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ABSTRACT
Temperature sensor is one of the most widespread technologies
in the IoT era. Wireless temperature monitoring systems are con-
venient to deploy and can drive mass applications in the fields of
smart home, transportation and logistics. Currently, wireless tem-
perature monitoring products are based on microelectronic and
semiconductor components, which are not cost-effective (e.g., a few
dollars) and more importantly, generate electronic wastes. In this
work, we present ThermoWave, a new paradigm of wireless tem-
perature monitoring that is ecological, battery-less, and ultra-low
cost. Specifically, ThermoWave is on the basis of the thermal scat-
tering effect on millimeter-wave (mmWave) signals. Specifically,
cholesteryl materials align their molecular patterns at different en-
vironmental temperatures, and this temperature-induced pattern
change will be modulated and sensed by the scattered mmWave
signals. There are three functional modules in the ThermoWave
system. The ThermoTag is a cholesteryl material inked film or pa-
per tag that can be conveniently attached to the object of interest
to monitor temperature changes. Each ThermoTag costs less than
0.01 dollars. The temperature modulated mmWave scattering will
be received by a mmWave-radar based ThermoScanner and de-
modulated by a software-based temperature decoder ThermoSense,
which includes a model-based method (i.e., ThermoDot) for point
temperature estimation and a data-driven method (i.e., ThermoNet)
for thermal imaging. We prototype and evaluate the ThermoWave
system performance in both controlled and real-world setups. Ex-
perimental results show that the ThermoWave achieves the preci-
sion of ±1.0°F in the range of 30°F to 120°F in a controlled setup. We
also investigate the performance in real-world applications, and
the ThermoWave can reach the ±3.0°F precision in the temperature
estimation. We also test and discuss sustainability, durability, ro-
bustness, and cost-effectiveness of the ThermoWave in both design
and experiments.

CCS CONCEPTS
•Human-centered computing→Ubiquitous andmobile com-
puting; • Computer systems organization → Embedded and
cyber-physical systems.
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1 INTRODUCTION
Temperature sensors are one of the most in-demand IoT technolo-
gies to monitor physical and environmental conditions in daily-life
applications. For instance, temperature-sensitive products, includ-
ing most foods and medicines, are required to be in a temperature-
controlled environment to maintain the best possible quality in the
storage and transportation [1–4]. Due to packaging and mobility
considerations, wireless temperature systems are the essential so-
lution to monitor thermal conditions and protect package integrity
and quality in practice. In the landscape of temperature monitoring
system markets, the wireless temperature sensor segment grows at
the highest rate—15.09 million units generated in 2019 and is expect-
ing to reach 23.45 billion units by 2025 [5–8]. Currently, updating
the existing infrastructure to support low-cost and ecological wire-
less temperature monitoring has been the primary trend impacting
multiple industries, such as smart cities and cold chain logistics [9].

There is a set of rich literature and commercial products about
wireless temperature monitoring technologies developed toward
two directions (i.e., wireless temperature sensors and thermal-
imaging devices). Wireless temperature sensor is often made into
tags with thermal-electric temperature sensors [10–12]. Unfortu-
nately, such technology associates with high cost, harms environ-
ment, and lacks thermal imaging capability. On the other side,
thermal imaging devices read temperature distribution across space
in front of the sensor [13, 14]. However, such mechanism fails to
read temperature from target object with as little as a thin sheet of
paper in between. Given the fact that temperature monitoring is a
high demand industry that impacts every second of our daily life, a
more powerful wireless temperature sensing paradigm is in urgent
need for future temperature monitoring applications in scientific
(e.g., material research), industrial (e.g., smart city), and medical
fields (e.g., body temperature sensing).

In this study, we explore and unveil a novel material mediated
wireless temperature sensing technology, using mmWave sensing.
This technology aims to empower extremely low-cost (e.g., under 1
cent per sensor), flexible (e.g., soft sensor material), and ecological
(e.g., environmentally friendly materials) temperature monitoring
for both dot-wise and fine-grained thermal imaging results under
NLOS scenario. The design rationale bases on cholesteryl material’s
thermal scattering effects. When the ambient temperature changes,
the molecular alignment of cholesteryl material alters accordingly
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Figure 1: ThermoWave: a new ultra-low cost mmWave-
scannable temperature monitoring paradigm capable of
thermal imaging that utilizes flexible materials.

due to thermal expansion of inter-molecular distance, and thereby
impacting scattering properties when it is probed by broad-band
(e.g., 250 MHz) radio frequency (RF) signals. Motivated by such
thermal scattering effect, we utilize cholesteryl materials to fabri-
cate a film-shaped temperature tag that can change and modulate
the scattered RF signals with temperature change characteristics.
To exploit stronger scattering properties, we investigate the high-
frequency RF signaling technologies, such as the millimeter wave
(mmWave) probes, to effectively interrogate the thermal scattering
effects and infer the temperature information. As shown in Fig. 1,
this technology can enable a low-cost, out-of-sight, accurate tem-
perature monitoring in environmentally restricted scenes, such as
medicine storage and transportation logistics.

To this end, we present ThermoWave, a new mmWave technol-
ogy based paradigm to facilitate fully passive temperature mon-
itoring. There are three parts to the ThermoWave paradigm. (1)
We first design the ThermoTag based on a thin layer of cholesteryl
material stabilized on top of a thin polyvinyl chloride sheet with
adhesives, which can characterize the thermal scattering effect as
temperature changes. (2) We prototype a mmWave based Ther-
moScanner to continuously interrogate the ThermoTag and capture
frequency shift of thermal scattering response in contrast to the
transmitted signal. (3) The scattering response signals are input
to ThermoSense, which is a software mechanism for temperature
inference. For dot-wise temperature recognition, the input signals
are first decomposed into a combination of wavelets via Empirical
Wavelet Transform for extracting spectral features. Then, we apply
a regression based ThermoDot model that utilizes extracted fea-
tures in order to determine the single dot-wise temperature value.
Toward thermal imaging results, we first transform the input sig-
nals into a spectrogram image using continuous-time short-time
Fourier Transform. After that, the spectrogram images are fed to a
customized ThermoNet (i.e., an image-to-image GAN) model for
reconstructing thermal images. As a first exploration study, we
use a set of metrics to evaluate ThermoWave performance (e.g.,
temperature inference accuracy and image structural similarity
index). We evaluate the robustness of ThermoWave under different
sensing distances, scanning orientations, and occlusions to show
its superior performance for temperature inference. In our study,
ThermoWave can measure the dot-wise temperature change from
30°F to 120°F with the precision of ±1.0°F and thermal imaging in
the same temperature range with a ±3.0°F precision.

Our contribution can be summarized in three-fold:

• We investigate the thermal scattering effect that causes a
temperature-related frequency shift modulation in scattered
RF signals, and study the mathematical model that captures
and characterizes this change with low-cost and ecological
cholesteryl materials.

• We design and implement the Thermowave system, based
on cholesteryl material’s thermal scattering effect. First, we
design a cholesteryl based ThermoTag as a temperature sens-
ing film or sticker that attaches to an object of interest. Then,
we prototype a mmWave based ThermoScanner to interro-
gate and receive the thermal scattering response. Finally, we
develop the end-to-end software ThermoSense to extract
dot-wise temperature and thermal image from the thermal
scattering response.

• We evaluate ThermoWave systems performance with differ-
ent configurations (e.g., ThermoTag shape and size). More-
over, we validate the robustness of ThermoWave system un-
der different scanning distances, orientations, and occlusion
conditions. We also examine the stability of ThermoWave
system under a real-world scenario. System limitations are
also identified and discussed.

2 BACKGROUND AND PRELIMINARIES
2.1 Thermal Scattering Effect
The crux of the proposed wireless temperature sensing paradigm
is to leverage temperature-sensitive physical characteristics of spe-
cific material to retrieve temperature information via RF prob-
ing. Among existing wireless temperature sensing solutions, our
method presents the benefit of extreme low-cost, flexibility, environ-
ment friendliness and advanced thermography functions. Due to
cholesteryl material’s temperature sensitive molecular alignment
pattern [15], we select cholesteryl materials as the sensing me-
dia to convey the temperature information of target object. When
cholesteryl material is attached to the target object, it will imme-
diately reach the same temperature as the target object and keep
thermal equilibrium according to the theory of thermodynamics

Figure 2: Cholesteryl material’s temperature dependent
molecular alignment directly impacts the frequency of scat-
tering response under the illumination of mmWave.
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[16]. This theory suggests that the level of average kinetic energy
(i.e., temperature) of an object tends to balance with the contacting
objects.When the temperature of cholesteryl material changes, its
underlying structure, which contains polymersome (i.e., vessels),
will alter its molecular alignment due to thermal expansion [17].
This molecular alignment directly impacts the scattering angle
when such cholesteryl material is probed by broadband RF signals.
Specifically, as the RF signal arrives at the location of interest, in-
placed cholesteryl material scatters a response RF signal with a
modulated frequency shift. The frequency shifted signal is then
scattered in all directions, allowing signature capturing for temper-
ature inference. The process of this so-called Thermal Scatter Effect
is visualized in Fig. 2.

2.2 A Preliminary Study: Cholesteryl
Material based mmWave Sensing

Hypothesis: Thermal scattering effect of cholesteryl material that
contains unique RF scattering response from temperature caused
molecular alignment can be treated as an intrinsic thermal feature.
Thereby, it is possible to leverage a mmWave probe that stimulates
the cholesteryl material for a frequency-shifted scattering, which
contains temperature-induced modulation and contribute toward
object temperature detection.
Proof-of-concept: To prove the Hypothesis, we designed and con-
ducted a preliminary experiment using a prototype of cholesteryl
material as a temperature sensing media. Specifically, our prelim-
inary experiment is conducted in a well temperature monitored
room to ensure that the environment temperature does not change
while the tag changes temperature with controlled air based heat-
ing. To simulate a temperature sensing scenario, we use a table as
the sensing target, and place the tag on top of the table edge to
act as a temperature sensing media. Then, we place a heater on
the side of the table to manually control the material temperature
from 70 °F (i.e., room temperature) to 90 °F for theoretically distinct
data points as we attempt to visualize the thermal scattering effect
in Fig. 3. To eliminate the ground truth temperature sensor (e.g.,
digital thermometer) from interfering with the interrogation signal
from mmWave probe or response signal from tag, we adopt an
infrared camera that can read tag temperature while placed behind
the mmWave probe. To illuminate the cholesteryl material, we uti-
lize a 24GHz frequency modulated continuous wave (FMCW) radar
with a 250MHz bandwidth. After obtaining the thermal scatter-
ing response from the material, we analyze the signal utilizing the
spectral plot that presents a direct connection between tempera-
ture difference and frequency shift of scattered signal. As shown
in Fig. 3, the thermal scattering responses of cholesteryl material
at 70°𝐹𝑣𝑠.90°𝐹 are uniquely different. This proves that cholesteryl
material can be used to perform temperature monitoring, which
further verifies the feasibility and effectiveness of obtaining tem-
perature value via material mediated temperature sensing.

3 THERMOWAVE OVERVIEW
The ThermoWave paradigm comprises three main modules: Ther-
moTag, ThermoScanner, and ThermoSense to realizematerial-mediated
wireless temperature sensing (see the illustration in Fig. 4).

Figure 3: Thermal scattering responses from cholesteryl ma-
terial show evident frequency shift in spectrum analysis.
Compared to response at 70 °F, the frequency shifted re-
sponse at 90 °F have a tone that is few kHz lower.

ThermoTag: ThermoTag is a Cholesteryl material based passive
wireless temperature sensor that attaches to the surface of target
object for wireless temperature sensing. As target object’s surface
temperature changes, ThermoTag’s temperature will instantly fol-
low and alter its cholesteryl molecular alignment accordingly. As
ThermoTag’s molecular alignment changes, its mmWave scatter-
ing properties will also change as shown in Fig. 3. The resulting
mmWave scattering properties can be captured by the customized
ThermoScanner for temperature inference.
ThermoScanner: Considering the prospect of mmWave with a
5G technology in wireless communication as well as its large band-
width opportunities, we prototype a tag scanner based on 24Ghz
FMCW radar, namely ThermoScanner. It is worth to mention that
the cost for a mmWave radar sensor is below $24 and a mmWave
radar modality is below $50, which is projected to keep decreasing
along with infrastructural deployment [18, 19]. To localize the Ther-
moTag, the ThermoScanner employs a pair of four by four antenna
arrays with antenna directivity of 19.8 dBi to enhance the precision.
While the ThermoScanner continuously interrogates ThermoTag,
the thermal scattering response is recorded continuously for tem-
perature inference. Without further adieu, ThermoScanner sends
recorded signal to ThermoSense for both dot-wise temperature
inference and thermal imaging.
ThermoSense: ThermoSense is a software mechanism to facilitate
both dot-wise temperature recognition and thermal image inference.
However, results from dot-wise temperature recognition is a single
value while a thermal image is multi-dimensional. Thus, we allocate
two models to perform the two specific temperature inference tasks.
For dot-wise temperature recognition, we first convert the scatter-
ing signals from time domain to frequency domain via Empirical
Wavelet Transform, then, a feature extractor is developed to reduce
data dimension to an array of 38 features from each pre-processed
signal, after that, we use a regressor based ThermoDot model to
map the feature array to a specific temperature value. In order
to achieve thermal imaging, we first transform thermal scattering
response into spectrogram image using continuous-time short-time
Fourier Transform. Then, we develop a ThermoNet model based
on generative adversarial network (GAN) to reconstruct thermal
images from spectrogram input data.
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Figure 4: We present the ThermoWave paradigm with its three core modules (i.e., ThermoTag,ThermoScanner,and Ther-
moSense). ThermoTag can be placed on be wrist for skin temperature, bed for ambient temperature, and bed sheet for body
thermal imaging. ThermoScanner continuously interrogates ThermoTag to capture temperature cased thermal scattering re-
sponse, then, the response signals are sent to ThermoDotmodel and ThermoNetmodel to obtain dot-wise temperature reading
and thermal imaging, respectively.

4 THERMOTAG DESIGN
4.1 ThermoTag Implementation
In order to sustain temperature sensing capability, ThermoTag is
manufactured from cholesteryl materials (e.g., cholesteryl benzoate)
that can withstand temperature up to 149 °𝐶 (i.e., 300 °𝐹 ) without
being damaged [20, 21]. This facilitates a wide range of applications
, such as high temperature chamber monitoring, boiling liquid sens-
ing, and heating radiator monitoring. During the manufacturing
process, we stabilize a thin layer of cholesteryl material on top
of a thin substrate layer of polyvinyl chloride sheet with adhe-
sives, which enables high elasticity [22] of ThermoTag. As a result,
ThermoTag can be manually suppressed to various shapes (e.g.,
bend, camber, curve, fold, wrap) without permanent deformation
as shown in Fig. 5. In this way, it is flexible to deploy ThermoTag
in many complicated scenarios, such as high voltage electric cable
temperature monitoring within a power cage over the length of the
cord, cold chain transportation with non-rigid medicine containers,
and vehicle tire temperature monitoring while inflated [23–25]. It
is worth to mention that ThermoTag is very lost-cost. In contrast
to commodity RFID temperature tags with a price of 1.99 dollars in
a bulk order, one functional slice of ThermoTag (1cm x 1cm square
shaped film) costs less than one US cent which is a significant
reduction [26, 27].

Figure 5: ThermoTag utilizes soft cholesteryl material that
can be manufactured and stressed into various shapes for
complex deployment scenarios.

4.2 ThermoTag Modeling
The temperature variation of Cholesteryl material based Thermo-
Tag can disturb its thermal scattering of mmWave signals. In this
subsection, we establish a physical model to illustrate the thermal
scattering effect of ThermoTag.

ThermoTag is designated to be a temperature sensing media that
attaches to a target surface. When the target’s temperature changes,
ThermoTag’s temperature inevitably follows. As the temperature of
cholesteryl material-based ThermoTag varies, its inner molecular
alignment (i.e., three-dimensional geometry shown in Fig. 2) will
alter due to the Flory−Huggins parameter 𝜒 [28], expressed as:

𝜒 (𝑇 ) = 𝑣0
𝑘𝑇

(𝛿1 − 𝛿2)2, (1)

where 𝑇 is temperature, and 𝜒 (𝑇 ) is the Flory−Huggins parame-
ter as a function of temperature, 𝑣0 is volume of the cholesteryl
mixture, 𝛿1 and 𝛿2 are the solubility constants for the cholesteryl
material polymers in the mixture, 𝑘 is the real gas constant. The
above presents a crucial monotonous relationship between the
temperature of ThermoTag and the Flory−Huggins parameter of
the material, which generalizes the underlying molecular align-
ment pattern, This facilitates further interpretation of temperature
through the physical trait using wireless means.

When the interrogation mmWave signal reaches ThermoTag (i.e.,
cholesteryl material mixture), the tag will generate a frequency-
shifted scattering based on temperature as shown in Fig. 4. The
temperature induced frequency shift relationship is formulated in
Eq. (2):

𝜆𝑟 (𝜆𝑖 ,𝑇 ) = 𝜆𝑖𝑐𝑜𝑠
1
2 [ (𝑠𝑖𝑛

−1 ( 𝑙
𝑙
′ 𝑠𝑖𝑛 (Φ𝑖 )) + 𝑠𝑖𝑛−1 (

𝑙

𝑙
′ 𝑠𝑖𝑛 (Φ𝑟 (𝜒 (𝑇 ))) ], (2)

where 𝑙 is the index of refraction of the environment (e.g., air),
and 𝑙 ′ is the index of refraction of cholesteryl mixture. Assuming
the relative location and orientation between the ThermoTag and
ThermoScanner does not change during the period of sensing, Φ𝑖
being the angle of entrance for the incident wave, can be replaced
with a constant. Φ𝑟 is the angle of exit for the return wave as
function of the temperature dependent Flory-Huggins parameter 𝜒
which bases on temperature T. Upon removing potential constant
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values, a lean model is derived in Eq. (3),

𝜆𝑟 (𝜆𝑖 ,𝑇 ) = 𝜆𝑖𝑐𝑜𝑠 [Φ𝑟 (𝜒 (𝑇 )) ], (3)

where T is the temperature, 𝜆𝑖 is the frequency of the incident
wave, and 𝜆𝑟 (𝜆𝑖 ,𝑇 ) is the frequency of the response wave [15, 17].
It is noteworthy that thermal scattering emits frequency modulated
response signal at all directions, allowing flexible deployment of
ThermoTag in various scenarios.

To summarize, ThermoTag’s underlying molecular alignment is
changed by the variation of temperature, such alignment variation
further affects thermal scattering properties for mmWave.

4.3 ThermoTag Ecology Analysis
ThermoTag is an organic tag based on cholesteryl materials which
is biodegradable [29]. ThermoTag is also highly reusable due to the
relatively lowmelting point and can be used to forge a new tag with
different shapes without losing significant volume. ThermoTag’s
ecological life cycle begins with cholesteryl materials being mixed
by heating the solid mixture into liquid, the liquid is then poured
to mold for shaping. During the molding and shaping stage, it is
important that the mixture is kept at a high temperature (around
300 °F) which allows the liquid to keep flowing and change shape.
The resulting tag can be reused immediately after cooling. Any
residue without contamination can be collected and melted for
another reuse cycle. Therefore, ThermoTag allows the reuse and
safe disposal of cholesteryl material and is an ecological sensor.

5 THERMODOT SENSING SCHEME
5.1 Thermal Scattering Response Acquisition
ThermoTag scatters frequency-shifted response signal with mod-
ulated temperature information as the intrinsic property, it is im-
portant to ensure that ThermoScanner receives and parses differ-
ent frequency shifts that occur at different temperatures. Most of
mmWave radars support both pulse and continuous wave modes.
sampling rate compare to the pulse mode. High amplitude pulse
waves can undermine the thermal scattering effect in return, mak-
ing temperature prediction difficult. The continuous wave mode
allows continuous reception of thermal scattering from ThermoTag,
which enables a higher sampling rate. Therefore, the ThermoWave
design selects the continuous wave mode with a frequency modu-
lated continuous wave (FMCW) radar. When ThermoScanner emits
the interrogation signal from TX terminal to illuminate ThermoTag,
ThermoTag undergoes the thermal scattering effect. This allows
ThermoScanner RX terminal to receive the response with intrinsic
thermal scattering effects. It is worth to mention that such sens-
ing mechanism is not restricted by the orientation setup as the
scattering of ThermoTag’s modulated response signal occurs at
all directions. Finally, the thermal scattering response encapsu-
lating temperature characteristics is acquired and passed to the
ThermoSense module.

5.2 Scattered Signal Transformation
To perform the effective temperature estimation, there are critical
pre-processing and transformation operations (i.e., filtered, decom-
posed) to facilitate an accurate frequency shift analysis. Since the

Figure 6: Empirical wavelet analysis transforms acquired
signal into a series of wavelets for frequency analysis.

frequency shift characteristic is crucial in thermal scattering re-
sponse yet highly complex (i.e., variance in thermal scattering re-
sponse’s amplitude and frequency is non-memorizable due to large
bandwidth), we propose to utilize a signal decomposition technique
that separate thermal scattering signals into a set of wavelets to
allow effective and efficient amplitude-frequency spectral analysis.
Thus, we utilize Empirical Wavelet Transform (EWT) [30] to per-
form frequency domain analysis by detecting local maximas in the
wavelet spectrum in our application.

To formulate EWT, we show the reconstruction of the Ther-
moTag response signal that is separated into a series of wavelets
by EWT, whose sum infinitely-approaches the original thermal
scattering response:

𝑓 (𝑡) =𝑊 𝜖
𝑓
(0, 𝑡) ★𝜙1 (𝑡) +

𝑁∑
𝑛=1

𝑊 𝜖
𝑓
(𝑛, 𝑡) ★𝜓𝑛 (𝑡), (4)

𝑓 (𝑡) = (
∧

𝑊 𝜖
𝑓
(0, 𝜔) (

∧
𝜙1 (𝜔) +

𝑁∑
𝑛=1

(
∧

𝑊 𝜖
𝑓
(𝑛,𝜔) (

∧
𝜓𝑛 (𝜔))∨, (5)

where 𝑓 (𝑡) is the synthesized signal that infinitely approaches
original ThermoTag’s thermal scattering response, 𝑡 is time, 𝜔 is
wavelength, which is inversely proportional to frequency, 𝜙𝑛 (𝜔) is
the empirical scaling function,𝜓𝑛 (𝜔) is the empirical wavelets, N
is the number of wavelets in total.𝑊 𝜖

𝑓
(0, 𝑡) is the approximation

coefficients and𝑊 𝜖
𝑓
(𝑛, 𝑡) is the detail coefficients given by the inner

products with the empirical wavelets. Eq. (5) is the representation
of Eq. (4) wavelet reconstruction in terms of fourier transform that
displays frequency-domain wavelet summation. To this end, the
signal is decomposed into a series of empirical wavelets as shown
in Fig. 6 for feature extraction.

Table 1: Feature List in the ThermoDot model

Types Features

Spectral Crest Factor [31], RMS Amplitude, Flatness [32],
Skewness [33], Kurtosis [34], PNCC-20, MFCC-5

Temporal
Lowest Value, 50th percentile, Mean Value, 75th
percentile, Highest Value, Standard Deviation,

Kurtosis, Skewness
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5.3 Feature Extraction
Thermal scattering response is characterized by the frequency shift
alone with amplitude variations, making simple model-driven ap-
proaches quickly fail due to the complexity of spectral data in
a bandwidth of 250MHz. Thus, we implement feature extraction
from the wavelets that can accurately and effectively describe the
frequency-shifted signals without concern from noisy signal im-
pacting sensing accuracy. To comprehend the thermal scattering
response, we enlist features in two types, i.e., spectral and temporal
features. It is noteworthy that we employ spectral analysis that
takes the signal to filter, then analyze the distribution of signal
intensity. For instance, mel-frequency cepstral coefficients (MFCC)
[35–38] and power-normalized cepstral coefficients (PNCC) [39–
41] are exceptional power-frequency distribution analyzers that
provide detailed comprehension of the frequency shift and is ca-
pable of reducing noise impacts in the later prediction. Notably,
PNCC are scalar coefficients based on gammatone channel filtering.
The channel bias minimization is used to suppress the noise effects
as shown in Eqs. (6) and (7) [42]:

𝑉 [𝑓 , 𝑐] = (𝑘𝑃 [𝑓 , 𝑐]
∼
𝑆 [𝑓 , 𝑐]

𝜇 [𝑓 ] )1/15, (6)

where 𝑉 [𝑓 , 𝑐] is the power function non-linearity, 𝑓 and 𝑐 are the
frame and channel indices, respectively. 𝑘 is the DFT size, empiri-
cally determined to be 1024. 𝑃 [𝑓 , 𝑐] is the result of signal after Pre-
emphasis, Short-Time Fourier Transform, Magnitude Squared, and
Gammatone Frequency Integration.

∼
𝑆 [𝑓 , 𝑐] is the result of 𝑃 [𝑓 , 𝑐]

after medium-time power calculation, asymmetric noise suppres-
sion with temporal masking, and weight smoothing. 𝜇 [𝑓 ] is the
mean power estimate of frame 𝑓 formulated in Eq. (7):

𝜇 [𝑓 ] = 𝜆𝜇𝜇 [𝑓 − 1] +
(1 − 𝜆𝜇 )
𝐶

𝑐=0∑
𝐶−1

𝑇 [𝑓 , 𝑐], (7)

where 𝐶 represents the total number of frequency channels. 𝜆𝜇 is
empirically determined to be 0.999 as the forgetting factor. 𝑇 [𝑓 , 𝑐]
is the the result of

∼
𝑆 [𝑓 , 𝑐] after time-frequency normalization by

elementary multiplication of 𝑃 [𝑓 , 𝑐] and
∼
𝑆 [𝑓 , 𝑐]. The initial value of

𝜇 [𝑓 ], 𝜇 [0], is determined to be 16161 dB/Hz based on mean power
of signals using data set in our preliminary study.

The power function non-linearity then goes through a discrete
cosine transform. The resulting matrix is converted into a one-
dimensional array to reduce the feature count for a better efficiency,
i.e., generating 20 coefficients from 20 Gammatone channels, re-
spectively. The origin of PNCC work includes the operation of
mean normalization, considering that the feature coefficients are
used for the regression analyzes. Note that mean normalization is
opted out because this operation will not provide further benefits in
thermal analysis. Up to this point, scalar coefficients are effectively
collected for regression. The complete feature list categorized into
two types(i.e., Spectral, Temporal) is shown in Table 1.

5.4 ThermoDot Regression Model
The feature array of 38 scalar values are extracted from each seg-
ment of RF signals, and we feed the feature arrays with one temper-
ature label (i.e., the ground truth) into a regression model to solve
the prediction modeling problem as shown in Algorithm 1. We start

Algorithm 1 ThermoDot Algorithm
Input: 𝑆 : mmWave signal

𝐿: Signal segment count
𝐾 : Feature count
𝑀 : Trained regression model
𝜀: Number of trees

Output: 𝑇 : Point Temperature Prediction Results
1: T = [ ];
2: M = loadModel(); ⊲ Load trained model
3: 𝑆𝑤 = EWT(S); ⊲ Apply wavelet transform
4: for i = 1, 2, ..., L do
5: 𝜚 = 𝑆𝑤 (i); ⊲ Acquire signal segment
6: features = [ ]; ⊲ Initialize feature array
7: for j = 1, 2, ..., K do
8: 𝜗 = 𝑓 𝑒𝑎𝑡𝑢𝑟𝑒𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛 𝑗 (𝜚 ); ⊲ Acquire Feature
9: features.append(𝜗);
10: end for
11: t = M.Regression(features, 𝜀); ⊲ Predict
12: T.append(t);
13: end for
14: Return T. ⊲ return results

with choosing a meta-algorithm to perform the task. There are two
major advantages for employing the bootstrap aggregation (bag-
ging) method [43]. 1) Ensemble learning allows multiple regressors
to generate independent prediction result and aggregate them into
final decision with better confidence. Weighting is given by the ac-
curacy of each independent regressor to boost the accuracy of final
decision, enabling higher accuracy. 2) Bagging allows low variance
value that makes output more stable in temperature prediction,
which prevents overfitting. The series of feature arrays is fed into
bagging model that utilizes the ThermoDot model in Algorithm 1
to perform the regression prediction and return temperature es-
timation corresponding to the feature arrays. After feeding the
bagging regressor with a list of feature vectors as input and a list of
temperature values as the ground truth, the regressor solves for the
discrete parameters to fit training data. The resulting ThermoDot
model will then take in thermal scattering response and return a
single value temperature output as shown in Fig. 7.

Figure 7: ThermoDotmodel data flow from thermal scatter-
ing response to exact temperature value.
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Figure 8: ThermoNet leverages spectrogram image from thermal scattering response and its corresponding ground truth ther-
mal image to train the image-to-image neural network model, the resulting model has the capability to generate thermal
images from spectrogram images. The ThermoNet Constructor keeps generating sample outputs based on spectrogram image
while the ThermoNet Proctor decides whether the sample output is close enough to the ground truth. When the ThermoNet
Proctor denies the sample output, the results are compared and sent to Loss Optimization for ThermoNet Constructor to
generate better (i.e., more accurate) output in the future.

6 THERMONET SENSING SCHEME
6.1 Thermal Scattering Response to

Spectrogram Transformation
The objective of thermal imaging is the retrieval of surface tem-
perature in the form of a thermal image from thermal scattering
response. To realize it, the first step is to transform thermal scat-
tering response signal from one dimensional spectral-temporal
function, into a two dimensional spectral-image function. Based on
the advantage that continuous-time short-time Fourier Transform
(STFT) is more applicable for real-time processing compare to two
dimensional wavelet transform’s high computation overload, we
adopt STFT [44] for transforming the spectrogram signal into a
three dimensional representation, formulated as Eq. (8):

𝑆𝑇𝐹𝑇 {𝑥 (𝑡)}(𝜏,Ω) =
∫ ∞

−∞
𝑥 (𝑡)Ω(𝑡 − 𝜏)𝑒−𝑗𝜆𝑡𝑑𝑡, (8)

where Ω(𝜏) is the Gaussian window function, 𝑥 (𝑡) is the signal
to be transformed, 𝜆 is the frequency and 𝑆𝑇𝐹𝑇 {𝑥 (𝑡)}(𝜏,Ω) is the
resulting spectrogram image that captures essence of thermal scat-
tering response. The result is a three dimensional data, we map
one of the dimension to color space in order to generate a temper-
ature image. At this point, the problem is reduced to mapping a
spectrogram image to a correct thermal image.

6.2 ThermoNet Model Construction
In order to solve the spectrogram image to thermal imaging map-
ping problem, pixels in spectrogram imagemust bemapped to pixels
in thermal image. Such mapping must not only capture the general
color to color relationship, but the image structure, which encapsu-
lates the temperature distribution over the thermal image. However,
a typical thermal image have over 65,536 pixels (256x256), which
can lead to four billion links to a 65,536 pixel spectrogram image,
making it nearly impossible to compute over short period of time
in temperature sensing applications. Thus, we implement a neural
network to solve the image to image mapping problem. We employ
the Pix2pix model [45], which is a Generative Adversarial Network

(GAN) [46] model specifically designed for image-to-image trans-
formation tasks. Different from Convolutional Neural Network
(CNN)’s dependency on a fixed loss function to optimize the neural
network, GAN implements an adaptive loss function, this allows
GAN to solve problem of neural network generation without a
cumbersome loss function design. We formulate the ThermoNet
model as follows:

𝑚𝑖𝑛
𝐺
𝑚𝑎𝑥
𝐷

𝑉 (𝐷,𝐺) = 𝐸𝜁∼𝑝𝑑𝑎𝑡𝑎 (𝜁 ) [𝑙𝑜𝑔𝐷 (𝜁 )]

+ 𝐸𝑧∼𝑝𝑧 (𝑧) [𝑙𝑜𝑔(1 − 𝐷 (𝐺 (𝑧)))],
(9)

𝑚𝑎𝑥
𝐷

𝑉 (𝐷) = 𝐸𝜁∼𝑝𝑑𝑎𝑡𝑎 (𝜁 ) [𝑙𝑜𝑔𝐷 (𝜁 )]

+ 𝐸𝑧∼𝑝𝑧 (𝑧) [𝑙𝑜𝑔(1 − 𝐷 (𝐺 (𝑧)))],
(10)

𝑚𝑖𝑛
𝐺
𝑉 (𝐺) = 𝐸𝑧∼𝑝𝑧 (𝑧) [𝑙𝑜𝑔(1 − 𝐷 (𝐺 (𝑧)))], (11)

where 𝐺 is the generator (i.e., constructor) function, 𝐷 is the dis-
criminator (i.e., proctor) function, 𝑧 is the input data being our
image from spectrogram transform, and 𝜁 is the training data being
temperature image from IR camera. To achieve ideal transforma-
tion result, ThermoNet requires a Constructor and a Proctor to
collaborate and compete against each other.
(a) Constructor is a network of "encoder-decoder" structure. The
encoder has a three-layer convolution structure with a first layer
depth of 64, the second layer depth of 128, and the third layer depth
of 256. Each layer is followed by a ReLU activation function. In order
to abstract and retain more information, we add more weighted
layers between the encoder and the decoder. We use 9 residual
blocks because the residual blocks contain skip connections which
can concatenates all channels between layers. To capture the details
in image, the decoder is designed with three layers of deconvolution
layers that upsamples the image by eight times larger, magnifying
small differences in image.
(b) Proctor is a network of "encoder" structure that contains four
layers of convolution. The other three convolutions use LeakyReLU,
except that the first layer uses the ReLU activation function [47].
The proctor is capable of determining whether the image from
constructor is similar enough compared to the ground truth. The
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Figure 9: Comparison between thermal images generated by ThermoNet and ground truth. ThermoNet is capable of capturing
the details on thermal image and regenerating them in prediction,making target detection possible using edge detection.With
a large amount of training samples, ThermoNet meets the expectation of generating thermal images in untrained (test set)
scenarios that are also extremely close to the ground truth in terms of both image structure, and image detail.

binary decision generated by proctor is then send to optimizer that
allows the constructor to generate better results.

The workflow is shown in Fig. 8, as the constructor produces
batches of thermal images as sample output, the proctor determines
if the generated thermal image outputs are close enough to the
ground truth thermal image. The output thermal images from proc-
tor and the losses were sent to the optimizer, then, the optimizer
enhances the weights in the constructor. At the end, the trained
ThermoNet model is able to produce temperature images given the
input of spectrogram image without the exact temperature image
in training database as shown in Fig. 9.

7 EVALUATION SETUP
7.1 Experimental preparation
To evaluate the system, we conduct controlled experiments in a lab
condition. The experiment setup is shown in Fig. 10. We fabricate
the ThermoTag using a square thin film with the side length of 15
cm and the thickness of approximately 0.01 cm. The ThermoTag
is attached to the inner wall of the cabinet while ThermoScanner
is placed outside the cabinet. We then align the ThermoScanner
to the direction of the ThermoTag starting from a distance of 25
cm. Note that there is no physical blockage between ThermoTag
and ThermoScanner except the wall of cabinet box in the overall
performance study.Room air temperature is hold constant at 70 °F
to eliminate variation in heat dissipation across different evaluation
experiments. To collect ground truth , we utilize a wired thermome-
ter with precision of ±1.0°𝐹 and an IR camera with precision of

Figure 10: The film shaped ThermoTag is attached to the left
wall inside the cubic foam cabinet, ThermoScanner is placed
on the outer of right wall of the cabinet. The heater heats up
the air in the cabinet, and thus heating up ThermoTag.

±3.0°𝐹 to compare with results from ThermoDot and ThermoNet,
respectively [48, 49]. We evaluate the system performance under
the temperature ranging from 30°F to 120 °F for all experiments, that
can satisfy various scenarios such as room temperature monitoring,
and food/medicine package temperature monitoring.
Application Protocol: To make ThermoWave easily deployable,
the system employs a ready to sense protocol that automatically
performs a scan for ThermoTags in the environment. After a Ther-
moTag is localized, ThermoScanner will continuously interrogate
the tag for thermal scattering response, and perform temperature
inference using ThermoDot and ThermoNet.
Data Collection and Preparation: Due to ThermoWave’s para-
digm containing two modules with unique output, two separate
groups of ground truth data is collected for ThermoDot and Ther-
moNet. Utilizing the digital thermometer, a camera is placed to
record the continuous temperature change of ThermoTag and the
temperature values are obtained using optical character recogni-
tion. As a result of high-speed continuous data collection from
ThermoScanner, 90,000 lines of feature array is collected and a 75%-
25% split is utilized to separate the training and testing data. For the
IR camera, its seven frame per second video frame rate forced Ther-
moNet’s sampling rate to seven Hz with alignment. ThermoNet is
a data-intensive model, we collected 105,790 thermal images and
generated the same number of spectrogram image for ThermoNet
model training and testing. To effectively assess the performance
of the two models, we collect a single group of data for training,
and test it against different scenarios that were not trained.

7.2 Performance Metrics
To analyze the ThermoWave performance in both dot-wise sens-

ing and thermal imaging, we introduce performance metrics tailor-
ing to ThermoDot and ThermoNet’s output data format.
7.2.1 ThermoDot Metrics. In order to assess ThermoDot’s ability
to correctly derive single temperature value from a specific location
using mmWave signal, we prepared three numerical metrics to
evaluate the performance of dot temperature sensing, including
percentage accuracy, maximum error, and correlation coefficient.
Percentage accuracy: Correct temperature prediction is defined
as value predicted within the precision tolerance (i.e., threshold) of
ground truth value.
Maximum error: Average of the top 1% error between predicted
value and ground truth value.
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Correlation coefficient: To have a general grasp on how close
is the predicted temperature value to ground truth temperature
value, correlation coefficient is employed [50]. Higher value (with
maximum value of 1) indicate better routine system performance.

7.2.2 ThermoNet Metrics. The metrics for ThermoNet need to con-
sider the two-dimension characteristics of the output and ground
truth. Since thermal imaging is commonly done by IR systems as
a two dimensional image reading with each pixel containing RGB
components, we used the IR imaging system FLIR ONE PRO with
approximately ± 3.0 °F precision as our ground truth. To evaluate
the thermal imaging performance in both macro and micro level,
we utilize a total of three metrics that can effectively compare the
similarity between two images.
Structural Similarity Index:We utilize Structural Similarity In-
dex (SSIM) [51, 52] for the thermal image structural comparison
between prediction and ground truth. SSIM is based on three mea-
sures of two thermal images, i.e., luminance, contrast, and structure,
which correlates to intensity, distribution, and target location in
thermal image. The SSIM we used is formulated as:

𝑆𝑆𝐼𝑀 (𝑝,𝑔) = [𝑙 (𝑝,𝑔)] ∗ [𝑐 (𝑝,𝑔)] ∗ [𝑠 (𝑝,𝑔)], (12)

where 𝑝 and 𝑔 are the predicted thermal image and ground truth
thermal image, respectively. When the value of 𝑆𝑆𝐼𝑀 (𝑝,𝑔) reaches
1, 𝑝 and 𝑔 shares the highest similarity, which means the predicted
thermal image is nearly identical to the ground truth. 𝑙 (𝑝,𝑔), 𝑐 (𝑝,𝑔),
and 𝑠 (𝑝,𝑔) are the individual measure of the similarity in luminance,
contrast, and structure, respectively.
Peak Signal to Noise Ratio:We use a MSE based peak signal to
noise ratio (PSNR) to verify the estimated thermal image quality as
calculated below:

𝑀𝑆𝐸 =

∑𝐴,𝐵

𝑎=1,𝑏=1 [𝐼1 (𝑎, 𝑏) − 𝐼2 (𝑎, 𝑏)]
2

𝐴 ∗ 𝐵 , (13)

where a and b are indices of 2-D image under the thermal image
resolution (A,B) pixels in horizontal and vertical axis, respectively.
𝐼1 is the ground truth, and 𝐼2 is the generated thermal image. Based
on MSE, the PSNR is formulated as:

𝑃𝑆𝑁𝑅 = 10 log10
𝑅2

𝑀𝑆𝐸
, (14)

where 𝑅 is the maximum value of each pixel value in 𝐼1 and 𝐼2 (i.e.,
R is 255 if 𝐼1 and 𝐼2 is read as uint8 format and R is 1 if 𝐼1 and 𝐼2 is
read as floating point format).
PercentageAccuracy: Percentage accuracy is calculated via count-
ing the number of pixels in generated thermal image (I) that are
within Δ distance from ground truth thermal image (T) and divd-
ing by the total number of pixels in thermal image. Percentage
Accuracy can be expressed as:

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑐𝑜𝑢𝑛𝑡 ( |𝐼 −𝑇 | < Δ)

𝑐𝑜𝑢𝑛𝑡 (𝐼 ) ∗ 100%, (15)

8 THERMOWAVE EVALUATION
8.1 Overall Performance
We evaluate the temperature inference accuracy from multiple as-
pects for both dot-wise temperature sensing and thermal imaging.

Figure 11: Micro-benchmark of temperature recognition ac-
curacy versus precision tolerance comparing three typical
regressor algorithm.

Dot-wise Performance. ThermoDot shows reliable performance
in dot-wise temperature sensing in by accurately reading the tem-
perature values of ThermoTag. As shown in Fig. 11, the bag algo-
rithm shows the best performance compare to LSBoost and Random
Forest. By comparing the prediction results of ThermoDot to the
ground truth temperature values, the correlation coefficient is de-
termined to be 0.99993. This means that ThermoDot’s prediction
result is extremely close to the actual temperature value if not
exactly the same. With the maximum error being ±0.97 °F, Ther-
moDot’s precision in temperature inference can be determined to
be ±1.0 °F, which is exactly the same as the ground truth tempera-
ture measuring device. In another word, ThermoDot’s exceptional
temperature inference performance is not over-fitted, and arguably
bottle-necked by the ground truth sensing device. For percentage
accuracy, ThermoDot is capable of returning 99.9% of temperature
readings under the precision of ±1.0 °F. For all subsequent evalu-
ations, the highest accuracy possible would be the 100% with the
standard precision of ±1.0 °F.
Thermal Imaging Performance. ThermoWave system relies on
ThermoNetmodule to produce thermal images, and the temperature
image can be analyzed in two-fold. First, in a two-dimensional tem-
perature matrix perspective, each pixel is changed to temperature
based on color, ThermoWave achieves an overall accuracy of 99.16%
under precision of ±3.0°F across the two-dimensional sensing range
with MSE is calculated to be 2.2351. At around 85 °F, the tempera-
ture imaging device has an precision of approximately ±5°F, which
states that given a more accurate ground truth device, ThermoNet’s
performance in per pixel temperature accuracy can be higher than
the IR imaging device. On the other hand, the two-dimensional
data is viewed as a stand-alone image, PSNR is calculated based on
the prediction result from ThermoNet to ground truth IR image.
Examples of the image to image comparison is shown in Fig. 9.
PSNR is determined to be 23.9872 for the collection of the standard
data set. The SSIM from generated temperature image to ground
truth temperature image is determined to be 0.9439, with SSIM
being close to 1, meaning the generated image and ground truth
image is very close, ThermoWave proves to be an accurate system.

8.2 Performance of Different Configurations
When ThermoWave system is applied in different scenarios, it is
common that parameters such as sensing distance will vary from
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experiment condition. We evaluate ThermoWave system with dif-
ferent parameter variation to assess the reliability.
ThermoTag Shape. When ThermoTag is shaped to conform with
the sensing target’s surface, the shape alone might have an impact
in the temperature recognition. Thus, we test ThermoTag in irregu-
lar shapes such as bend, camber, curve, and fold to simulate various
conditions such as sensor taped to the wall, fixed into corners, and
tied to cables. The result shows ThermoWave system remains
in high performance with dot-wise temperature inference score
averaging to 99.9 % accuracy, ± 1.4522 °𝐹 max error, and 0.9993
correlation coefficient. ThermoNet scores average to 23.5174 PSNR
and 0.9407 SSIM. In conclusion, ThermoWave is able to retain 99%
accuracy at all four tag shapes for both dot-wise temperature sens-
ing and thermal imaging. The performance is shown in Fig. 12,
results have proven that ThermoWave system is fully functional
with different tag shapes.

Figure 12: Performance for both dot-wise temperature and
thermal imaging under different ThermoTag shapes.

ThermoTag Size. A crucial parameter of the sensor is its physical
size (i.e., surface area in thin-film format), which directly contributes
to the occurrence rate of thermal scattering effect. Thus, it is nec-
essary to examine the impact of ThermoTag size to ThermoWave
system performance. We used three sizes of square-shaped sensors
with length 15 cm, 7.5 cm, and 2 cm as shown in Fig. 10. Perfor-
mance scores are shown in Table 2 and 3 for dot-wise temperature
sensing and thermal imaging, respectively. It is also noteworthy
that the distance capacity of ThermoTag in relation to the size is
expected to exhibit positive correlation. Our intuition is to use radar

Table 2: Dot-wise evaluation performance of different Ther-
moTag sizes.

Sensor length % Accuracy Maximum error (° F)
2 cm 99.8 1.5
7.5 cm 99.9 1.2
15 cm 99.9 1.0

Table 3: Thermal imaging evaluation performance of differ-
ent ThermoTag sizes

Sensor length % Accuracy PSNR SSIM

2 cm 97.7 21.1184 0.9435
7.5 cm 99.1 23.5449 0.9436
15 cm 99.2 23.9872 0.9439

cross section (RCS) to estimate the distance capacity in free space.
However, thermal scattering effect is different from the material’s
reflection property, making RCS an inaccurate description. Thus,
we empirically determine the distance capacity of a ThermoTag
with 2 cm side length to be 50 cm. The overall high sensing accuracy
result proves ThermoWave system is highly reliable with different
sensor sizes for various application scenarios.

9 ROBUSTNESS ANALYSIS
9.1 Impact of Occlusion
One critical feature of ThermoWave system is passive wireless and
functions in NLOS scenarios. Thus, we chose four universal occlu-
sion scenarios in such packaging material occlusion, the thickness
for bubble bag, foam, paper, wood subjects are 1.0 cm, 1.0 cm, 0.01
cm, 6.35 cm, and 2.54 cm, respectively. Among the thermal imaging
assessments, ThermoWave system keeps PSNR above 22.5 and 0.95
SSIM for all four occlusions as shown in Fig. 13, proving its usabil-
ity. Without surprise, IR camera’s result showed thermal image for
the blocking object instead of ThermoTag during the heating and
cooling period, which stayed the same throughout the experiment
session. This result shows ThermoWave’s crucial advantage over
existing IR cameras that utilizes mmWave as media to communicate
with ThermoTag that achieves thermal imaging in NLOS scenarios.

Figure 13: Dot-wise Performance under occlusion.

9.2 Impact of Sensing Distance
To validate ThermoWave’s usability in contact-less (i.e., zero to ten
cm) and wireless (above 50 cm) application scenarios, we performed
a series of experiments with sensing distance ranging from 0.25 m
to 2 m. Results have shown minimum accuracy change (i.e., above
99%) as the ThermoTag with side length 15cm moved up to two
meters. Based on sensing capacity of mmWave, ThermoWave sys-
tem is expected to perform high accurate temperature sensing with
further distance than two meters. Thus, ThermoWave is capable
and suitable for many industrial applications such as cold chain
transportation in logistics.

9.3 Impact of Scanning orientation
The impact of sensing angle is a common concern when testing
wireless communication, and it is important to have a device that
works with various sensing angles to be robust. Therefore, we
measure the dot-wise performance of ThermoWave by having a
ThermoTag fixed on top of sensing target, and ThermoScanner
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to move around the sensing target for angular adjustments. Due
to the fact that the film shaped ThermoTag is symmetrical on all
axis, we measure angles from 0 degrees to 90 degrees with 15
degrees of increment. Based on performance results shown in Fig.
14, the percentage accuracy was in the high 90s from 45 to 90
degrees with correlation coefficient averaging to 0.9985, proving
ThermoWave is strong with different sensing angles for various
sensing applications.

Figure 14: ThermoDot performance under different scan-
ning orientations with ThermoTag fixed in location and
ThermoScanner rotating around.

9.4 Impact of Sampling Rate
It is very worthy to mention the importance of the time that Ther-
moWave takes to acquire signal, which is directly proportional
to the temporal efficiency in applications. Thus, we assess Ther-
moWave’s performance under various sampling rates for both dot-
wise and thermal imaging models. While the wired thermometer
can give continuous readings for ThermoDot ground truth, the IR
camera has a limitation of around seven frames per second, limit-
ing the sampling rate for ThermoNet’s ground truth. Thereby, we
examine ThermoWave’s sampling rate from one Hz to seven Hz.
Results show that ThermoWave can achieve seven Hz sampling
rate without significant loss of accuracy, as shown in Fig. 15.

Figure 15: Both ThermoDot and ThermoNet’s accuracy per-
formance at sampling rates from one Hz to seven Hz.

9.5 Permanence Analysis
To investigate the permanence of ThermoWave, we collected mul-
tiple sessions of dot-wise temperature data on a single ThermoTag
across three week. On the first week, approximately ten samples of
data (i.e., temperature value ranged 35°𝐹 to 80°𝐹 with 0.1°𝐹 resolu-
tion) is collected each day to train a ThermoDotmodel. On the next
two weeks, two samples of untrained data is collected each day

Figure 16: Plot of accuracy against time in days into perma-
nence experiment across two weeks of testing period.

for testing the pre-trained ThermoDot model, and the predicted
temperature vs. ground truth temperature is used to measure the
accuracy. As shown in Fig. 16, ThermoDot model delivered over
99% of prediction is within the ±1.0°𝐹 precision, proving the ability
to sustain a long period with high accuracy.

9.6 Environmental Dynamics
To determine whether ThermoWave can function under different
environmental interferences such as humidity and vibration, a Ther-
moTag’s thermal imaging performance is tested in simulated condi-
tions. For the humidity simulation, a humidifier is placed in front
of the cabinet and air at near dew point is blown into the cabinet to
ensure ThermoTag is surrounded with humid air. For the vibration
simulation, an actuator is placed on top of the cabinet vibrating
consistently to introduce pseudo random vibration to the Thermo-
Tag. Result in Fig. 17 proves that ThermoWave can maintain high
accuracy while under humid and shaking conditions.

Figure 17: ThermoWave thermal imaging performance un-
der environment interferences.

10 REAL WORLD TEST
To ensure that ThermoWave system remains accurate temperature
sensing performance when it leaves lab condition, thus, we deploy
ThermoWave in a complex scenario where multiple tags exist in a
compact and NLOS setting with environmental disturbances. To
determine ThermoWave’s capability of recognizing multiple Ther-
moTags in a complex scenario, we attach two ThermoTags to the
back of a storage box that is 20 cm away from each other (i.e., on
the upper left corner and on the lower right corner of the box)
for sensing. Next, to determine its resistance toward environment
dynamics such as vibration and humidity, arbitrary water vapor
in heated air is blown into the box while an actuator is generat-
ing arbitrary vibration inside the box. As shown in Fig. 18 and 19,
ThermoWave is capable of identifying the positions of each Thermo-
Tag and accurately reading thermal images. The confusion matrix
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Figure 18: Two ThermoTags
in the shelf box for thermal
imaging.

Figure 19: Dot-wise tempera-
ture performance for the two
ThermoTags in the box.

consists dot-wise temperature prediction accuracy for both of the
ThermoTags. The average accuracy is determined to be 97.7% with
±1.0°F precision. In conclusion, ThermoWave system is capable of
accurately recognizing ThermoTags position as well as inferring
each of their temperature for both dot-wise and thermal imaging.

11 DISCUSSION AND LIMITATIONS
ThermoNetmodeling: It is ideal to have a model that specifies
which segment of thermal scattering response corresponds to a
specific pixel in the resulting thermal image. Thus, it is appealing
to utilize ThermoDot’s model and expand feature extraction upon
multiple frequencies to a dimension that matches the number of
pixels in the ground truth. However, this technique is hindered
by the computational overload and mmWave beam-forming preci-
sion which is too costly and too blurred at long distance, real-time
sensing. Thus, current data-driven GAN methodology is applied.
Potential Medical Applications: ThermoTag’s cholesteryl mate-
rial is a common steroid chemical in mammalian organism’s body
[53, 54], meaning it is not inherently toxic and is often researched
on medical domain. Beyond the experimentation of this paper, it
is foreseeable that ThermoTag will be applied on human body for
medical purposes, and possibly in human body for fine grained
temperature monitoring. In addition, ThermoScanner’s electromag-
netic radiation is powered at 1.2 W with 8dBm radio transmission
power at the range of two meters, which is insignificant when
compared to modern wireless communication infrastructure, such
as Wi-Fi. Moreover, the power can be further reduced in surgical
application scenarios where the sensor is placed closer to the body.
Thus, ThermoWave is a safe and ecological technology for medical
applications in the near future.
Aging effect of film: It is common that material in the shape of
film experience degradation(i.e., aging from wear, tear, or erosion).
Preserving the shape of the sensor is also an important task in
protecting the system. We came up with two solutions to protect
ThermoWave film from the aging effect. (i) Cover the film with a
protective material such as a thin sheet of PVC which is tested in
our evaluation experiments that have little effect on the overall
ThermoWave system’s overall sensing ability. (ii) Design a calibra-
tion protocol such that accuracy is tested periodically. Once the
accuracy falls below a threshold, replace the ThermoTag.
Metallic Occlusion: It is worth to mention that metallic objects
are excellent at reflecting radio frequency waves, making wire-
less communication difficult with metallic occlusion. Consequently,
when a sheet of metal lays in between ThermoTag and ThermoScan-
ner, the thermal scattering response is unlikely to be generated
considering the blockage.

12 RELATEDWORK
Wireless Temperature Monitoring: Existing wireless tempera-
ture monitoring technology can be placed into two categories based
on their output (i.e., dot-wise temperature, and thermal image). The
core of dot-wise temperature sensing systems [12, 55–59] is the
thermal-electric sensor that delivers a temperature value. Such
solution associates with high cost (i.e., a single passive RFID tem-
perature tag is at least $1.00) and harms environment with heavy
metal in its circuity. Moreover, wireless temperature senor such as
the RFID tags are usually one-time use and create unsalvageable
electronic waste [60]. On the other hand, thermal imaging devices
reads temperature matrices by measuring the amplitude of electro-
magnetic wave in front of the imaging sensor, which fails if there is
occlusion such as a piece of paper (e.g., infrared[13], mmWave[14]).
Up to date, no wireless temperature monitoring technology is ca-
pable of ultra-low cost and ecological temperature sensing, as well
as thermal imaging with occlusion.
mmWave Sensing: mmWave sensing has been growing popular-
ity in different fields (e.g., 5G in telecommunication, object detection
in autonomous driving, etc) in recent years. Many focus on macro
motion and three-dimensional geometry of target object such as
electronic identification, human gesture recognition, heart motion
sensing, and tag pattern identification [61–68], while others focus
on micro-motion and internal characteristic such as liquid classi-
fication and liquid crystal phase recognition [69–71]. To this date,
ThermoWave is the first mmWave sensing system to perform ultra-
low cost, ecological, and flexible temperature sensing using thermal
scattering effect that achieves thermal imaging.

13 CONCLUSION
In this paper, we develop a novel mmWave technology-based par-
adigm, ThermoWave, for wireless temperature monitoring. The
ThermoWave design exploits the thermal scattering effect, i.e., the
changing ambient temperature can impact the scattering character-
istics of the cholesteryl material when it is probed by RF signals.
We fabricate a film-based temperature tag (i.e., ThermoTag) using
cholesteryl material, which is attached on the target object. Then,
we prototype a mmWave based ThermoScanner for interrogating
thermal scattering response from ThermoTag. Finally, the response
signals are fed to ThermoDot and ThermoNet model for dot-wise
temperature recognition and thermal imaging, respectively. Ther-
moWave is capable of achieving the precision of ±1.0°F in the range
of 30°F to 120°F for dot-wise temperature and ±3.0°F precision in
thermal imaging. ThermoWave is promising to enable wireless sig-
nals to sense environmental and object temperature without the
infrastructure support. Various experiments also proved robust-
ness of ThermoWave, proving its potential to serve as the next
generation temperature sensing technology.
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