion stages, the variations across
individuals within one cardiac cycle may not be sufficient for differ-
entiation. This segmentation with disparate cardiac motion cycles
benefits the signal alignment because it associates the segment with
the physiological cardiac motion in one or multiple cycles.

5.1.2 Fiducial descriptors. The fiducial-based method extracts
intrinsic geometrical descriptors (e.g., temporal, amplitude, area or
angle) from fiducial points in the cardiac motion signal. Specifically,
fiducial points are the biomarkers with physical meanings in clinics
during the cardiac motion cycle. Fiducial points contain the biologi-
cal information that is unique and non-volatile for individuals, and
are also independent of the sensor location or state of the individual
such as anxiety, nervousness, or excitement [28]. On the other hand,
non-fiducial-based methods focus on the non-physical attribute fea-
tures, which fails to reflect the intrinsic geometric features of the
heart. Also, they are computationally demanding [5] and apt to be
interfered with by parameters setting [79], making non-fiducial-
based methods inapplicable for continuous real-time authentication.

In the fiducial-based method, the cardiac displacement signal is well
matched to the cardiac activity rationale in Section 2. The first stage,
Ventricular Filling (VF), is when the semilunar valves (SV) close and
the atrioventricular valves (AV) open. The whole heart is relaxed
and the blood charges into atria as well as ventricles, resulting in
the outward expansion of the heart. The second stage, Atrial Sys-
tole (AS), is when atria contract to pump their contained blood into
ventricles. The heart will contract inward first due to the emptying
of atria. It will expand outward again because the extra blood in
atria is squeezed into ventricles (SV will close to prevent blood from
flowing into arteries). The third stage, Isovolumetric Ventricular
Contraction (IC), is when ventricles begin to contract and SV/AV
close. Since there is no change in volume, no significant displace-
ment occurs. Lastly, Ventricular Ejection (VE), is when SV opens
and ventricles are contracting and forcing blood into arteries. As
a result, the heart will contract inward. During the fifth stage, Iso-
volumetric Ventricular Relaxation (IR), ventricles finish the blood
ejection, stop contracting and begin to relax. This cycle ends and
begins anew.

Figure 5: Segmentation and fiducial points illustration.

Fig. 5 is a complete segment which shows the changes of the
cardiac displacement. Based on the cycle description above, the
signal is typically further split into four sub-frames, each of which
is labeled with the corresponding stage. We will refer to ST and ED
as the starting point and ending point of the segment. The fiducial
points that we plan to select are AFP , ASP and VFP , described as :
AFP: the first maximum point in the segment, which indicates the
end of the VF stage and the onset of the AS period where the atrial
muscles contract to squeeze the blood into the ventricles.
VFP: the second maximum point in the segment, which locates at
the end of the AS stage. The blood flows into the ventricles and
reaches the largest volume.
ASP: the local minimum point betweenAFP andASP . It represents
the end of atria contraction and the start of ventricles expansion.

Table 1 lists the descriptors based on the above fiducial points.
Note that all the time descriptorsTi are normalized by the duration
of one cardiac cycle, such that these descriptors are independent of
heart rate.

Fiducial point extraction is of great importance to accurately
locate the feature point. Due to the potential clutter noise, the radius
of curvature is more robust than the more straight-forward local
extreme point or signal derivatives. Specifically, we selected three
pointsX ,Y andZ with a fixed time interval along the time sequence.
The minimum (maximum) radius of curvature in the corresponding
region is found by maximizing (minimizing) the value of δ using
the vector cross product between the two directed line segments,
as shown in Fig. 6.
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5.2 Continuous Authentication Protocol
One time validation of a user’s identity, referred to as static authenti-
cation, has shown its vulnerability to attacks. Specifically, malicious
adversaries may access the system that has been logged in by an
authentic user when the authentic user is not nearby. Unlike static
authentication, continuous authentication represents a new security
mechanism which continuously monitors the user’s trait and use it
as a basis to re-authenticate periodically throughout the login ses-
sion. Therefore, continuous authentication significantly enhances
the security level of systems. Cardiac Scan enables unobtrusive and
non-contact continuous authentication with the radio frequency
(RF) interrogation, during which RF signals transmit and measure
the human target continuously. By demodulating the received echo
signal, the cardiac motion pattern of the user can be extracted. In
what follows, we will discuss continuous authentication parameters
and three typical scenarios.

Table 1: Fiducial-based descriptors.

List Descriptor Definition
T1 Normalized Time interval between ST and AFP .
T2 Normalized Time interval between AFP and ASP .
T3 Normalized Time interval between ASP and V FP .
T4 Normalized Time interval between V FP and ED .
H1 Displacement difference between ST and AFP .
H2 Displacement difference between AFP and ASP .
H3 Displacement difference between ASP and V FP .
H4 Displacement difference between V FP and ED .

Figure 6: The radius of curvature is calculated as the vector
cross product between the two directed line segments.

5.2.1 Continuous Authentication Parameters. Two parameters,
refreshing interval Tr and negative tolerance threshold Thnt , are
important in continuous authentication, which are unique com-
pared to static authentication.
Refreshing interval Tr : It is defined as the interval between two
consecutive authentications. The appropriate choice of Tr has an
impact on the performance and usability of continuous authentica-
tion. If Tr is too large, malicious adversaries may not be detected
in time, thus may lead to severe security issues. On the other hand,
if Tr is too small, some random activities (e.g., making phone calls,
drinking water, turning around) or rhythmical body movement
(e.g., listening to music) may compromise the system’s recognition
accuracy due to false alarms. Considering these random activi-
ties usually take about several seconds, we have set the refreshing
interval as 5 sec. Note that the refreshing interval should be differ-
entiated from the authentication time Ta . The latter is defined as
the time duration for a single authentication process and will be
discussed in subsection 7.2.
False negative tolerance threshold Thnt : Usability is carefully
considered in continuous authentication to make sure the authentic
user will not frequently be interrupted by mistakenly logging out
of the system. In other words, we aim to avoid the false negative

event, which is the incorrect classification of an authentic user as
an adversary due to motion artifacts. We noticed that false negative
events are rare and appear sparsely in Cardiac Scan, which means
there is a low probability that more than one “classified as adver-
sary" event occurs consecutively when the authentic user is present.
On the other hand, when the adversary is present, the “classified
as adversary" event will occur consecutively. After observing such
phenomena, we define the false negative tolerance threshold as the
number of permitted consecutive “classified as adversary" events.
Empirically, the value for this threshold can be 1 or 2. The larger
value setting is more tolerant to false negative and the smaller value
setting is more sensitive to risk. In the following scenarios, we adopt
the threshold setting of 1 because the usability of continuous au-
thentication will not be compromised given the low false negative
rate of Cardiac Scan. In the mean time, this setting maintains a high
sensitivity to unauthorized access.

5.2.2 Continuous Authentication Scenarios. We devise three sce-
narios in particular for Cardiac Scan enabled continuous authen-
tication, including Authentic user is present, Authentic user leaves,
and Adversary is present.
Authentic user is present: When an authentic user has logged
into the system and is present within the range of the radar sensor,
Cardiac Scan is able to detect whether cardiac motions are from the
same person who was initially authorized. Thus, the permission of
using the system for the user can be continuously granted without
any interruption, unless the user logs off intentionally or leaves,
as shown in Fig. 7 (a). By designing the false negative tolerance,
Cardiac Scan allows one single “classified as adversary" event given
that the classification results just before and after this event are
both positive as “classified as authentic user". In case two or more
than two consecutive “classified as adversary" events occur, though
it has a low probability, Cardiac Scan will log out the initial user.
Under such a circumstance, the user has to be re-authenticated by
confirming his identity again using other complementary existing
biometrics approaches, such as PIN, or fingerprint. Note that, for
the scenario which has a specific requirement, the system tolerance
level can be adjusted by changing the value of Thnt .
Authentic user leaves:When the authentic user is away from the
system and the radar sensor has detected the user’s absence, as
shown in Fig. 7 (b), Cardiac Scan will first check whether the user
has logged off and the system has been locked up. If so, Cardiac
Scan will classify the user’s absence as a legitimate action and no
further action needs to be taken. Otherwise, the system is at risk of
unauthorized access, hence necessary actions such as locking the
session, logging out the original user, or notifying the administra-
tor [67], which depend on the system policy, have to be considered
to address the security risks.
Adversary is present: In this scenario, an unauthorized adversary
(the dark one in Fig. 7 (c)) is present and close to the system, and
the system has been logged in initially by an authentic user. This
can happen when the authentic user is under the coercion attack
and being forced to be present or the adversary takes over the
system before the system automatically locks upwhen the authentic
user leaves. Therefore, immediate action is demanded to keep the
adversary outside the system and prevent the leakage of sensitive
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information. In this case, Cardiac Scan will immediately log out the
initial user and lock up the system once Thnt is exceeded.

Figure 7: Three scenarios: (a) Authentic user is present, the
system remains unlocked. (b) Authentic user leaves, the sys-
tem locks up. (c) Adversary is present, the system locks up.
Green screen: system is unlocked. Red screen: locked.

6 EXPERIMENTS AND VALIDATION
6.1 Experimental Setting
We conducted a pilot study to prove identifiability in cardiac motion.
The Cardiac Scan system has been developed for the study, which
works at the frequency of 2.4 GHz with the bandwidth of 5 kHz.
The sampling frequency of 40 Hz. Though WiFi and Bluetooth also
work at 2.4 GHz, our cardiac motion signal will not be interfered
with because the motion information to be detected is only a few
Hertz, which means both received signals and transmitted signals
are only separated by a few Hertz, while other signals from poten-
tial interferences (e.g., WiFi and Bluetooth) have a much higher
frequency separation and are conveniently rejected by the base-
band signals. In other words, both transmitted signals and received
signals are “coherent", whereas other signals are not coherent with
transmitted signals. The Doppler radar has two antennas with the
beam width of 45 degrees, i.e., one for transmitter and one for re-
ceiver. The power consumption of our radar is only 650 mW with
5 V voltage and 130 mA current. Note the transmission power level
is within the human safety range because it is almost a thousand
times less than the peak power of an ordinary global system for
mobile communications (GSM) cellphone. The experimental setup
is shown in Fig. 8, a subject sat in a chair in a relaxed condition.
The customized Doppler radar sensor was placed in front of the
subject with a distance of 1 m. A smartphone was placed close to
a radar to record the subject identity and label the ground truth.
The radar signal demodulation is done in a laptop equipped with
Intel i7-3770 CPU @ 3.4 GHz. Motion compensation was carried
out for the baseband complex signal obtained from subjects who
breathed normally but randomly moved their body. A pulsed sensor
(UFI 1010 pulse transducer) was attached to the subject’s finger to
provide a heartbeat reference. A chest belt (UFI 1132 piezo-electric
respiration transducer) was used to provide a respiration reference.

6.2 Data Collection
As described above, our project evaluation relies on a strategically
developed experiment that will involve a cohort of participants. We
hold an existing active IRB protocol (# 502984/503753, Texas Tech
University) that allows for recording bodymotion from adult human
participants user identification. All the evaluations tightly follow
the rule of IRB regulation. Seventy eight healthy subjects (46 males
and 32 females) with their ages in the range of 16 - 54 participated in

Figure 8: Experimental setup for cardiac motion sensing. A
subject is sitting one meter away from both radar sensors, a
chest belt and a pulsed sensor is attached to the subject.

the study. Their weights are between 42 - 83 kg. None of them have
any heart disease. Each subject has 20 trials, and each trial lasts eight
seconds including 8 to 10 cardiac cycles. In each trial, all subjects are
required to sit in front of the radar, unless specified in the evaluation,
to get the cardiac motion signals collected. Therefore, in total there
are 20 sets of data containing 14, 886 cardiac cycle samples in the
evaluation. Currently, our work focuses on healthy people, the
evaluation on subjects with pathologies or heart surgeries (e.g.,
heart diseases) is out of the scope of this work.

6.3 User Classification
To prove the identifiability in cardiacmotion, dynamic timewarping
(DTW) [81] is used as the similaritymatchingmetric. Support vector
machine (SVM) with a radial basis function (RBF) kernel classifier
and 10-fold cross validation were employed for the 20 sets of data
in the evaluation, among which 18 are for the training and 2 for
the testing. The choice of the classifier will be further discussed in
Section 7.1.4. In authentication, initially, the owner’s cardiac motion
template is stored in the system. Then, unknown users attempt to
access the system by keeping still in front of the radar. Since there
are total 78 participants, and each participant acts as an owner once
while remaining participants act as attackers.

6.4 Body Movement Interference Suppression
Compared with cardiac motion, body movement may result in a
large perturbation to the output DC offset, and thus confuse the
radar demodulation algorithm or even saturate the baseband circuit.
In the experiment, the time-domain signal had fluctuations due to
the random body motion. As a result, strong near-DC spectral
components were observed and the heartbeat was invisible in the
spectrum. Simply reducing the front-end gain, as adopted in some
communication systems, does not work because the radar will lose
the sensitivity to the weak cardiac motion signal.

Because biomedical radar can detect cardiac motion from four
sides of a human body, multiple radars can be installed at differ-
ent locations around the human body to cancel out random body
motion based on the different patterns of body motion and car-
diac motion [40]. In the view of the two radars, the heartbeat-and-
respiration-caused body movements are in phase, while the random
body movements are out of phase. In the current setting, two radars
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are detecting from the front and the back of the body. When the
body is drifting toward one radar, it is moving away from the other;
whereas heartbeat presents similar expansion/contraction patterns
to the two radars [39]. Therefore, random body motion creates an
opposite Doppler frequency shift to the signals of the radars, while
cardiac motion leads to the same polarity. By properly combining
the low-speed baseband signals from the radars, one type of motion
can be canceled and the other type will be enhanced [40]. Note that
although the random body movement can exist in the direction per-
pendicular to the radar direction, our body movement cancellation
method still works effectively because only the movement in the
radar direction is critical for the cardiac motion detection.

6.5 Signal Validation
We verified the validity of the collected data from our system.When
the radar sensor detects the cardiac motion, the fingertip sensor
simultaneously collects a signal as the ground truth signal. Both the
radar sensor and fingertip pulse sensor were sampled at 40 Hz. We
observed that the cardiac motion cycles are well aligned, each of
which closely match the peaks in the fingertip signal. So we verified
that our system could accurately detect the cardiac motion signal
in a non-contact way.

7 EVALUATION RESULTS
As a potential breakthrough technology, it is necessary to evaluate
the performance, flexibility, and vulnerabilities in practice of Car-
diac Scan. Note that all the performance results are obtained after
random body movement suppression except the one specified as
“before random body movement suppression" in the evaluation of
subjects in motion. We employed several statistics to describe the
performance of Cardiac Scan.

7.1 Accuracy
7.1.1 Balanced Accuracy and F-measure. We provided the F-

measure accuracy (F1 score) and balanced accuracy (BAC) for the
accuracy measurement, both of which are non-sensitive to class
distribution and can avoid misleading accuracy measurement when
the true class distribution is unbalanced. F1 score is known as the
harmonic mean of precision and recall, precision p is the number of
true positive (TP) divided by the number of positive calls (TP+FP)
while recall r (a.k.a. true positive rate) is the number of true positive
(TP) divided by the number of condition positives (TP+FN) where
FP is false positive and FN is false negative. F1 score reaches its best
value at 1 and worst at 0. Simply, F1 score is defined as follows:

F1(%) = 2 · precision · recall
precision + recall

=
2TP

2TP + FP + FN
. (10)

And BAC is the equal combination of true positive rate (TPR) and
true negative rate (TNR), which is defined as:

BAC(%) = 0.5 ∗TPR + 0.5 ∗TNR

=
0.5 ∗TP
TP + FN

+
0.5 ∗TN
TN + FP

,
(11)

where TN is true negative.
Table 2 shows the average F1 and BAC accuracies of the authen-

tication with different configurations. BAC achieve 95.56%, 97.27%
and 98.61% with the standard deviation (STD) of 0.92%, 0.65% and

Table 2: Accuracy comparison for different cardiac cycles.

1 cycle 2 cycles 4 cycles
F1 (%) 95.56 97.27 98.61

BAC (%) 95.56 ± 0.92 97.27±0.65 98.61±0.38

0.38% for 1 cycle, 2 cycles and 4 cycles, respectively. F1 values are
exactly mean values of BAC, which are 95.56%, 97.27% and 98.61%
for 1 cycle, 2 cycles and 4 cycles. The results indicate that the in-
crease of segment length improves accuracies. Furthermore, the
performance benefits from the longer segment length and achieves
the best accuracy of 98.61%. Note that the false positive events are
not produced by the same pairs.

Figure 9: The average ROC curves with AUC of 78 subjects
with different number of cardiac cycles.

7.1.2 Receiver Operating Characteristic. Receiver operating char-
acteristic curve is created by plotting the true positive rate (TPR)
against the false positive rate (FPR) at various threshold settings,
which illustrates the performance of a binary classifier system as its
discrimination threshold is varied. Fig. 9 depicts the average ROC
curves of 78 subjects with different segment lengths. The signal
with 4 cycles exhibits the best performance among three different
segmentation configurations, which is consistent with the results
of BAC and F1. Specifically, the corresponding area-under-curve
(AUC) for each curve is also calculated as 98.38%, 97.13% and 95.75%
for signals with 4 cycles, 2 cycles and 1 cycle, respectively.

Figure 10: The EERwith a different number of cardiac cycles.
Four cardiac cycles configuration has the lowest EER.

7.1.3 Equal Error Rate. The equal error rate (EER) is a perfor-
mance metric for authentication systems. It is a rate when the
operating threshold for the accept and reject decision is adjusted
such that the acceptance error (false positive rate, FPR) and rejec-
tion error (false negative rate, FNR) becomes equal. The lower the
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95.85±0.92
97.04±0.66 97.26±0.59

98.53±0.38 98.62±0.39 98.57±0.38

Figure 11: The balanced accuracy of 78 subjects with differ-
ent authentication time. Authentication with 4 sec duration
is the optimal choice.

equal error rate value, the higher the accuracy. Fig. 10 depicts the
EER of 78 subjects with different segment lengths. The mean of
EER is 10.37%, 8.79% and 4.42% for 1, 2, and 4 cycles, respectively.

Table 3: The different classifiers comparison.

kNN SVM (linear) SVM (polynomial) SVM (RBF)
BAC (%) 90.85 95.17 96.65 98.61
EER (%) 12.27 9.13 6.39 4.42

7.1.4 Classifier Impact. We compared two different classifica-
tion techniques to select the best classifier for our application,
including support vector machine (SVM) and k nearest neighbors
(kNN). A linear, a polynomial, and a radial basis function (RBF)
kernel are adopted for SVM. Parameters of each classifier are tuned
to achieve the best performance. The number of nearest neighbors
k = 4, and γ andC of RBF function are 0.001 and 10000, respectively.
Four cycles of cardiac motion are employed in this evaluation. The
BAC and EER results are shown in Table 3. KNN has the lowest BAC
of 90.85% and highest EER of 12.27%. SVM with RBF kernel has the
highest BAC of 98.61% and lowest EER of 4.42%. SVM with linear
and polynomial kernel have BAC of 95.17% and 96.65%, EER of 9.13%
and 6.39%. The SVM with RBF kernel showed the best performance,
which will be adopted in this paper for the classification.

7.2 Authentication Time
Another important performance metric for the user authentica-
tion system is the authentication time. Generally, a practical user
authentication mechanism should not only be accurate in iden-
tifying the legitimate owners and the invalid attackers, but also
time-efficient in processing authentication. We specifically defined
the authentication time in terms of the total time elapsed, Ta , to
make a final prediction for each user access attempt:

Ta = Tcardiac_motion_sensinд +Tprocessinд , (12)

where Tcardiac_motion_sensinд is the minimum time that Cardiac
Scan needs to collect the cardiac motion signals with the smart radar
device. This depends on the number of cardiac cycles required to
identify users. Tprocessinд is the time needed to process cardiac
motion signals, including demodulation, denoise, feature extraction
and user authentication.

To evaluate the authentication time efficiency, we applied dif-
ferent time restrictions on authentication time. Twenty subjects
repeated the experiment with six different duration setups from 1 s
to 6 s with increments of 1 s. The balanced accuracy with different
authentication time is illustrated in Fig. 11. The error bars are the

STD of BAC among 78 subjects. We observed that the authenti-
cation duration less than 3 sec are not long enough for reliable
authentication, with low BAC (95.85% for 1 s, 97.04% for 2 s, 97.26%
for 3 s) and high STD (0.92% for 1 s, 0.66% for 2 s, 0.59% for 3 s). The
performance is improved when the duration is increased to 4 s with
BAC of 98.53% and STD of 0.38%. Generally speaking, the accuracy
increases with the longer authentication time. However, when the
duration is greater than 4 s, the performance improvement is not
significant. To be specific, BAC of 98.62% and 98.57%, and STD of
0.39% and 0.38% are for 5s and 6s, respectively.

We also provided the growth rate for different authentication
duration to find the optimal duration in Table 4. The growth rate is
calculated by the accuracy in the current duration and the previous
duration. The growth rates for each second are 1.23%, 0.23%, 1.29%,
0.09% and -0.05%. Note that the duration of 4 s has the largest
growth rate, and seems to be a significant turning point.

Table 4: The BAC and growth rate.

Duration 1 sec 2 sec 3 sec 4 sec 5 sec 6 sec
BAC (%) 95.85 97.04 97.26 98.53 98.62 98.57

Growth (%) - 1.23 0.23 1.29 0.09 -0.05

7.3 Evaluation in Complex Conditions
Another critical evaluation aspect is user experience. Typically, the
user experience can be defined as: a person’s perceptions and re-
sponses that result from the use and/or anticipated use of a product,
system or service [36]. Therefore, the evaluation of user experi-
ence mainly focuses on the attitude/feeling of a person towards
a product/system during its intended practical use. Traditionally,
several methods have been widely adopted to maximally collect
the feedback of a person on the product/system, such as interview,
observation or survey. One unique aspect of the Cardiac Scan from
many conventional authentication methods is that it is completely
non-contact and passive to the user. Under normal conditions, the
cardiac motion is not controllable or visible (even though it may be
felt) to the user, which means that in most cases, the user will not
be conscious of the interaction with the system in daily use. We
also plan to evaluate usability with four variations: sensor distance,
sensor alignment, emotional state, and subject in motion.

Figure 12: The ROC of different radar distances.

Distance Impact:We evaluated the impact of distance on the accu-
racy of cardiac motion authentication. The distance is defined as the
length between the subject and the antenna of Doppler radar sensor.
To make the Doppler radar sensor safe for human applications, we
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have restricted the transmission power, so that the effective dis-
tance for the Doppler radar is 2 meters. Based on our observation,
the amplitude of the baseband radar I/Q signal is inversely propor-
tional to the distance between the subject and Doppler radar sensor.
When the subject is far away from the Doppler radar sensor, the
amplitude diminishes because it is difficult for the sensor to capture
the slight cardiac motion. Fig. 12 illustrates the ROC of different
radar distance comparison. Not surprisingly, the closest distance of
1 m has the best recognition performance. The accuracy decreases
with the increasing distance between radar and subject.

30

20

10

0

Figure 13: The BAC comparison for misalignment.

Location Sensitivity: As part of our understanding of how well
non-contact cardiac motion can be utilized for identifying individu-
als, we investigated the relationship between various radar sensor
orientation and identification performance. The hypothesis is that
the extracted cardiac feature is insensitive to direction or orienta-
tion of the sensor beam. To test this hypothesis, we have collected
a set of cardiac motion signals with a certain degree (10∼30◦) of
orientation misalignment. Specifically, multiple radar sensors were
used during the collection. One was placed in front of the subject,
and others were placed out of alignment. The BAC comparison of
each cycle length for different orientation misalignment is shown
in Fig. 13. The BAC results for disparate misalignment with 0◦,
10◦, 20◦, 30◦ are stable as observed from the figure which supports
our argument that the extracted cardiac feature is insensitive to
direction or orientation of the sensor beam.
Emotional State: A user’s emotional state can change and is un-
known to the identification system. The changes in emotional state
will affect the cardiac motion (e.g, noise, heartbeat strength/cycle).
The hypothesis is that the individualized features in cardiac motion
are invariant to the user’s emotional state. Research in heart-based
biometrics [26, 28, 59] have demonstrated promising results for this
hypothesis. To prove the usability and stability of Cardiac Scan
under an unknown emotional state, we have conducted a set of
experiments examining subjects in different emotional states. We
have designated a special protocol to collect cardiac motion signals
from low stress to high stress conditions. Specifically, selected sub-
jects will perform two different task groups before collecting the
data. The low stress tasks are meditation and listening to peaceful
music. The high stress tasks are reading aloud, mathematical ma-
nipulation, driving in virtual reality, and intensive exercise. The
BAC and EER comparison among all emotional tasks are shown
in Fig. 14. The red bars with texture represent BAC and blue bars
represent EER. The BAC and EER exhibit consistent performance
across six different activities, including low stress and high stress
conditions, which verifies that the emotional state will not impact
the system performance.

Subject in Motion: Body movement may result in large perturba-
tions to the output DC offset, and thus confuse the radar demodula-
tion algorithm or even saturate the baseband circuit as described in
detail in subsection 6.4. In this case, the recognition accuracy may
be compromised, thus, the present user will experience logging out
of the system. We investigated random movements in four activi-
ties ranging from tiny to large-range motions, including writing,
drinking water, making phone calls, and one rhythmical movement
when listening to music, to show the impact of body movement
to the system performance. Twenty subjects participated in the
experiment and each one performed all four body movement activ-
ities 10 times, a total of 200 trials for each activity are performed.
Two radars are deployed in the front and at the back of the human
body, and the measurement has to be performed simultaneously
from both sides to cancel out the random frequency drift. With the
current system setting, we evaluated how many times the authentic
user is mis-classified as an unauthorized user before and after the
body movement suppression approach described in subsection 6.4
is applied. The comparison results are shown in Fig. 15. Before
body movement suppression, the mis-classified occurrence is 7 for
making a phone call, 6 for drinking water, 5 for writing, and 18 for
rhythmic movement. The rhythmic movement is more readily mis-
classified because it is periodic to some extent. The corresponding
results after suppression are reduced to 2 for making a phone call,
1 for drinking water, 1 for writing, and 3 for rhythmic movement.

95.46±3.82 92.85±3.8794.69±3.78 93.72±3.90 94.79±3.84 93.60±3.83

8.37±3.11 8.71±2.92 9.03±2.84 8.95±2.98 8.68±3.05 9.24±2.87

Meditation    Music      Reading      Math    Driving_VR  Exercise

Figure 14: The comparison among all emotional tasks.

7.4 Continuous Authentication Stability
Besides maintaining a high true positive and true negative rate for
authentication, we are particularly interested in low frequency false
negative events that mis-classify an authentic user as an adversary
in continuous authentication. As discussed in section 5.2.2, a usable
continuous authentication system should always grant an access
right to the authentic user as long as he/she is using the system.
Otherwise, it is inconvenient even impossible to use the system if
the user is being interrupted and asked to login again frequently.
We conducted an evaluation on a continuous authentication ses-
sion with four cardiac cycles setting. Under such configuration,
the mean of false negative rate is as low as 0.4%. All 78 subjects
participated in this evaluation and each session for each user lasts
40 minutes. Specifically, subject in turn acts as the user to login
to the system and sit in front the system, browsing webpages or
reading papers, until 40 minutes are reached or be logged out by
the continuous authentication system. Not surprisingly, none of the
subjects is forced to log out of the system due to a false negative,
which is attributed to our continuous authentication protocol and
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parameters setting to maintain a satisfactory usability as described
in Section 5.2.2.

Figure 15: Body movement suppression before and after.

7.5 Longitudinal Study
It is important to prove the permanence of biometrics [30]. The
permanence of heart-based biometrics was discussed in early ex-
periments in many short-term studies [4, 25, 55]. In addition, each
cardiac motion is independent, which means a prior result has
no impact on the current result, so subsequent sessions study in
short-term periods is not necessary. However, there are currently
no longitudinal studies that establish this long-term persistence
in any heart-based biometrics. Our generated dataset has included
multiple sessions as part of a longitudinal approach to establish a
baseline comparison of long-term persistence. 40 subjects (22 males
and 18 females) participated in the longitudinal study lasting two
months. Particularly, this study has two phases: enrollment phase
and authentication phase. In the enrollment phase, training data
were collected for each subject at the first day of this longitudi-
nal study. Each subject finishes 20 trials in data collection events
with the duration of each trial set as eight seconds. After that, the
long-term authentication phase is carried out in the following two
months. Each subject performed 20 authentication trials and each
authentication duration is four seconds in this study. The BAC
measurement is depicted in Fig. 16. In the 60-day duration, mean
values of BAC measurement are between 98% and 99%, STDs are
between 0.37 and 0.39.We concluded the BAC has no significant per-
formance decreasing or ascending tendency, which demonstrates
cardiac motion is robust against time change.

8 VULNERABILITY STUDY
Investigating the vulnerability of Cardiac Scan is crucial. Although
cardiac motion is invisible and might possess better safety and se-
curity than other authentication approaches (e.g, PIN, fingerprint),
it could become fallible under direct or spoofing attacks [51]. One
immediate attack approach is the presentation of human charac-
teristics to the acquisition device, including different living traits
(i.e., zero-effort impostor attempts that try to take advantage of the
false acceptance rate (FAR) of biometric systems) [31].

8.1 Replay Attack
One major risk of using biometrics is the danger that the biometric
token can be intercepted and replayed by an unauthorized party.
Compared to visual-based still biometrics (face/fingerprint/iris),
the cardiac signal is more complex and dynamic to fake or repli-
cate. However, there is still a chance to compromise cardiac sig-
nal under some extreme scenarios. Recently, Eberz et al. used a

Figure 16: The 2-month longitudinal BAC performance.
hardware-based arbitrary waveform generator (AWG) and a sound
card based AWG software to encode and emulate a set of pulse
signals for attacking heart-based biometrics on the Nymi band [22].
Attackers might also hack into the database and obtain cardiac
motion patterns or engineer the same cardiac motion sensing de-
vice to extract a user’s cardiac signals. This work is to prove the
possibility of a replay attack on Cardiac Scan if a legitimate user’s
cardiac signals are obtained by attackers. Our team has investigated
the method of synthesizing cardiac motion and developed a pro-
grammable actuator to imitate the cardiac motion. As shown in Fig.
17, a linear actuator (ZABER TNA08A50) and a linear translational
stage (i.e., ZABER TSB28-1) were placed 30 cm from the cardiac
motion-sensing device. The actuator was programmed to perform
a harmonic back-and-forth motion toward the radar for mimicking
cardiac motion patterns.

8.2 Anti-Spoofing: Liveness Artifacts
Our team has also investigated a set of anti-spoofing approaches
against a replay attack. The general idea of anti-spoofing is liveness
detection [52, 80]. Liveness detection has been applied to existing
biometrics systems by using affiliated living traits of humans by
considering that it is relatively challenging to emulate multiple
human traits at the same time during one spoofing attack section.
For example, Pan et al. proposed the method to extract liveness
information through eye blinks in face recognition [60]. Wei et al.
detected counterfeit iris through texture analysis [84]. In this work,
we have exploited the uniqueness of living traits in human cardiac
motion to defend the above adversarial model. Specifically, we have
tackled this challenge from two dimensions: hardware-based and
software-based approaches. First, we integrated assisted sensors in
Cardiac Scan, so that we can leverage additional information from
these sensors to examine the legitimacy of subjects and capture the
characteristics of multi-dimensional cardiac motions for liveness
simultaneously. Specifically, as proposed in Section 6.4, the system
employed multi-channel radars for noise reduction. Since the lin-
ear actuator only moves in rectilinear directions, the direction of
arrival (DoA) [46] measurements with the linear actuator on these
radars are different from DoA measured with real cardiac motion.
Second, we have investigated software-based approaches. Because
the sensor data from a live subject inevitably include vital sign (e.g.,
respiration) and other motion artifacts (e.g., body sway). These
artifacts are not stored in the system database as credentials, so
they are unable to be replicated and emulated for attack. Utilizing
these vital sign detection and motion artifacts, liveness detection
is conducted against the replay attack [26]. We programmed the
actuator working with different moving amplitudes and frequencies
to imitate cardiac motions of 12 subjects. All replay attacks were
rejected by our liveness detection method.
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Figure 17: A linear actuator imitates cardiac motion.

9 RELATEDWORK
Heart-based Identification:Heart-based identification has a long
and rich research history in biometrics. There is sizable literature
on user identification by analyzing heart-based signals. The most
studied heart biosignals in identification application are the multi-
lead electrocardiogram (ECG) body signals. Singh used both the
analytical method of extracting fiducial features and the appearance
method of extracting morphological features from the ECG trace for
individual identification. The linear projection to a low-dimensional
subspace is later applied to select the most significant features [74].
Zhao et al. extracted ECG feature for a human identification system
by decomposing ECG signal into intrinsic mode functions using
ensemble empirical mode decomposition [91]. Singh et al. delin-
eated ECG waveform and extracted end fiducials from the heart-
beat for individual authentication. The system is also evaluated in
combination with face and fingerprint biometrics [75]. Silva et al.
collected ECG from fingers for user authentication [18]. Safie et al.
generated ECG features for authentication by using a pulse active
ratio (PAR) technique [70]. To improve usability, other heart-related
biosignals, such as Photoplethysmogram (PPG) [71, 78, 88], carotid
pulse [17, 32], and finger pulse response [67], were investigated
for human identification. Recently, there are some off-the-shelf
user authentication products (e.g., the Nymi band [57]) using heart
signatures from wrist pulse signals. However, these biosignals are
not related to cardiac motion, in which case indirect or incomplete
cardiac characterization will compromise the advantages of cardiac
motion as a biometric. Moreover, these biosignals have to be ob-
tained through skin contact, which is inconvenient and limits their
applications for continuous authentication.
Continuous User Authentication:Most user authentication pro-
cedures, such as fingerprint or facial identification, only demand
a one-pass session, which enables imposters to access the system
until the user logs out. To address this security flaw, methods of
continuous user authentication are explored. There are three cat-
egories. One category is to use soft biometric traits. Niinuma et
al. used the color of user’s clothing and facial skin for continuous
monitoring [56]. This approach is readily counterfeited to confuse
the system. The second category is to use behavioral biometrics.
Keystroke dynamics, especially the rollover pattern, have been
used for continuous authentication (e.g., Pinto et al. [63], Shepherd
[73], Ali et al. [6]). Saevanee et al. utilize a text-based multimodal
biometric including linguistic analysis, keystroke dynamics and
behavioural profiling [69]. Behavioral screentouch features have

also been explored for continuous authentication (e.g., Frank et al.
[24] and Chan et al. [13]). Some studies leveraged eye movement
biometrics (e.g., Eberz et al. [23], Mock et al. [54] and Song et al.
[77]). Sitova et al. used hand gestures for continuous smartphone
authentication [76], however, these methods require users to be
obligated to continuously interact with systems for authentication.
Khan et al. developed an implicit authentication (IA) framework for
Android smartphone based on behavioral biometrics [34], yet there
is no new biometrics proposed in this work. The third category is
to use physiological biometrics. Rasmussen et al. utilized human
body pulse-response as a continuous authenticationmechanism[67].
However, this method demands the human body to make contact
with electrodes, which is not user-friendly.
Radio-based Human Sensing: In recent years, there is a large
wave of research work on radio-based (e.g., WiFi) human sensing
applications. Pu et al. investigated gesture recognition by using
radio signals [66]. Wang et al. studied radio signal analysis for peo-
ple localization and motion tracking [83]. Li and Zhu explored the
possibility of extracting fine-grained gait parameters from radio
signals [45]. Adib et al. showed that a radio-based sensing system
can collect physiological information, such as respiration, heartbeat,
for health monitoring [2]. Obeid et al. obtained heart rate and heart
rate variability (HRV) via microwave Doppler radar [58]. Boric et
al. separated two subjects through multiple antenna systems [11].
Zhao et al. proposed EQ-Radio to infer a person’s emotions from
RF signals reflected off the body [90]. Scientists at Argonne Na-
tional Laboratory have devised a millimeter-wave (mmW) system
to remotely measure heartbeat, respiration and body motion [7].
However, little work exists for radio-based sensing identification.
Identification is very challenging because it requires obtaining high-
fidelity biometric information through non-contact radio sensing.

10 CONCLUSION AND FUTUREWORK
Existing biometric-based authentication systems are far from sat-
isfactory. In this paper, we introduced a novel biometric system,
Cardiac Scan, for non-contact continuous authentication. Specif-
ically, Cardiac Scan can measure the unique cardiac motion of
individuals with regard to the cardiac moving dynamics (e.g., speed,
acceleration, etc.) and heart-blood circulation functionality in indi-
viduals. The system is unobtrusive, difficult to counterfeit, and easy
to use. Our pilot study with 78 subjects showed that the system has
a high balanced accuracy and low equal error rate. We evaluated
the system in different complex conditions. As demonstrated in the
longitudinal study, the cardiac motion biometric is robust

In the future work, we plan to evaluate Cardiac Scan with people
of cardiovascular diseases, such as cardiac arrhythmia or using a
cardiac pacemaker. Also, other methods, such as wavelet transfor-
mation [42] and area calculation upon phase portraits [65], will be
further explored improve the system accuracy.
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