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ABSTRACT
Earpiece mode of smartphones is often used for confidential com-
munication. In this paper, we proposed a remote(>2m) and motion-
resilient attack on smartphone earpiece. We developed an end-to-
end eavesdropping systemmmEve based on a commercial mmWave
sensor to recover speech emitted from smartphone earpiece. The
rationale of the attack is based on our observation that, soundwaves
emitted from the smartphone’s earpiece have a strong correlation
with reflected mmWaves from the smartphone’s rear. However, we
find the recovered speech suffers from the sensor’s self-noise and
smartphone user’s motion which limit attack distance to less than
2m, causing limited threats in real world.Wemodeled the motion in-
terference under mmWave sensing and proposed a motion-resilient
solution by optimizing the fitting function on I/Q plane. To achieve
a practical attack with reasonable attack distance, we developed
a GAN-based denoising scheme to eliminate the noise pattern of
the sensor, which boosted the attack range to 6-8m. We evaluated
mmEve with extensive experiments and find 23 different models
of smartphones manufactured by Samsung, Huawei, etc. can be
compromised by the proposed attack.

CCS CONCEPTS
• Security and privacy → Mobile and wireless security; •
Human-centered computing → Smartphones.
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Figure 1: An eavesdropper can use a portablemmWave sensor
to recover speech of a victim’s phone call remotely when the
victim uses the Earpiece Mode of his/her smartphone.

1 INTRODUCTION
According to Statista’s report, the number of smartphone users
has surpassed 7 billion up to 2021 and is forecast to further grow
by several hundred million in the next few years [18]. People use
smartphones for their daily voice communications, so the speech
security of smartphones is raising more and more attention.

Previous studies have revealed side-channel attacks on loud-
speakers leveraging non-acoustic sensors, such as lasers [32, 44],
high-speed cameras [12], vibration motors [43], hard drives [24],
optical sensors [33, 34], RF signals [50, 52, 53], electromagnetic ra-
diation [11], and motion sensors [4, 29]. In recent years, researchers
found motion sensors on smartphones can recover speech emitted
by the inbuilt loudspeaker of the same smartphone [5, 6]. These
attacks reveal speech risks on the loudspeaker mode of smart-
phones. However, another more often-used speech mode of smart-
phones, i.e., the Earpiece Mode, is rarely studied.

The earpiece of a smartphone is often mounted on the top area of
the smartphone’s motherboard [40, 41]. Figure 1 shows a common
case to guarantee speech confidentiality of a phone call or voice
message, i.e., the user disables the loudspeaker mode, holds the
smartphone to his/her ear, and listens to speech emitted from the
earpiece. Compared with the loudspeaker of smartphones, a key
feature of the earpiece is that the sound pressure level (SPL) of
its emitted speech is far lower to avoid soundwave-propagation
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Figure 2: Preliminary study. We used Smartphone A to call
Smartphone B. A loudspeaker played human utterances and
chirp audio towards Smartphone A.

through the air for confidentiality consideration, which is hardly
perceived by acoustic sensors or humans from several meters away.

In this paper, we aim to investigate the speech security of smart-
phones’ earpiece mode and answer the following questions: Is the
earpiece mode of smartphones secure enough to ensure the
speech security? If it is not, is it possible to recover intelligi-
ble speech via a portable and easy-to-acquire attack setup?
Can the attacker achieve a practical attack considering a rea-
sonable attack distance(>2m) and the handheld target in real
life? Based on our observation, we find that the reflected mmWave
signals from smartphone’s rear has a strong correlation with the
emitted speech by the earpiece, which can be a side channel of
confidential speech. However, we also investigated that the sens-
ing distance was limited to less than 2m so as to acquire enough
signal-to-noise ratio for audible speech recovery. What’s worse, the
quality of recovered speech can be severely interfered with by users’
movement when they hold the smartphone. So we aim to solve the
challenges of attack distance and human motion and develop an
end-to-end attack system to achieve a practical side-channel attack.

Our work is mainly carried out in the following aspects. We
first identified the side channel by the correlation between the
speech emitted from the smartphone’s earpiece and the reflected
mmWave from the smartphone’s rear via a commercial mmWave
sensor. Then we investigated the characteristics of the side channel
in a controlled environment and demonstrated the limitation of the
attack, i.e., limited attack distance and motion interference. Fur-
thermore, we detailed our software-based solution (i.e.,mmEve)
to enlarge the attack distance (6-8m) and eliminate the interference
of smartphone users’ motion. Specifically, 1) we modeled the static
and body-motion components of the demodulated mmWave signals
on the I/Q plane and proposed a segmental optimization and out-
lier detection mechanism to eliminate these phase components. 2)
We proposed a GAN-based denoising network to characterize the
self-noise pattern of hardware components and improve the intelli-
gibility of recovered speech, which boosted the sensing distance of
the used commercial off-the-shelf (COTS) mmWave sensor to 6-8m.
We performed experiments on 23 different models of smartphones
to validate the performance of our proposed attack system. The
results indicated that mmEve can recover intelligible speech with
an enlarged distance of 6-8m and resilient to the smartphone user’s
motion. The recovered speech can be distorted and unrecognizable
by human but by the machine. To further investigate the threats,

Figure 3: The sharp peaks of the cross correlation when 𝑙𝑎𝑔 =

0 indicate the strong correlation between the mic-recorded
and mmWave-recovered speech.

we performed speech recognition to recognize the distorted speech.
Overall, our contributions are summarized as follows:
• Our work reveals a remote(>2m) and motion-resilient eavesdrop-
ping on smartphone’s earpiece, i.e., a remote adversary can re-
cover intelligible speech via a COTS mmWave device. The attack
does not require any installed malware on targeted smartphones.

• We solved several technical challenges and proposed an end-to-
end system to achieve the practical attack with speech recovery,
including a dynamic clutter suppression method to eliminate
human motion interference and a GAN-based denoising scheme
to boost the attack range to 6-8m.

• We performed extensive experiments to evaluate the proposed
attack on different smartphone models manufactured by Sam-
sung, Huawei, Apple, etc. We find that 23 different models of
smartphones can be compromised by the proposed attack for
speech recovery.

2 RELATEDWORK
2.1 Attack on Smartphone Speaker
Recent studies have revealed that motion sensors can capture sound-
induced vibrations and leak speech information [4–6, 29, 57]. State-
of-the-art works [5, 6] reveal that motion sensors built in smart-
phones can compromise the speech emitted from the same smart-
phone’s loudspeaker. Although these attacks pose great threats
to the smartphones’ speech, they require preinstalled malware to
obtain data from the targeted smartphone and rely on pre-collected
data from the targeted smartphone to train a user-specific model
for speech recognition or reconstruction. In this paper, we seek a
general attack without assumptions of preinstalled malware or a
user-specific model. Another main difference from the aforemen-
tioned motion sensor-based works is that we target another speech
mode of the smartphone, i.e., the earpiece mode which is often
used in people’s daily life. Recently, Basak et al. [7] used mmWave

Figure 4: The results of the chirp-audio recovery.

339



mmEve: Eavesdropping on Smartphone’s Earpiece via COTS mmWave Device ACM MobiCom ’22, October 17–21, 2022, Sydney, NSW, Australia

Figure 5: (c) Recovered speech from a targeted smartphone
(4m away) is overwhelmed by the noise. (d) The speech qual-
ity can be improved significantly with our proposed solution
in Section 6.4.

signals to sense the static smartphone when it played sound via the
earpiece. Our work has four main differences. First, we focus on
recovering continuous sentences while Basak’s focuses on recon-
structing and recovering isolated words on a predefined vocabulary.
Second, we proposed a dedicated solution to boost the limited at-
tack distance from 2m to 6-8m and solve the challenge of human
motion but Basak’s did not solve these problems (limited distance
of less than 2m and targetting on a static smartphone). Third, we
performed extensive experiments on 23 different models of smart-
phones while Basak’s only tested on 2 smartphone models. Fourth,
we used two different public datasets to train and test our model,
respectively. Basak’s used audio samples from all tested speakers
to train the model. Their training and testing words are from the
same person which is a stronger assumption than ours.

2.2 Attack on External Loudspeakers
Vibration-based:Many studies have investigated the side effect
of the loudspeaker or sound-induced vibrations for eavesdropping.
mmVib [22] presented a mmWave-based method for micro-level
vibration monitoring on industry machines. Vibrating objects with-
out movements/location changes (e.g., a hanging bulb or a static
loudspeaker placed on the desk) [12, 27, 32, 34, 44, 51] can leak
sound information. Adversaries can leverage preinstalled malware
or pre-collected data from the victim’s device to recover sound
by non-acoustic sensors [4, 29, 44], wireless signals [52, 53], repro-
grammed audio port [17], hard drive [24], and vibration motors [43].
Compared with these vibrometry-based work that poses threats to
external loudspeakers, our work mainly has three differences:
(1) Our proposed attack requires no prior knowledge (e.g., any mal-
ware or pre-collected data) about the target. (2) The vibrometry-
based attacks often require a large sound pressure (70-110dB) of
loudspeakers or a close distance (centimeters) between the vibrat-
ing object and the loudspeaker to induce the vibration. But our
target, i.e., the small earpiece of smartphones, has an extremely
lower sound volume (48-50dBSPL) than large external loudspeak-
ers (60-110dBSPL). (3) Our target is a moving sound source due to

Figure 6: Compared with (a) original spectrogram, the low-
band (60-180Hz) and high-band of (b) recovered speech is
overwhelmed by the victim’s motion as the red ellipses in-
dicate. (c) The motion interference is eliminated by the pro-
posed method (Section 6.3).

the movement of the smartphone holder (human). The movements
cause great challenges to capture delicate vibrations induced by the
earpiece for speech recovery.
TEMPEST-based: Recently, Nassi et al. [33] revealed an optical
TEMPEST attack that power indicators on the static loudspeaker or
connected hubs can leak speech information due to the variation of
power consumption. Via a telescope, sound can be recovered from
a distance of 15-35m. Nassi’s work targeted static objects that have
power indicators. We contribute to eavesdropping on a moving
target (i.e., a handheld smartphone by the user) free of power indi-
cators. Compared with the visible light of the optical side channel,
mmWave suffers more attenuation during the air propagation. Due
to the limited transmitting power (18mW) and resolution of our
used COTS mmWave sensor, we found that intelligible speech can
only be recovered within an attack distance of 2m. So one of our
contributions lies in boosting the performance of COTS mmWave
sensors and recovering intelligible speech with an attack distance
up to 6-8mwhich is larger than a normal distance between strangers
in life. Besides, an advantage of mmWave compared with visible
lights is that mmWave can easily penetrate opaque objects (e.g.,
a thin paperboard) which hides the device from victims’ view for
stealthy eavesdropping. Choi et al. [11] revealed an EMR (electro-
magnetic radiation) TEMPEST attack against devices that have a
mixed-signal system-on-chip, such as earbuds. Our work eaves-
drops on the smartphone itself and focuses on a different threat
model that earbuds are not used.

3 BACKGROUND
Frequency-modulated continuous-wave (FMCW) mmWave radars
have been widely applied in automotive and industrial applications.
By transmitting a series of FMCW signals (called chirps), the radar
receives and demodulates the reflected wave signals to produce the
intermediate-frequency (IF) signals composed of the In-phase and
Quadrature-phase (I/Q) data. Then the range and displacement of
the objects can be calculated by applying range-FFT on IF signals.

Range Estimation: Take IF signals as 𝐴𝑠𝑖𝑛(2𝜋 𝑓0𝑡 + 𝜙0), then
the estimated range of the object 𝑑 has following relationship with
the frequency 𝑓0 of IF signals: 𝑑 =

𝑐 𝑓0
2𝑆 , where 𝑐 and 𝑆 are the

light speed in a vacuum and the slope of the transmitted FMCW.
A mmWave device with 4 GHz bandwidth can achieve a range
resolution of 3.75𝑐𝑚. Leveraging the range estimation, the attacker

340



ACM MobiCom ’22, October 17–21, 2022, Sydney, NSW, Australia Wang et al.

Figure 7: System framework of mmEve.

can locate the targeted smartphone and steer the mmWave beam to
the specific direction to transmit and receive mmWaves remotely.
With a horizontal angle of ±50 degrees and an elevation angle of
±20 degrees [20], the large Field-of-View (FoV) of the usedmmWave
sensor contributes to compromising smartphones in a large attack
area with little effort to align the beam to the specific area of a
moving target.

Audio Extraction from mmWave Signals: Take the small
displacement of the smartphone’s rear surface resulting from the
earpiece as Δ𝑑 , then Δ𝑑 can be calculated by Δ𝑑 =

𝜆Δ𝜙
4𝜋 , where

Δ𝜙 is the phase change of the IF signal corresponding to the ob-
ject, 𝜆 ≈ 4𝑚𝑚 is the wavelength of the transmitted FMCW. Every
derived phase change of demodulated chirps can measure a corre-
sponding displacement Δ𝑑 of the object. The audio can further be
extracted from the phase 𝜙 where 𝜙 is the phase of the Range-FFT
point corresponding to the smartphone. The sampling rate of the
mmWave sensor can be calculated by 𝑓𝑠 = 𝑓𝑐ℎ𝑖𝑟𝑝 , where 𝑓𝑐ℎ𝑖𝑟𝑝 is
the chirp rate of the mmWave device (10,200 chirps per second
in this paper). Considering that intelligible speech can be distin-
guished from a bandwidth of 2.5 kHz [38], the 𝑓𝑠 of the mmWave
device satisfies the Nyquist theorem for intelligible speech recovery
theoretically (𝑓𝑠 = 10.2𝑘𝐻𝑧 > 2 ∗ 2.5𝑘𝐻𝑧). However, the speech
quality and intelligibility can also be affected by factors like SNR of
received signals and clutter interference in remote eavesdropping.

4 THREAT MODEL
Attack Scenario:We consider a scenario when a victim makes a
smartphone call or listens to voicemessages. The victim puts his/her
ear close to the smartphone Earpiece to ensure the confidentiality
of the speech contents which can be secrets related to the victim’s
privacy. An adversary, interested in the speech contents, leverages
a portable mmWave device to launch remote eavesdropping.
Attack Goal: Considering that audible speech is often taken as the
first-hand data for speech analysis, the attacker’s goal is to recover
audible and intelligible speech. To ensure stealthiness, the attack
aims to eavesdrop from several meters (>2m) away from the victim
to avoid the victim’s awareness.
Assumption:We assume the attacker and the victim’s smartphone
are at the same scene without blockages in between, such as an open
square or an office, so the attacker can transmit mmWave towards
the victim’s smartphone. Considering that the victim’s head can
block the mmWave towards the smartphone when he/she holds
the smartphone close to the ear, we focus on the rear surface of
the victim’s smartphone to achieve the eavesdropping in this paper.
Note that we do not assume the attacker has any installed
malware or prior knowledge about the targeted smartphone.

5 PRELIMINARY STUDY
5.1 Characterizing the Side Channel on

Smartphones with A mmWave Sensor
Correlation analysis:Weused a COTSmmWave sensor (AWR1843-
Boost) to sense the smartphone’s rear when the smartphone’s ear-
piece plays audio signals. For each tested smartphone, we used
two tripods to hold the mmWave device and the smartphone re-
spectively as shown in Figure 2. We used Smartphone A to call the
fixed Smartphone B (i.e., the target). And then the loudspeaker near
Smartphone A played audio so that Smartphone B could also replay
the same audio via its earpiece mode. To avoid unwanted vibration
sources, we placed the loudspeaker and Smartphone A in a confer-
ence room about 200m away from Smartphone B and the mmWave
sensor. We controlled the loudspeaker-connected laptop to play the
audio via a remote desktop software [19]. The loudspeaker near
Smartphone A played the first sentence of Harvard sentences [13]:
The birch canoe slid on the smooth planks. In the meantime, we used
the mmWave sensor to transmit mmWave towards the Smartphone
B’s rear and extracted speech audio from the phase of reflected
mmWave signals as introduced in Section 3. Unfortunately, we
found that the extracted audio from mmWave signals had poor
intelligibility and is corrupted by noises. To quantify the similarity
between the mmWave-recovered and original audio, we calculated
cross correlation between the two audio[24]:

(𝑓 ∗ 𝑔) [𝑛] ≜
∞∑︁

𝑚=−∞
𝑓 [𝑚] · 𝑔[𝑚 + 𝑛], (1)

where 𝑓 [𝑚] is the complex conjugate of 𝑓 [𝑚] and 𝑛 is the time dis-
placement between the two series. A larger value of Eq. 1 indicates
a stronger correlation between the two audio series. Considering
that we have aligned the two series in the time domain for better
display, there should be a peak when 𝑛 = 0 (lag=0) if the audio
recovered by mmWave has a correlation with the audio played by
the earpiece of the smartphone. The results are shown in Figure
3. We observed that the recovered speech via mmWave has
a significant correlation with the original speech audio in
the controlled experiment (with an attack distance of 2m).
Although the speech has poor intelligibility, the results confirm the
existence of the side channel in the studied smartphones’ earpiece.

Frequency Response of the Side Channel. To further investi-
gate the characteristics of the side channel, we placed the smart-
phone 1m away from the mmWave sensor and study the frequency
response via chirp audio. We kept other settings unchanged and
made a phone call by Smartphone A to the targeted Smartphone B.
We played the audio chirp (80Hz-2kHz) towards Smartphone A via
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Figure 8: An illustration
of basics of the clutter sup-
pression.

Figure 9: Trajectory of
−→
𝑆𝑟 on I/Q plane is (a) a regular arc for

a static smartphone fixed on a tripod but (b) helical curves
for a handheld smartphone.

Figure 10: There is a step at the
junction of every two successive
frames.

the loudspeaker so that the targeted Smartphone B could replay the
audio chirp via its earpiece during the call. During the experiment,
we used the mmWave device to eavesdrop on the Smartphone B’s
earpiece. The recovered audio from each targeted Smartphone B is
shown in Figure 4. (1) We found that there were harmonics of
40 Hz (the yellow stripes in the spectrograms) covering from
80Hz to 2kHz. These harmonic noises dominate the spectrogram
of the recovered audio (especially the frequency band below 500
Hz), which would damage the spectrum structure of human voice
and interfere with speech intelligibility. In Section 6.4, we will give
an analysis of the cause of these harmonic noises and eliminate
them. (2) We also observed that the upper frequency of the
recovered audio signals can reach 1.7kHz. Considering that
the non-tonal language like English is dominantly distinguished by
formants of vowels and consonants, the bandwidth of 80Hz-1.7kHz
has covered F0 formants of all vowels and 62.5% consonants, and
F1 formants of 68.8% vowels [9]. The strong low-frequency com-
ponents of the formants determine the intelligibility of the spoken
phonemes [43]. Besides, works have proved that a band of 1.5kHz
of human speech contains abundant information related to both
the secret (e.g., digit password) and the human speakers’ gender
and identity [5, 6, 44]. So such bandwidth of recovered audio can
cause great threats to human speech.

5.2 Robustness Study of the Side Channel
5.2.1 Attack Distance. We changed the sensing distance 𝑑 be-
tween the smartphone and the mmWave device and kept other
settings unchanged. Figure 5 shows the recovered audio when the
sensing distance changes from 2m to 4m. We can observe that when
the distance increases to 4m, the recovered speech is completely
overwhelmed by the noise which results in poor speech quality and
intelligibility. In other words, the sensitivity of the side channel
can degrade significantly in a long distance. Root-cause analysis:
According to Δ𝑑 =

𝜆Δ𝜙
4𝜋 in Section 3, the speech is recovered from

the phase of demodulated mmWave signals. Thus, the sensitivity
of the side channel can be characterized by the phase resolution
Δ𝜙 of the COTS mmWave sensor. To recover the audio with little
distortion, the phase of two demodulated mmWave chirps should
satisfy 𝜙1 − 𝜙2 > Δ𝜙 , i.e., a smaller Δ𝜙 indicates a better sensing
resolution. However, the phase resolution is determined by the SNR
of received mmWave signals according to Δ𝜙 =

𝛽√
𝑆𝑁𝑅

[55], where

𝛽 is the 𝑆𝑁𝑅 coefficient for mmWave devices. We denote the attack
distance between the mmWave device and the smartphone as 𝑑 ,
then the 𝑆𝑁𝑅 of received signal [39] can be calculated as

𝑆𝑁𝑅 =
𝛼𝜆2𝐺𝑇𝑥𝐺𝑅𝑥

(4𝜋)3𝑑4𝐹
, (2)

where 𝛼 is the coefficient related to the mmWave hardware con-
figuration, 𝜆 is the wavelength of transmitted mmWave, 𝐺𝑇𝑥 and
𝐺𝑅𝑥 are the gain of transmitter and receiver of the mmWave sensor
respectively, 𝐹 is the noise floor of the sensor. According to Eq.
2, we can find that the increasing distance can cause signifi-
cant degradation on the SNR of received mmWave, and then
worsen the sensing resolution of the COTS mmWave sensor.
To mitigate the distance limitation, an intuitive solution is to in-
crease the gain of the sensor 𝐺𝑇𝑥 and 𝐺𝑅𝑥 with a more powerful
amplifier which requires a customized hardware design. To deeply
understand the side channel posed by the COTS mmWave sensor, we
choose a software-based solution (Section 6.4) to decrease the noise
floor 𝐹 of the sensor and boost the sensing resolution of the COTS
sensor without hardware changes.

5.2.2 Human Artifacts. In a realistic condition, the smartphone
is often used in a mobile condition, e.g., a user holds the smartphone
to his/her ear and listens to the speech emitted from the earpiece.
So there can be involuntary motion when the user holds the smart-
phone, such as arm moving and body wiggles. To investigate the
impact of human artifacts on the side channel, we asked a male
to hold a smartphone (GalaxyS20) close to his ear with natural
human motion during the call. The spectrogram of recovered audio
is shown in Figure 6(b). The area with brighter color indicates a
higher signal power. More areas with similar color between two
figures indicates higher similarity. We found that the interfered
frequency band of human motion can cover 60-180Hz, indi-
cated by the red ellipse-marked areas. If not properly mitigated,
the speech contained in the phase signal can be overwhelmed and
distorted by the human artifacts, which destroy the intelligibility
of the recovered speech. Besides, as denoted by the black and red
ellipse-marked areas, the power of higher band can degrade due to
the domination of the human interference. However, it is nontriv-
ial to suppress such interference because the interfered frequency
band overlaps with the fundamental frequency of the human voice
(85-255Hz). The components of human voice can also be eliminated

342



ACM MobiCom ’22, October 17–21, 2022, Sydney, NSW, Australia Wang et al.

Figure 11: We first generate a training dataset by combining a public voice dataset and mmWave-noise dataset (Phase 1) and
then train the Mask-Gen model based on a GAN-based neural network (Phase 2). In the attack phase (Phase 3), we use the
Generator to denoise noisy speech recovered by mmEve.

when the interfered band is filtered by a digital filter, which will
damage the vital fundamental frequency of human speech. So we
further investigated the impact of human motion under mmWave
sensing. Based on an analysis on the I/Q plane in Section 6.3, we pro-
posed a dynamic clutter suppression method to eliminate motion
interference and achieve accurate speech recovery.

6 ATTACK DESIGN
In this section, we introduce our end-to-end attack systemmmEve
for intelligible speech recovery from the targeted smartphone’s
earpiece. The framework is shown in Figure 7.

6.1 Target Localization and Tracking
When the attacker steers the mmWave beam to the victim coarsely,
the distance of the target can be measured according to 𝑑 =

𝑐 𝑓0
2𝑆 in

Section 3. To ensure stealthy eavesdropping, the attacker should
be able to track the target continuously. Note that the attacker is
not required to change the position of the mmWave device as long
as the targeted victim is within the FoV of the mmWave device.
We denote 𝑆 as the demodulated signal. We first apply range-FFT
on every demodulated chirp in 𝑆 where the peaks in the spectrum
indicate detected objects. Due to the fact that the speed of human
movement is far less than the fast chirps (10,200 chirps per second),
the peak corresponding to the victim, i.e., the location 𝑙𝑜𝑐𝑖 , can only
shift to the adjacent FFT points in the spectrum. By tracking the
peak’s location in the spectrum [8], we can derive the locations of
the victim.

6.2 Static Clutters Suppression
We take the mmWave signals reflected by static objects near the
victim as static clutters.When the distance of static objects has
the same range as the victim to the mmWave device, the static
objects can be detected in the same range-bin with the victim. If not
suppressed properly, the clutters can degrade the sensing resolution
[22] of the side channel, which can be modeled as follows. Here
we denote the phasors corresponding to the targeted victim and
static objects in the same range-bin as

−→
𝑆𝑡 and

−→
𝑆𝑜 , respectively. The

phasor
−→
𝑆𝑟 derived from the range-bin of the IF signals can be taken

as the superposition of these two phasors, formulated as
−→
𝑆𝑟 = 𝐴𝑡𝑒

𝑗 ·2𝜋 𝑓 (𝜏𝑖𝑛𝑖𝑡+Δ𝜏ℎ (𝑡 )+Δ𝜏𝑠 (𝑡 ) )︸                                ︷︷                                ︸
−→
𝑆𝑡

+
∑︁

𝑖
𝐴𝑖𝑒

𝑗 ·2𝜋 𝑓𝑖𝜏𝑖︸             ︷︷             ︸
−→
𝑆𝑜

, (3)

where 𝜏𝑖𝑛𝑖𝑡 is chirp delay induced by static parts of human body and
nearby objects,Δ𝜏ℎ is the disturbance of humanmotion, such as arm
moving while holding the smartphone, Δ𝜏𝑠 indicates components
induced by the delicate vibration on the smartphone rear.

Based on the above problem formulation, the key goal is to elim-
inate phasor

−→
𝑆𝑜 and estimate the components corresponding to the

smartphone’s vibration in phasor
−→
𝑆𝑡 for speech recovery. An illus-

tration of the impact of static clutters on the vibration measurement
is represented in Figure 8. When the smartphone vibrates or the
victim moves his/her arm while holding the smartphone during a
phone call, the phase 𝜙𝑡 of the phasor

−→
𝑆𝑡 rotates between A and B

on the I/Q plane, where 𝜙𝑡 = 2𝜋 𝑓 (𝜏𝑖𝑛𝑖𝑡 + Δ𝜏ℎ (𝑡) + Δ𝜏𝑠 (𝑡)) which
contains the speech information. However, due to the existence of
the static clutters, i.e., the phasor

−→
𝑆𝑜 , the actual measured phase

𝜙𝑚𝑒𝑎𝑠 is not equal to 𝜙𝑡 but 𝜙𝑟 as shown in Figure 8. According to
Δ𝑑 =

𝜆Δ𝜙
4𝜋 in Section 3, this results in a consequence that the mea-

sured displacement Δ𝑑 is far smaller than the actual value (𝜙𝑡 ⩾ 𝜙𝑟 ).
Based on the above analysis, we can find that if we can estimate the
phasor

−→
𝑆𝑜 and then eliminate

−→
𝑆𝑜 from the samples on the I/Q plane,

we can get the ideal measurement of vibration displacement, i.e.,
𝜙𝑚𝑒𝑎𝑠 = 𝜙𝑡 . To achieve this goal, we estimate the center 𝑂 ′ (𝐼0, 𝑄0)
of the circle fitted by the samples on the I/Q plane. Then we get the
estimated

−→
𝑆𝑜 = (𝐼0, 𝑄0). Finally, we further perform a Coordinate

Transformation from I/Q plane to I’/Q’ plane as shown in Figure 8,
to get the ideal phase value.

6.3 Motion-resilient Speech Recovery
As analyzed in Section 5.2, the human interference can cause distor-
tion in the recovered speech. The humanmovement mainly consists
of two parts, i.e., the location changes (solved in Section 6.1) and the
body movement (such as arm movements and body wiggles while
holding a smartphone for calling.) This section focus on solving
the impact of the latter. After the static clutters suppression, the
processed data samples on the I’/Q’ plane can be formulated as

−→
𝑆𝑟𝑟 =

−→
𝑆𝑡 = 𝐴𝑡𝑒

𝑗 ·2𝜋 𝑓 (𝜏𝑖𝑛𝑖𝑡+Δ𝜏ℎ (𝑡 )+Δ𝜏𝑠 (𝑡 ) ) (4)

To combat the human artifacts, there are two nontrivial problemswe
need to consider. First, it is likely that the human-motion-induced
phase changes |𝜙ℎ | = |2𝜋 𝑓 Δ𝜙ℎ | ⩾ 𝜋 which will cause integer ambi-
guity problem [47] in the derived phase of

−→
𝑆𝑟𝑟 . Second, the amplitude

𝐴𝑡 of the phasor
−→
𝑆𝑟𝑟 can also change with the human motion. This

can pose a great challenge to the circle-fitting introduced in Section
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Figure 12: Harmonic noises are eliminated by Frame-aware
Detrend without damaging audio spectrogram.

6.2 because the resulting trajectory of
−→
𝑆𝑟𝑟 is not arcs of a circle but

helical curves on the I/Q plane as shown in Figure 9(b).
Dynamic Motion Suppression:We model motion suppression

as an optimization problem with objective function

F𝑜𝑏 𝑗 =
𝑁∑︁
𝑛=1

[√︃
(𝐼𝑖 − 𝐼0)2 + (𝑄𝑖 −𝑄0)2 − 𝑅0

]2
, (5)

where (𝐼𝑖 , 𝑄𝑖 ) ∈ S, S is the segment of the trajectory of
−→
𝑆𝑟𝑟 . The

optimization goal is to find the (𝐼0, 𝑄0, 𝑅0) that minimizing the sum
of the squared radial deviation. Considering that the speed of human
motion can be taken as a constant within a short time, the key idea
of the motion suppression is to take every short segment of the
trajectory of

−→
𝑆𝑟𝑟 as an arc of a circle and to find the best circle center

for every short segment.We set the length of each segment to 200ms.
When the (𝐼0, 𝑄0, 𝑅0) for every segment is estimated, the points
of the segments are applied to the static clutters suppression as
introduced in Section 6.2. The final recovered speech (i.e., the phase
information of these translated segments) is derived by connecting
the translated segments and applying a phase unwrapping [16].
However, a side effect of the segment-based fitting is the induced
discontinuity in the junction of two translated successive segments
after the phase unwrapping. The discontinuity can induce jitter in
the recovered audio, damaging the speech quality and intelligibility.
To solve this problem, we propose to apply an outlier detection and
correction (OutlierDetCo) to the recovered speech signals.

Outlier Detection and Correction: The rationale is that due to
the original signal being gradually varied with human motion, we
can first apply a windowwith a size of 1024 on the unwrapped phase
and filter out the phase (i.e., the outliers) that deviate the median
of the window with triple median absolute deviation (MAD) [25].
Then each outlier is replaced by the mean of the phase value in the

Figure 13: Layers of GAN-based denoising network.

Figure 14: The spectrograms of (a)mic-recorded audio, (b)raw-
recovered audio and (c)processed audio by mmEve (Speech:
repeating “zero” by three times).

window. The window slides with no overlaps until all outliers are
detected. Finally, the recovered speech is corrected.

6.4 Speech Enhancement
6.4.1 Frame-aware Detrend. As introduced in Section 5.1, the re-
covered speech suffers from the harmonic noises of 40Hz which
damages the speech intelligibility. Note that this is a nontrivial
problem that cannot be solved by a band-pass filter bank as the
harmonics overlap with the frequency band of human speech. So
We further investigate the phenomena and found that the har-
monic noises result from phase shift of the mmWave sensor.
Specifically, we find that the phase is reset to a specific value at the
very beginning of every frame of chirps (the mmWave chirps are
transmitted in frame units). Due to the unavoidable phase shift of
the mmWave hardware, the derived phases from each frame will
drift with time going by, resulting in a step at the junction of two
successive frames as shown in Figure 10. According to the Fourier
theorem, the 40Hz step noise can further induce harmonics of 40Hz.
To solve this problem, our key idea is to eliminate the trend of
each frame rather than filtering the whole signal. So we apply a
Frame-aware detrend method based on the polynomial regression
[10]. The rationale is to first estimate the low degree polynomial
components (𝑑𝑒𝑔𝑟𝑒𝑒 = 10) and then subtract them from the original
signal to suppress the trend of phase shift. Figure 12 indicates the
effectiveness of this method. We can observe that the harmonics
of 40Hz are completely filtered out while the audio components
are well retained. After the Frame-aware detrend process, a High-
pass Filter with a cut-off frequency of 80Hz is further applied to
eliminate residual low-frequency noise.

6.4.2 Denoising Neural Network. As demonstrated before, the lim-
ited SNR of received signals causes poor intelligibility of recovered
speech especially when the sensing distance is over 2m. Li et al.
[26] proposed a virtual-transceiver solution to improve the sensing
range of acoustic sensors. In our studied problem, we focus more
on boosting the SNR of the sensor. To solve this problem, we turn
to a software-based method to filter out the sensor’s self-noise (i.e.,

344



ACM MobiCom ’22, October 17–21, 2022, Sydney, NSW, Australia Wang et al.

Figure 15: (a) The portable system setup of mmEve. (b) The
definition of attack distance 𝑑 and attack angle 𝜃 .

declining the noise floor 𝐹 ). The source of the self-noise can be
modeled as a filter whose parameters are determined by the whole
receiver chain, including antennas and components on chips (e.g,
mixers, amplifiers). To combat the noise of the receiver chain, an in-
tuitive solution is to design a corresponding inverse filter. However,
due to the complexity of the receiving chain, it is impractical to
estimate the parameters of the inverse filter by linear filter design
methods considering the ubiquitous nonlinearity of the receiving
chain components [21, 36, 42]. Considering the nonlinear charac-
teristic of deep neural networks (DNN), we turn to the DNN to
estimate the parameters of the inverse filter (we call itMask) which
can well characterize both the linearity and nonlinearity of the
receiving chain components. The mask can suppress the noise and
improve the speech quality and intelligibility, especially when the
raw recovered speech by the mmWave device has a poor SNR due
to a long attack distance. Existing studies have verified that speech
quality and intelligibility can be improved by optimizing objective
metrics such as STOI [15]. To improve the speech quality and in-
telligibility, we include the STOI into the loss function to optimize
the network. Furthermore, we apply the generative-adversarial-
network (GAN) structure [1] to guarantee the generalization. The
speech enhancement contains three phases as shown in Figure 11.

Phase 1: Training Data Preparation.We used a public dataset
VCTK Corpus [49] and mmWave-noise dataset collected from the
mmWave device to generate a training dataset. The mmWave-
noise dataset is collected from the mmWave sensor in an open
square without moving objects in the background and extracted by
the same workflow mentioned before. We resample the mmWave
noise from 10.2kHz to 16kHz and combine the two signals, i.e.,
the public speech signal 𝑠 = {𝑠1, ..., 𝑠𝑁 } and the mmWave noise
signal 𝑛 = {𝑛1, ..., 𝑛𝑁 }, into noisy speech signals 𝑠𝑛 with differ-

ent SNR according to 𝑠𝑛 = 𝑠 + 𝛼 · 𝑛, where 𝛼 =

√︃
𝐸𝑠/(10

𝑠𝑛𝑟
10 𝐸𝑛),

𝐸𝑠 =
∑
𝑖 𝑠

2
𝑖
, 𝐸𝑛 =

∑
𝑖 𝑛

2
𝑖
, 𝑠𝑛𝑟 is the desired SNR (dB) of synthesized

speech which is a random number within [−9, 9].
Phase 2: Offline Training. The Generator consists of a Mask-

Gen Model and a multiply operation. The Mask-Gen Model gen-
erates the mask of inputted noisy speech spectrogram and then
multiplies the two to generate enhanced speech. The enhanced
speech and the corresponding clean speech are fed into the Discrim-
inator (Q-Net [14]) to estimate the speech metric score (e.g., STOI)
of the enhanced speech. Then the loss is calculated by the mean
square error of the estimated and the true scores [15]. The Genera-
tor and the Discriminator are updated alternatively. As shown in
Figure 13, the Mask-Gen model has four bidirectional LSTM layers
with an input size of 513 and a hidden size of 100 with dropout

Figure 16: (a) The smartphone is fixed on a tripod. (b) A user
sits on a chair holding the smartphone. (c) A user stands/steps
back and forth while holding the smartphone.

mechanism (dropout rate=0.1) to avoid over-fitting. The learnable
sigmoid is used for frequency-aware compression and improves the
performance of speech enhancement [15]. The Q-Net contains four
two-dimensional convolutional (Conv2D) layers each of which is
followed by a Batch Normalization layer and a LeakyReLU layer.
The Discriminator output the estimated scores to calculate the loss
during training. Detailed parameters are shown in Figure 13.

Phase 3: Real-time Enhancing. Once the offline training fin-
ishes, the Generator can be deployed on a portable system to en-
hance the raw recovered speech by mmEve. The raw noisy speech
is first resampled to 16kHz and then its spectrogram derived by
short-time Fourier transform (STFT) is fed into theMask-GenModel
to extract a Mask. The spectrogram is further multiplied with the
Mask to generate an enhanced spectrogram. Finally, the speech
signal is recovered by applying an inverse STFT. An enhanced au-
dio trace with 4m attack distance is shown in Figure 5(d). Figure
14(a)(b)(c) show the spectrograms of mic-recorded, raw-recovered
and processed audio by mmEve. We can observe that from a dis-
tance of 6m, the microphone cannot record the speech contents but
only background noise. By contrast, mmEve can recover speech
contents by suppressing the noise and motion interferences in the
raw-recovered speech.

7 EVALUATION
7.1 System Setup
The system setup is shown in Figure 15 (a).We use a COTSmmWave
sensor AWR1843Boost [20] manufactured by Texas Instruments to
transmit and receive mmWave signals. The device is widely applied
in automotive and industrial applications. AWR1843Boost has a
portable size of 6.5𝑐𝑚 × 8.5𝑐𝑚 × 2.0𝑐𝑚 and works under a 5V/2.5A
power supply. It has an integrated antenna array with 3 Tx and
4 Rx antennas on the same board. It transmits 77-81GHz chirps
with a transmitting power of 12dBm. The demodulated chirps are
sampled by a general data acquisition board DCA1000EVM and
sent to a laptop (ThinkPad T490) for processing. The denoising
neural network is implemented with Pytorch and trained offline
on a Linux Server with four GeForce RTX 3090 GPUs and then
deployed on the laptop for real-time speech enhancement.

7.2 Dataset and Settings
We use the Harvard Sentences in Open Speech Repository (OSR)
[13] which is widely used in speech tests, to evaluate mmEve. Note
that there is no overlap between the dataset and the VCTK Corpus
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Figure 17: Results of controlled experiments.

(used to train the denoising neural network in Section 6.4) in order
to show the generalization of the attack. There are 100 utterances in
total including half of male utterances and half of female utterances.
We played the utterances via a loudspeaker (50-60dB SPL, the nor-
mal SPL of human talking) towards smartphone 𝐴 to emulate a
human talking when smartphone𝐴 calls the victim’s smartphone 𝐵.
The communication distance between 𝐴 and 𝐵 is larger than 200m.
Then we use mmEve to eavesdrop on the smartphone 𝐵 to recover
the speech emitted by 𝐵’s earpiece. The volume of smartphone B’s
earpiece mode (Level0-Level7) is set to Level4. The background
noise is around 49-50dB SPL measured by a sound level meter from
2m away from the smartphone 𝐵. There are 23 different models of
smartphones (listed in Figure 18) hired from volunteers included in
the experiments. It is ensured the experiments follow the internal
review board (IRB) protocol of the host institution.

7.3 Metrics
Speech quality and intelligibility are two significant aspects where
the quality means how comfortable the speech is, such as clean or
noisy) and the intelligibility means how comprehensible the speech
is for human hearing). In the following pages, we use two metrics
to quantify the speech quality and intelligibility, respectively. 1)
Peak Signal-to-Noise Ratio (PSNR) is a commonly used metric to
quantify the speech quality [12, 53]. It bounds the human audibility
with 0𝑑𝐵, which means the speech signal with a 𝑃𝑆𝑁𝑅 > 0𝑑𝐵
is audible for human perception [53]. A higher PSNR indicates a
better speech quality. 2) Short-Time Objective Intelligibility
(STOI) characterize the intelligibility of human speech with the
score within [0,1]. According to Taal’s work [48], over 90% of words
(Harvard Sentences) can be recognized correctly by humans when
STOI>0.7. A higher STOI indicates better intelligibility.

7.4 Controlled Experiment
We performed controlled experiments of different attack distances,
angles, and earpiece volumes in a laboratory. The attack distance 𝑑

and angle 𝜃 are defined in Figure 15(b). The smartphones are fixed
on a tripod as shown in Figure 16 (a).

7.4.1 Attack Distance. We set the mmWave device towards the
targeted smartphone and change the sensing distance from 2m to
10m. The volume of the smartphone’s earpiece mode is set to Level
4 (the maximum is Level 7). When the earpiece emits sound, there is
no change in the SPL value measured by the sound level meter from
2m away. For a better understanding of the performance of mmEve,
we used a professional condenser microphone (Gmtd GM-S801) to
collect the sound emitted from the smartphone (GalaxyNote10) ear-
piece from different distances, i.e., 0.05m, 2m, 4m, 6m, 8m, and 10m.
When the microphone is placed near the smartphone’s earpiece
(0.05m), the PSNR/STOI scores achieve 21.3dB/0.73 as the blue/red
dotted lines shown in Figure 17(a) respectively. However, when the
distance changes from 2m to 10m, the PSNR of the mic-recorded
speech is below -18dB and the STOI score degrades to less than
0.26, in which condition the speech is totally beyond the percep-
tion of human hearing. The mic-recorded results indicate that the
earpiece-emitting audio over the air has poor intelligibility which
guarantees speech confidentiality to some extent. By contrast,
the mmEve-recovered speech has higher scores of both PSNR and
STOI. Although the speech quality (PSNR) and intelligibility (STOI)
degrade with the increasing attack distance, the PSNR and STOI
scores can be improved to over 20dB and 0.78 via the precessing
scheme of mmEve when the attack distance is 8m. When the attack
distance increases to 10m, the recovered speech has limited intel-
ligibility (STOI=0.55). However, the eavesdropping performance
with an attack distance of 6-8m is enough for a practical attack in
the physical world.

7.4.2 Attack Angle. Considering that the orientation of targeted
smartphone’s rear may change during the phone call due to the
victim’s movements, we performed controlled experiments to inves-
tigate the impact of the smartphone’s orientation. The attack angle
𝜃 related to the smartphone’s orientation is defined in Figure 15 (b).
We fixed a smartphone on a tripod each time and set the tripod 6m
away from the mmWave sensor. We rotated the spindle of the tripod
to change the attack angle from 90◦ to 30◦. From Figure 17(b), we
can observe that the PSNR and STOI are kept at a high level when
the attack angle changes from 90◦ to 50◦, which indicate mmEve
can recover speech with high quality and intelligibility when the
targeted smartphone changes the orientation within 50◦-90◦.

7.4.3 Volume. We change the volume of smartphones’ earpiece
mode from Level 1 to Level 7 and re-conduct the experiments. We
set the attack distance to 6m and attack angle within 80◦-90◦, re-
spectively. The attack results are shown in Figure 17(c). Generally,
the PSNR/STOI scores rise with the increasing volume. we can also
observe that the PSNR and STOI of recovered speech are respec-
tively larger than 20dB and 0.78 when the volume ranges from Level
2 to Level 7. This indicates that mmEve can cause threats to speech
in a wide range of volumes in people’s daily life. Considering that
a high volume is harmful to human hearing and a low volume can
hardly for user perception when using the smartphone, we consider
the user takes a medium volume (Level 4) in daily life. So the next
experiments take this volume setting unless otherwise specified.
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Figure 18: Attack results on 23 smartphones in the Stand+Move condition in Section 7.5 (attack distance: 6m).

7.5 Handhold Experiment
To investigate the performance of mmEve under victim’s move-
ments, we asked volunteers to hold the 23 smartphones and evaluate
the impact of victims’ movements in three conditions as shown
in Figure 16(b)(c), i.e., 1) Sit: sitting on a chair and holding the
smartphone with arm wiggles, 2) Stand: standing and holding the
smartphone with arm wiggles, 3) Stand+Move: moving back and
forth while holding the smartphone with arm wiggles. We kept the
attack distance to 6m and attack angle within 60◦-90◦. Figure 17(d)
show the results in the three conditions where the dotted lines in-
dicate the PSNR and STOI scores without the processing of mmEve
in Stand+Move condition. Compared with the former conditions,
we find the Stand+Move condition poses a greater challenge to
mmEve, which causes a lower PSNR (11dB) and STOI (0.53) as the
blue and green dotted lines indicate. However, after the clutter sup-
pression and speech enhancement by mmEve, the speech quality
(PSNR>18dB) and intelligibility (STOI>0.75) are greatly improved,
which enhances attack practicality in the real world. The results
of the 23 smartphones are shown in Figure 18. We find that the
PSNR/STOI score varies across different models of smartphones.
This may result from the structures of the smartphones considering
the hardware design and earpiece placement are different and thus
cause different levels of information leakage.

7.6 Speech Recognition
The recovered speech can be distorted and unrecognizable by hu-
mans. To further investigate the threat, here we performed auto-
matic speech recognition on the recovered speech. (1) Commercial
speech recognition: we adopted Amazon Transcribe (a service for
speech-to-text transcription) [2]. We uploaded the original and re-
covered audio files and performed the transcribing. Then we down-
loaded the speech-to-text results and calculated the word error rate

Figure 19: The WER of the speech recognition experiments.

(WER) [54]. (2) Customized models: we also built two speech recog-
nition models with different decoders, denoted as DeepSpeech_A
(without language model rescoring) and DeepSpeech_B (with lan-
guage model rescoring) [28]. The rescoring mechanism can help
to correct misspelling errors. The audio are transformed into spec-
trograms with short duration (25ms) and fed into a DeepSpeech2-
based neural acoustic model [3] with texts for training. Then the
output are fed into the decoder to infer final words. We adopted
the leave-one-out method to test the two speech recognition mod-
els, i.e., for each experiment we used the audio samples from 22
smartphones (Section 7.2) and test with the samples from another
different smartphone model. For each tested smartphone, the sam-
ples are the recovered audio in Section 7.5. Figure 19 shows the
average WER of the leave-one-out-test experiments. We can ob-
serve that the WER of the Amazon Transcribe is about 17%-26%
while the WER of DeepSpeech_A and DeepSpeech_B are under 9%.
This indicates that to further improve the attack performance (e.g.,
lower WER), the attacker can use the mmWave-recovered speech
collected from smartphones to train the model for the recognition
of distorted speech. The performance of DeepSpeech_B is better
than DeepSpeech_A. The reason is that the rescoring mechanism
contribute to correct the misspelled words and thus reduce the
WER of speech recognition.

8 CASE STUDY
Experimental Setting:We made phone calls/send voice messages
to five volunteers respectively and asked them to hold their smart-
phones naturally to listen to the speech emitted from their smart-
phones’ earpiece. The phone callers/voice-message senders both
include a male and a female who say the following utterances in a
conference room via another smartphone, i.e., 1) “your password
is zero one two three” (phone call), 2) “today’s meeting has been
canceled” (voice message). We also placed a microphone near the

Figure 20: Attack scenarios in the case study.
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Table 1: Attack results of the case study.

Smartphone PSNR/STOI

Office Café Roadside
GalaxyNote10 25dB/0.83 23dB/0.81 19dB/0.78
GalaxyS20 27dB/0.82 26dB/0.82 21dB/0.76
Oneplus9Pro 21dB/0.79 24dB/0.81 18dB/0.75
HuaweiP40 23dB/0.80 25dB/0.79 14dB/0.76

OppoReno3Pro 26dB/0.81 24dB/0.81 19dB/0.71

phone caller/message sender to record the raw speech. We consid-
ered three scenarios as shown in Figure 20. 1) Office: The victim sits
on a chair and holds the smartphone with natural arm movements.
An adversarial colleague uses mmEve to eavesdrop on the victim’s
smartphone. For stealthiness consideration, the attacker blocks the
mmWave device with an opaque paperboard (0.5mm thin) which
can be easily penetrated by mmWave. The attack distance is about
5m with an attack angle within 70◦-90◦. 2) Café: The victim sits on
a chair and holds the smartphone close to his/her ear with natural
body movements. An adversary uses mmEve to eavesdrop on the
victim’s smartphone. The attack distance is about 5.5m with attack
angle within 70◦-90◦. 3) Roadside: The victim stands on the road-
side and holds the smartphone with natural body movements. The
adversary uses mmEve in a car with attack distance of 8.5m and
angle within 60◦-90◦.
Attack Results: The results are shown in Table 1. mmEve recovers
the speech with high PSNR /STOI scores over 21dB/0.79 in the office
and café scenarios. There is a slight degradation in the roadside
scenario due to the longer distance and tough attack angle during
the movements of victims. Overall, mmEve can achieve an average
PSNR/STOI score above 18dB/0.75 in all three real-world scenarios.
Overall, the results indicate the practicality of mmEve.

9 ROBUSTNESS INVESTIGATION
We investigate the robustness of mmEve with controlled experi-
ments in a laboratory by fixing the targeted smartphone on the
tripod (except for Section 9.2). We randomly selected ten sentences
from the 100 sentences of OSR and set the attack distance to 6m
with an attack angle within 80◦-90◦. We kept other settings the
same as in Section 7.4. Without specific clarifications, the reported
results of PSNR and STOI are the mean scores of smartphones.
Considering that Android-based smartphones are prevalent due to
the open-source feature, we chose the Android-based smartphones
to evaluate mmEve in this section (Tested smartphones in Section
9.2-9.5: GalaxyNote10, GalaxyS20, Oneplus9Pro, HuaweiP40, and
OppoReno3Pro).

9.1 Smartphone Casing
We investigated the impact of smartphone cases. There are two
types of commonly-used cases including hard cases made of plastic
and soft cases made of rubber or leather. The attack results are
shown in Table 2. We can observe that 1) the plastic case can hardly
impact the performance of mmEve because due to the physical
connection between the smartphone and the hard case, the case can
stand as a solid medium to conduct the vibration of smartphones’
surface. 2) mmEve shows resilience to both rubber and leather cases

Table 2: Impact of smartphone casing.

Smartphone PSNR(dB)/STOI

No casing Plastic Rubber Leather
GalaxyNote10 27.2/0.94 25.6/0.93 27.0/0.91 26.8/0.91
GalaxyS20 30.2/0.91 27.2/0.89 29.8/0.87 29.5/0.90

OppoReno3Pro 29.1/0.92 25.2/0.87 27.9/0.89 28.5/0.90

because mmWave can penetrate rubber, leather, paper, clothes, etc.,
to sense the vibration of smartphone’s surface. Overall, mmEve is
resilient to commonly-used smartphone cases.

9.2 Handhold Habits
We performed experiments to investigate the impact of users’ differ-
ent holding habits. We divided the smartphone rear into three parts
coarsely, i.e., the bottom, middle, and upper parts. We asked each
volunteer to hold the bottom/middle/ upper parts of smartphones
respectively with his/her hands. The attack results are shown in Fig-
ure 21. The PSNR score ranges from 22.1dB to 25.3dB and the STOI
score changes from 0.75 to 0.82. This indicates that the side channel
exists in the whole rear of the smartphone. The coverage of the
upper area has a little impact on the PSNR and STOI of recovered
speech. The reason is possible that, for the targeted smartphones,
the sound source (i.e., the earpiece) locates on the upper part of the
motherboard which area tends to have the strongest SPL. Consid-
ering that the vibration exists on the whole rear of smartphones, it
is difficult to mitigate mmEve unless users cover the whole surface
with their hands which brings inconvenience to daily usage.

9.3 CPU Load
We quantitatively evaluated the impact of CPU load by running
different numbers of applications on smartphones. There were 15
different applications included in the experiment, such as TikTok,
YouTube, and Telegram. Here we defined three statuses of the CPU
load, i.e., low (5 apps running), moderate (10 apps running), and
high (15 apps running). Besides, there were over 25 WiFi access
points in the environment. The results are shown in Figure 21. We
can find that the CPU load has no impact onmmEve. That is because
the transmitted mmWave by mmEve is in a frequency band of 77-
81GHz which is far higher (over 19x) than the operating frequency
(about 2-4 GHz) of existing smartphones’ CPU. Any wireless signals
in the environment out of the band (77-81GHz) will also not be
demodulated by mmEve and thus, cause no interference on mmEve.

9.4 Acoustic Noise
We investigate the impact of environmental acoustic noise on
mmEve. We played white noise with different SPL in the back-
ground via a loudspeaker and performed experiments with other
settings the same as in Section 9.3. The loudspeaker is placed on
the ground behind the mmWave sensor. The results are shown
in Figure 21. We observe that the PSNR and STOI of recovered
speech change little when there is acoustic noise of different SPL
(55dB/65dB/75dB) in the background. The reason is that mmEve
captures the physical vibration of the smartphone’s rear for speech
recovery and thus hardly by the background noise. This reveals
that mmEve is resistant to acoustic noise.
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Figure 21: Impact of users’ handholding habits, smartphone’s
CPU load, and environmental acoustic noise.

9.5 Vibration of Inbuilt Motor
To investigate the impact of inbuilt motors on smartphones, we
used an application named VibApp to control the motor to vibrate
in a period of 2s (50% duty cycle) with other settings the same as
in Section 9.3. As a control group, we disable the vibration motor
and re-perform the experiments. The PSNR and STOI scores with-
out motor vibration are 28.3dB and 0.86. There is a degradation
of 5.6dB and 0.13 for the PSNR and STOI respectively when the
motor is on. The reason is that the interfering band of the motor
(140-180 Hz, GalaxyNote10) overlapped with the fundamental fre-
quency (85-255Hz) of human voice. Based on our observation that
the strong-energy vibration of the motor can also be observed in
neighboring Range-FFT points due to spectrum leakage[56] while
the earpiece-induced delicate vibration is hardly contained, we
take the signal derived from the neighboring Range-FFT point as
the reference signal and further apply the Normalized Least Mean
Square algorithm [23] to eliminate the motor-induced noise. The
improvement of PSNR and STOI scores are 3.3dB and 0.09.

9.6 Screen Surface
Here we conduct experiments on the other side of the smartphone,
i.e., the screen surface of the smartphone. Specifically, we placed
the smartphone (GalaxyNote10) in a fixed condition and a hand-
holding condition, respectively. We followed the same scheme to
recover the recovered audio and calculated the PSNR/STOI scores.
We find that the score can reach 25.4dB/0.65 and 23.1dB/0.62 for
the two conditions. The result indicates that the screen can also
leak speech information as the rear surface of the smartphone.

10 COUNTERMEASURES
Detection and Jamming: Considering the transmitted 77-81GHz
mmWave by mmEve, an intuitive idea is to detect the malicious
signals and disable mmEve by wireless jamming. This is a high-cost
strategy. First, to detect the malicious fast chirps, users require
both the parameters (e.g., chirp delay and period) of the malicious
mmWave sensor and a 𝜇𝑠-level synchronization with the malicious
device, which is hard to achieve in a real case. Second, mmWave
sensors are widely used in automatic driving and industry [30]. Any
adversary can purchase such a sensor or compromise a mmWave-
equipped system (e.g., automotive vehicles, home monitoring de-
vices) for eavesdropping. Besides, smartphone is widely favored
due to its characteristic of mobility and portability. The smartphone

user may listen to a phone call or voice messages anywhere, making
it high-cost to deploy large numbers of jamming devices.
Shielding: Shielding smartphones with special cases can be effec-
tive to mitigate the attack. The case can be designed with vibration-
damping materials and wave-absorbing materials. Moreover, smart
reflector [35, 46] is a promising technique for mitigation, which can
manipulate the phase of reflected mmWave to confuse the attacker.

11 DISCUSSION
Blocking Condition. Objects like metals and human bodies can
block mmWave signals. Considering that multipath signals (e.g.,
reflected mmWave by a wall near the target) have been explored
for sensing [45], mmEve is possible to eavesdrop on victim’s smart-
phone via the multipath signals. Thru-wall (e.g., concrete) attack
pose greater challenges to mmEve because the penetrating attenu-
ation can be several orders of magnitude greater than line-of-sight
sensing, which requires a more specific design.
Attack Distance and Angle. mmEve enlarges the attack distance
to 6-8mwhich is larger than a normal social distance and guarantees
the stealthiness. The attack distance can be further enlarged with
hardware development. To further improve the performance in
tough angles, MVDR algorithm [37] is a promising solution that can
strengthen reflected signals from specific directions by estimating
a weight factor matrix to increase the SNR of received mmWave.
Distorted Speech. Unvoiced consonants (e.g., /t/) often have lower
energy than vowels and have more high-frequency formants far
beyond the frequency-response band of the side channel. Thus, the
recovered speech containing unvoiced consonants can be somehow
distorted. Harmonic extension [31] is promising to compensate
the lost formants. But the accuracy of pitch and spectral envelope
estimation can have a vital impact on the performance.
Different Sensors. The rationale of boosting the sensing range
is to suppress the noise of the sensor’s hardware. Considering
that the self-noise of sensors are different, the noise pattern in the
collected mmWave signals can be different. Thus, to guarantee the
performance, the attacker needs to recollect the noise data from
the new sensor to train the denoising model.

12 CONCLUSION
In this paper, we achieved a remote and motion-resilient eavesdrop-
ping on smartphone earpiece and proposed an end-to-end attack
system mmEve to recover the speech via a COTS mmWave sen-
sor. We solved technical challenges to boost the eavesdropping
performance and achieved practical eavesdropping. We gave coun-
termeasures and emphasized the attack threats due to the increasing
number of smartphone users and widely-available attack devices.
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