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ABSTRACT
As the demand for precision medicine rapidly grows, com-
panion diagnostics is proposed tomonitor and evaluate thera-
peutic effects for adjusting medicine plans in time. Although
a set of clinical companion diagnostics tools (e.g., polymerase
chain reaction) have been investigated, they are expensive
and only accessible in a lab environment, which hinders
the promotion to broader patients. In light of this situa-
tion, we take the first steps towards developing a real-world
companion diagnostic tool by leveraging mobile technology.
In this paper, we present TherapyPal, a privacy-preserving
medicine effectiveness computational framework by har-
nessing semantic hashing-based digital symptomatic phe-
notyping. Specifically, sensor data captured from daily-life
activities is first transformed into spectrograms. Then, we de-
velop a hashing learning network to extract privacy-masked
symptomatic phenotypes on smartphones. Afterward, symp-
tomatic hashes at different medicine states are fed to a con-
trastive learning network in the cloud for treatment effec-
tiveness detection. To evaluate the performance, we conduct
a clinical study among 65 Parkinson’s disease (PD) patients
under dopaminergic drug treatment. The results show that
TherapyPal can achieve around 84.1% medicine effectiveness
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detection accuracy among patients and above 0.925 privacy-
masked scores for protecting each private attribute, which
validates the reliability and security of TherapyPal to be used
as a real-world companion diagnostics tool.

CCS CONCEPTS
• Human-centered computing→ Ubiquitous and mo-
bile computing; • Security and privacy → Human and
societal aspects of security and privacy.
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1 INTRODUCTION
Due to the disease heterogeneity, patients who have similar
diagnoses can respond differently to the same therapeutic
intervention [1]. Around 30%-70% of patients do not respond
well to a particular type of medical treatment, which leads
to a loss of thousands of USD medical costs for each patient
[2]. To satisfy the increasing demand for precision medicine,
the FDA issued in vitro companion diagnostic devices that
monitor and evaluate themedicine effectiveness for adjusting
treatment plans (e.g., schedule, dose, discontinuation) in time
[3]. A recent report valued the global companion diagnostics
market to be USD 9.9 billion by 2026 [4].
Although companion diagnostics tools have been inten-

sively investigated in a clinical environment and have a large
body of proven approaches (e.g., polymerase chain reaction
[5], next generation sequencing [6], molecular imaging [7]),
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they are expensive and not accessible in either daily life or
primary care places, which largely impedes the promotion
of companion diagnostics to a broader population.
In light of this situation, we ask: is it possible to leverage

mobile devices to extract digital symptomatic phenotype from
daily-life activities (e.g., walking, talking, etc.) for developing a
real-world companion diagnostic tool? If we can, patients can
be providedwith always-onmonitoring services of treatment
effectiveness in everyday life with no burden.

This paper takes the first steps towards positively answer-
ing this question. In fact, the key to monitoring treatment
effectiveness is to compare the symptom severity before and
after medicine intake. A recent study has validated the fea-
sibility of computing symptom fluctuations by monitoring
daily-life activities using the smartphone’s built-in sensors
[8], but it is not practical to be integrated into a companion di-
agnostics tool for daily usage. Specifically, two key challenges
remain as follows: 1) Privacy-isolated vs. Symptomatic-
preserving: During the treatment monitoring, how to filter
privacy-sensitive content from raw sensor data collected
in daily-life activities, while preserving the symptom infor-
mation? 2) Diverse constitutions vs. Generic tool: Since
medicine absorption and metabolism vary from person to
person, how can we develop a generic treatment effective-
ness detection model that is inclusive to users with different
constitutions and medical histories?
Our work unveils the opportunity of harnessing seman-

tic hashing in digital symptomatic phenotyping to address
the above challenges. According to the theory of semantic
hashing, the hash codes obtained by a good hash function
can keep the distance order in the original space as much
as possible [9]. Since the medicine effectiveness detection
is based on the symptom severity comparison before and
after medicine, if we can preserve the symptom distance
of any two sensor recordings in pairwise hashes, then the
computation performed on pairwise hashes can theoretically
guarantee the detection accuracy. In the meanwhile, due to
the nature of hash mapping, a single hash itself is meaning-
less, and is impossible to reconstruct the original input, so
privacy is completely protected. Additionally, one-second
sensor data (with a 100 Hz sampling rate) can be compressed
above 10 times with the representation of 256-bit seman-
tic binary hashes, which is efficient to deal with daily-life
longitudinal data for generic model development.

To implement our idea in a real-world system, we present
TherapyPal, a privacy-preserving companion diagnostic tool
based on a smartphone-cloud infrastructure that monitors
treatment effectiveness in daily life, as shown in Fig. 1. On
the phone end, we leverage the smartphone’s built-in sen-
sors to collect activity data (e.g., gait, voice) and divide them
into multiple segments. Each segment is then transformed
into a spectrogram. To extract privacy-masked symptomatic

Figure 1: TherapyPal provides patients with privacy-
preserving companion diagnostic services based on
privacy-masked symptomatic phenotypes.

phenotypes from the spectrograms of each patient locally,
we first model the symptom difference by calculating the
distribution divergence between feature vectors obtained
from two sets of augmented spectrogram samples. Then, an
extremely computation-efficient CNN-based hash learning
architecture and a pair-wise loss function are designed to
preserve the symptomatic structure in Hamming space. In
the cloud end, triple-wise personal hashes at different med-
ication states are fed to a contrastive learning-based hash
adaptor, which transforms them into a unified symptomatic
feature space that reflects the medication effect. Finally, we
apply a distance threshold to the triple-wise outputs of the
hash adaptor to calculate the treatment effectiveness result.

We conduct a clinical case study to evaluate TherapyPal on
65 Parkinson’s patients under dopaminergic treatment. All
the experiments are performed on unseen patients to ensure
the applicability in the real world. TherapyPal achieves more
than 82% recall and 79% precision on treatment effective-
ness detection among patients with different demographic
and medical backgrounds. Moreover, we perform a privacy-
preserving validation study which shows the extracted hash
codes can obtain an above 0.925 privacy-masked score for
attributes including age, gender, and disease history.

The contribution of our work is three-fold:

• We are the first to investigate a real-world companion di-
agnostics tool based on activity sensing (e.g., gait, voice,
screen tapping) for clinical effectiveness monitoring that
satisfies the requirements of daily usage. Our exploration
opens a new dimension for companion diagnostics appli-
cations and can achieve around 84.1% accuracy.

• The missing piece in mobile health is privacy-preserving
analytical approaches toward daily-life longitudinal user
data. We develop a generalized privacy-preserving and
lightweight computational framework for sensor data rep-
resentation and analysis by harnessing semantic hashing,
which is not trading off privacy, analytical accuracy, and
computation efficiency in mobile health applications with
a theoretical guarantee.
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• Wedesign and implement TherapyPal, a privacy-preserving
companion diagnostic tool that is inclusive to patients with
diverse demographics and medical histories. We first col-
lect sensor data and transform them into spectrograms.
Then, an in-phone privacy-masked hashing learning net-
work is applied to extract hashes that preserve the symp-
tomatic structure. Afterward, triple-wise hashes are fed to
a contrastive learning network in the cloud for predicting
medicine effectiveness.

2 BACKGROUND AND PRELIMINARIES
2.1 Companion Diagnostic
Companion diagnostics leverages vitro medical devices to
monitor the patient’s response to treatment and examine
medicine effectiveness for promoting their safety. As preci-
sion medicine rapidly develops, companion diagnostics is
progressing towards the treatment of neurological disorders,
cardiovascular disease, and infectious diseases [10, 11].
As the progress of the neurological disorder, nerve cells

continue to deteriorate. For PD patients under chronic L-
Dopa treatment, the capability of the substantia nigra cells to
store dopamine would get impaired, which renders levodopa
useless gradually [12, 13]. In this case, the drug effectiveness
is decreased, and the symptomatic relief is impeded. There-
fore, we need to harness companion diagnostics to monitor
PD-related symptoms for adjusting medicine timely.
The primary goal of companion diagnostics for cardio-

vascular disease is to manage a patient’s state (e.g., blood
sugar, cardiac status) with minimum effort. For example, the
glucose monitoring system is approved to obtain patients’
blood sugar levels in non-clinical environments and be used
to integrate with an automatic insulin dosing tool to release
insulin when blood sugars exceed the normal level [14].
Abuse of antibacterial agents leads to a reduced lifespan

of drugs. Companion diagnostics tests can precisely examine
a patient’s condition under therapeutic drugs to enable per-
sonalized adjustment of treatment plans according to their
infection prognosis [15].

However, the accessibility of conventional companion di-
agnostics is impeded due to its intrusive diagnostics manner,
expensive fee, and dependency on patients’ cooperation (e.g.,
frequent visits to labs).

2.2 Smartphone-based Disease Symptom
Measurement

With the advance of mobile technologies, many studies have
investigated the diseases’ symptoms via smartphone-based
activity sensing. Compared with dedicated networked diag-
nostic medical devices or other mobile sensors (e.g., smart
watches), smartphones have much higher accessibility, and
the data collection and diagnosis will not create an extra

burden in daily life, so they facilitate large-scale healthcare
applications. For example, smartphones’ built-in inertial sen-
sors are used to collect gait data from PD patients for eval-
uating motor symptoms [8, 16]. Microphone-based digital
biomarkers from human sounds are explored to identify res-
piratory symptoms and lung function [17]. Smartphones’
camera-based colorimetric detection systems are developed
tomonitor glucose for diabetesmanagement [18]. Inspired by
these works, it is possible to leverage smartphones’ built-in
sensors to measure medicine-induced symptom fluctuations
for realizing a companion diagnostic tool for daily usage.

2.3 Semantic Hashing Theory
Semantic hashing is widely used in image retrieval applica-
tions as it maps original input to a compact hash code for
the efficiency of the nearest neighbor search [9]. In contrast
to cryptographic hashing [19], the main goal of the semantic
hash function is to preserve the distance order in the original
input space in the hamming space. Conventional semantic
hash functions leverage linear projection, kernels, spherical
function, etc., to extract hash codes [20–22], but the perfor-
mance is compromised for large datasets. Due to the superior
representation ability of deep learning models, many studies
develop deep neural networks to learn complex semantic
hash functions [23, 24].
On the one side, semantic hashing maps the infinite set

into finite Hamming space, so it is a theoretical “one-way”
process and difficult to reconstruct the original inputs. On the
other side, the learned hash code content itself is meaning-
less, but pairwise hash codes preserve the semantic distance
of original inputs. Inspired by these, we develop a framework
that will not trade off privacy and accuracy. Data are repre-
sented as semantic hashes that keep the symptom distance
ordered, so the analytic performance based on symptom
comparison is not degraded with a theoretical guarantee.

3 SYSTEM OVERVIEW
3.1 Application Scenario
For developers: TherapyPal is a general-purpose compan-
ion diagnostic platform that can provide APIs to developers.
It supports diseases and symptoms that can be measured by
mobile sensors, e.g., accelerometer, microphone, camera, and
touchscreen sensor. For example, Alice would like to develop
a real-world companion diagnostic tool for Parkinson’s pa-
tients under L-Dopa treatment, but she does not know the
technical details about how to extract symptomatic pheno-
types for medicine effectiveness detection without leaking
users’ privacy. In this way, Alice can use TherapyPal API to
configure the sensor type and model parameters. Since the
TherapyPal API solved the privacy concerns, the developer
can attract more PD patients to contribute their personal
data for model training.
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Figure 2: The overview of TherapyPal, a privacy-preserving companion diagnostic tool that monitors treatment
effectiveness in daily life. It leverages the smartphone’s built-in sensors to collect activity data (e.g., gait, voice)
and then performs privacy-masked hash learning to extract digital symptomatic phenotypes, which are finally fed
to the cloud server for medicine effectiveness detection.

For end users: Bob is a PD patient under treatment for five
years and has a high risk of developing drug resistance. Al-
though the timescale of PD treatment is years, the symptoms
could fluctuate on a daily basis and develop in a short time.
Periodic doctor’s office site visits (usually every 3-6 months
per time) have two limitations, i.e., failure to select precise
drugs based on patients’ recall of day-to-day symptoms, and
missing the optimal time to adjust medicine. In this case, he
is suggested to use TherapyPal app and complete the activ-
ity (e.g., walking, talking) data collection before and after
the medicine each day. Since TherapyPal masks the private
attributes in activity data, it can be used as a secure tool to
monitor and identify treatment effectiveness in everyday life.
Once TherapyPal detects ineffective medicine, it will send a
message to the patient’s healthcare provider timely. Then,
the clinical professionals will arrange an examination for
patients and optimize the prescription such as drug type,
daily dosage amount, and dosage time, accordingly.

3.2 TherapyPal Modules
As shown in Fig. 2, TherapyPal consists of the following three
modules:
Sensor Data Collector: The data collection is in a non-
clinical environment. According to the disease type, we lever-
age the smartphone’s built-in sensors to collect the activity
data, e.g., gait, voice, touchscreen tapping, and camera-based
photoplethysmography (PPG). The collected sensor data are
first divided into multiple segments based on data proper-
ties and structures, and then each segment is transformed
into a spectrogram for preserving time-frequency character-
istics in a unified 2D format. Note that one type of sensor
data segment is transformed into one spectrogram. For the
accelerometer, x-y-z axis data segments are connected suc-
cessively and transformed into one spectrogram.
Privacy-maskedDigital Symptomatic Phenotyping:The
privacy-masked hash learning is performed on the obtained

spectrograms of each patient locally. Without the symptom
severity labels, we first model the symptom difference of
the spectrograms by calculating the distribution divergence
of two sets of semantics contained in a pre-trained deep ar-
chitecture. Then, an extremely computation-efficient CNN-
based hash learning model is developed to extract hash codes
that preserve the symptomatic structure and mask the pri-
vacy attributes. Afterward, the extracted hashes (i.e., digital
symptomatic phenotypes) are uploaded to the cloud server.
Medicine Effectiveness Detector: In the cloud server, hash
codes at “before med𝑡−1”, “before med𝑡 ”, and “after med𝑡 ”
(symbols are defined in Fig. 4) are grouped together and then
fed to a learnable hash adaptor. By harnessing a contrastive
loss function, the personalized hash codes are converted to
a unified symptomatic feature space that reveals medication
effects. After that, we apply a threshold on the triple-wise
symptomatic feature distance to infer the medicine effective-
ness. To mitigate random factors, we accumulate multiple
detection results and vote to make final predictions.

4 IN-PHONE PRIVACY-MASKED
SYMPTOMATIC PHENOTYPING

4.1 Challenges
We transform the sensor data into spectrograms to augment
the time-frequency properties. In detail, the data is divided
into multiple segments based on data properties (e.g., the gait
data is segmented into gait cycles), and each segment is trans-
formed into one spectrogram. To obtain the spectrogram,
the segment is first partitioned into a series of windows with
a length of 200ms for each and a 50% overlapping rate, and
then the FFT operation is performed on each window.

Spectrograms contain not only behavior content but also
the user’s identity and health information. If we directly
upload these spectrograms to the cloud for model training,
privacy-sensitive information of the spectrograms may leak.
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Therefore, we need to explore a secure descriptor of a spec-
trogram that satisfies the following requirements:
• Privacy isolated: Such a descriptor cannot be used to infer
users’ identity, unrelated disease, etc.

• Symptomatic-preserving: To facilitate medicine effective-
ness detection, the disease symptom-related information
needs to be preserved in such a descriptor.

However, these two requirements have posed a dilemma.
For example, we would like our system to identify medicine
effectiveness during Parkinson’s treatment by understanding
the pathological voice while preventing it from obtaining
other disease information (such as Asthma) and biometric
properties that can intrude on people’s privacy. A recent
work [25] proposed an adversarial training framework to
impose privacy constraints during feature extraction, but it
is unrealistic to label all privacy attributes.

The key to solving the aforementioned challenge is defin-
ing what we actually want our system to extract for medicine
effectiveness monitoring. Given that medicine effectiveness
computation exploits the medicine-induced symptom fluctu-
ations, the symptom distance across data points should be
kept in the distance across our designed descriptors, while
the content in each descriptor should be unbiased in identity
information. To achieve this goal, a privacy-masked symp-
tomatic phenotyping approach based on hash learning is
proposed. We first model the symptom distance structure of
original data points and then design a hash learning network
to preserve the symptom distance.

4.2 Symptomatic Relationship Modeling
Recent studies show that features extracted from pre-trained
deep architectures have rich semantic information [26]. There-
fore, we first adopt a pre-trained backbone to extract deep
feature vectors from spectrograms. From a statistical view,
extracted deep feature vectors for each type of semantics scat-
ter in a space with an unknown distribution. A conventional
approach that can model the semantic similarity relationship
is to calculate the cosine distance for each pair of deep fea-
ture vectors, but it would introduce numerous false positives
and negatives for samples located at the boundary of the
distributions, which would misguide the hashing learning
process. Therefore, we leverage a distribution divergence
metric to measure the semantic differences of spectrograms.
Specifically, we first perform random augmentations on each
spectrogram, including random cropping, rotation, cutout,
and Gaussian blur that do not change the spectrogram tex-
ture and frequency characteristics [27], to obtain a group of
samples with the same semantics as the original spectrogram.
Then, the distance between two spectrograms is estimated
by calculating the sample distribution divergence of their
semantics, formulated as [28]:

𝐷 𝑗𝑘 ({u𝑚𝑗 }𝑀𝑚=1, {u𝑚𝑘 }𝑀𝑚=1 ) =
1
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𝑚=1
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where {u𝑚𝑗 }𝑀𝑚=1, {u𝑚𝑘 }
𝑀
𝑚=1 are the features of augmented sam-

ples of input spectrogram x𝑗 and x𝑘 , respectively. 𝜌 (u𝑚𝑗 , u𝑟𝑘 )
is the cosine distance between features.
We hypothesize that the distribution divergence among

these feature vectors mainly originates from the symptom
fluctuations caused by medication or other reasons in daily
life, besides sensor-induced random noise. The reasons are
two folds. First, the collected sensor data (e.g., inertial gait
data) is not sensitive to environmental changes. Second, the
feature extraction procedure is performed on the smartphone,
and the obtained deep feature vectors are from the same
person, so the persistent personal information (e.g., iden-
tity) is eliminated in the distance calculation. Therefore, it is
feasible to assume that spectrogram pairs with distribution
divergence much smaller than others have similar symp-
toms, and spectrogram pairs with distribution divergence
much larger than others have dissimilar symptoms. To val-
idate it, we randomly select 5 PD subjects benefiting from
medicine intake. Specifically, we calculate the distribution
divergence 𝐷𝑏𝑎 between two gait spectrograms collected be-
fore and after the same medication (i.e., indicating dissimilar
symptoms), 𝐷𝑏𝑏 between two adjacent before-medication
events (i.e., indicating similar symptoms), and 𝐷𝑏𝑜 between
before-medication event and some other times (i.e., not sure
whether the symptoms are similar or not). Finally, we find
that 𝐷𝑏𝑎 > 𝐷𝑏𝑜 > 𝐷𝑏𝑏 holds for each subject, which is con-
sistent with our assumption.

The distribution distance (i.e., distribution divergence) his-
togram over all data pairs can be calculated. Then, we split
the histogram from the maximum value, and approximate
each part using a half Gaussian distribution [23]. The dis-
tance thresholds for symptomatic similarity and dissimilarity
are calculated based on the mean and standard deviation
of the Gaussian distribution in each part, respectively [23].
Based on it, we can obtain a symptomatic similarity function
as:

𝑆 𝑗𝑘 =


1 if 𝐷 𝑗𝑘 < 𝜇1 − 𝜆1𝜎1

0 if 𝜇1 − 𝜆1𝜎1 ≤ 𝐷 𝑗𝑘 ≤ 𝜇2 + 𝜆2𝜎2

−1 if 𝐷 𝑗𝑘 > 𝜇2 + 𝜆2𝜎2

, (2)

where 𝜇1 and 𝜎1 denote the mean and standard deviation of
the Gaussian distribution for the left part and 𝜇2 and 𝜎2 for
the right part. 𝜆 is a hyper-parameter to control the threshold.
If the pair is symptomatically similar, the function will return
1; If the pair is symptomatically dissimilar, the function will
return -1. The function is set as 0 if the ambiguous similarity
is obtained.
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4.3 Deep Hash Learning Network
Since binary hashing maps infinite set into finite Hamming
space, it is a theoretical “one-way” process and difficult to
reconstruct the original inputs. Inspired by it, we design a
deep hash learning network to map spectrograms into fixed-
length hash valueswhere the binary hash itself is random and
meaningless, but symptomatic relationships are preserved.

Our deep hash learning network is based on an extremely
computation-efficient CNN architecture followed by a fully-
collected layer with 𝐿 hidden units, as shown in Fig. 3. We
use the basic ShuffleNet [29] because it has two benefits: 1)
the design of pointwise group convolution largely reduces
computational complexity and can be deployed on mobile de-
vices; 2) the channel shuffle operation helps the symptomatic
information flow across different feature channels.
The goal of the hash learning network is to map symp-

tomatically similar spectrogram pairs into similar hashes and
map symptomatically dissimilar pairs into dissimilar hashes.
We first define the hash similarity function using hamming
distance, given by:

𝐻 𝑗𝑘 =
1
𝐿
h⊤𝑗 h𝑘 , h𝑗 = 𝑠𝑖𝑔𝑛(𝐹 (x𝑗 ;𝜔)), (3)

where 𝐹 (x𝑗 ;𝜔) is 𝐿 dimension output of our deep hash learn-
ing network with spectrogram x𝑗 as input, 𝜔 is the learnable
network parameters, h𝑗 is the corresponding hash codes,
and h𝑗 ∈ {−1, 1}𝐿 . If a pair of hash codes is similar, the hash
similarity function will return a value near 1; If a pair of
hash codes is dissimilar, the hash similarity function will
return a value near -1. After that, we design a loss func-
tion to minimize the difference between hash similarity and
symptomatic similarity of pairwise spectrograms, given by:

𝑚𝑖𝑛 Γ(𝜔) = 1
𝑛2

𝑛∑︁
𝑗=1

𝑛∑︁
𝑘=1

𝐶𝑊𝑗𝑘 · ∥𝑆 𝑗𝑘 −
1
𝐿
h⊤𝑗 h𝑘 ∥22, (4)

where𝐶𝑊𝑗𝑘 is a confident weight to guide the hash learning,
which is formulated as:

𝐶𝑊𝑗𝑘 =


Φ1 (𝜇1−𝜆1𝜎1 )−Φ1 (𝐷 𝑗𝑘 )

Φ1 (𝜇1−𝜆1𝜎1 ) 𝐷 𝑗𝑘 < 𝜇1 − 𝜆1𝜎𝑙

0 𝜇1 − 𝜆1𝜎𝑙 < 𝐷 𝑗𝑘 < 𝜇2 + 𝜆2𝜎2
Φ2 (𝐷 𝑗𝑘 )−Φ2 (𝜇2+𝜆2𝜎2 )

1−Φ2 (𝜇2+𝜆2𝜎2 ) 𝐷 𝑗𝑘 > 𝜇2 + 𝜆2𝜎2

,

(5)
where Φ1 and Φ2 are the cumulative distribution function of
two half Gaussian distributions, respectively, and 𝐶𝑀𝑗𝑘 ∈
[0, 1]. In our design, a potential similar pair will contribute
more to the learning if 𝐷 𝑗𝑘 is closer to the minimum of
Φ1, a potential dissimilar pair will contribute more to the
learning if 𝐷 𝑗𝑘 is closer to the maximum of Φ2, and a pair
with ambiguous similarity is not allowed for contribution.
Training. In the training phase, to enable backpropagation,
we relax the binary constraint of the hashes. Specifically, the
hash value is formulated as: h̃𝑗 = tanh (𝐹 (x𝑗 ;𝜔)). We apply

the stochastic gradient descent (SGD) method [30] to mini-
mize this function to obtain optimized network parameters.
Inference. In the inference phase, for any input spectrogram
x𝑎 , we can generate a corresponding privacy-masked sympto-
matic phenotype by directly forward propagating it through
the learned deep hash network as follows: 𝑠𝑖𝑔𝑛(𝐹 (x𝑎 ;𝜔)).

Figure 3: Deep hash learning network in training and
inference phase.

5 IN-CLOUD MEDICINE EFFECTIVENESS
DETECTOR

5.1 Problem Formulation
Preliminary. Patients benefit from medicine intake because
it relieves the symptoms and slows down the disease’s progress.
Typically, the symptoms get relieved as a new dose of the
drug starts to take effect, but they may return before the next
scheduled dose [31]. This leads to a large symptom severity
difference between before and after the same medication
event, and a small symptom severity difference between two
adjacent before-medication events. Therefore, for patients
with effective medicine responses, the symptoms difference
between “before med𝑡 ” and “after med𝑡 ” is more significant
than the symptom difference between “before med𝑡 ” and “be-
fore med𝑡−1”. For patients with ineffective medicine response,
symptoms in these three states are close.
Challenge.Digital symptomatic phenotypes retain the symp-
tom fluctuation but cannot be used directly to compute the
medication effectiveness for two reasons. First, symptom fluc-
tuations may be due to factors beyond the treatment. Hence,
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Figure 4: A contrastive learning-based hash adaptor that transforms personalized hash codes to a unified sympto-
matic feature space that reveals medication effect. “before med𝒕” and “after med𝒕” represent before and after the
same medication event 𝒕 ; “before med𝒕−1” represents before another adjacent medication event 𝒕 − 1.

we need a supervised learning approach to specifically learn
the medication-induced symptom distance. Second, since
the symptomatic phenotyping is done individually, the same
hash distance may represent varying degrees of symptom
similarity for two patients. We need to explore a unified
symptomatic feature space for model learning.

5.2 Medication-Related Feature Space
Learning

Contrastive Learning-based Hash Adaptor: To solve
this challenge, we design a learnable hash adaptor based
on contrastive learning to transform the hashes obtained
from each patient to a unified medication-related sympto-
matic feature space, as shown in Fig. 4. Such a hash adap-
tor is optimized by setting the learning task as maximizing
the symptom gap between |“before med𝑡 ”−“after med𝑡 ”| and
|“before med𝑡 ”−“before med𝑡−1”| for patients labeled as effec-
tive medicine response, in the same while, minimizing such
gap for patients labeled as ineffective medicine response.
Specifically, the input of the hash adaptor is triple-wise

hashes from the same person. We group the hashes at “before
med𝑡−1”, “before med𝑡 ”, and “after med𝑡 ” together as input.
The hash adaptor consists of six residual blocks followed by
two MLP layers. In each residual block, the convolutional
layer with 3 × 1 kernel size, dropout layer with drop rate 0.5,
and layer norm with affine transform are applied. We employ
shortcut connections in the residual block to allow the repre-
sentations of different levels of processing to interact. In this
way, the network can convey a high-level understanding of
the last layers to the previous layers in the training phase.
To obtain a unified symptomatic feature space that can

well reflect the medication effect, the contrastive loss func-
tion is designed as:

L𝑡𝑟𝑖𝑝𝑙𝑒𝑡 =
1
2 (1 − 𝑌 ) [𝐷Θ (h𝑡𝑏, h

𝑡
𝑎) − 𝐷Θ (h𝑡−1𝑏

, h𝑡
𝑏
)]2+

1
2𝑌 [𝑚𝑎𝑥{0, 𝐷Θ (h𝑡−1𝑏

, h𝑡
𝑏
) − 𝐷Θ (h𝑡𝑏, h

𝑡
𝑎) + 𝛼}]2,

(6)

Where 𝑌 is the label, 𝑌 = 0 represents ineffective medicine
response, 𝑌 = 1 represents effective medicine response.
𝐷Θ (h𝑡𝑏, h

𝑡
𝑎) is the learnable symptomatic distance between

“before med𝑡 ” and “after med𝑡 ”,𝐷Θ (h𝑡−1𝑏
, h𝑡

𝑏
)2 is the learnable

symptomatic distance between “before med𝑡−1” and “before
med𝑡 ”, which can be formulated as:

𝐷Θ (h𝑡𝑏, h
𝑡
𝑎) = | |𝐺 (h𝑡

𝑏
;Θ) −𝐺 (h𝑡𝑎 ;Θ) | |2,

𝐷Θ (h𝑡−1𝑎 , h𝑡𝑎) = | |𝐺 (h𝑡−1𝑎 ;Θ) −𝐺 (h𝑡𝑎 ;Θ) | |2,
(7)

where 𝐺 (h𝑡𝑎 ;Θ) is 𝐿 dimension output (i.e., unified sympto-
matic feature) of the hash adaptor network with hash h𝑡𝑎 as
input,Θ is the learnable network parameters. In the optimiza-
tion process, if given𝑌 = 0, the contrastive loss function min-
imizes the distance between |“before med𝑡 ”−“after med𝑡 ”|
and |“before med𝑡 ”−“before med𝑡−1”|; If given 𝑌 = 1, the
loss function maximizes such distance. Also, we set a margin
value 𝛼 that only allows the samples with effective medicine
response to contribute to the contrastive loss function if such
distance is within the margin.
Distance threshold-based prediction: After optimizing
the hash adaptor network, we can obtain the unifiedmedication-
related symptom feature from each hash code and calcu-
late the distance between |“before med𝑡 ”−“after med𝑡 ”| and
|“before med𝑡 ”−“before med𝑡−1”|. By applying a threshold, a
distance smaller than the threshold is identified as having a
high risk of ineffective medicine response.

5.3 Long-term Tracking
In real practice, some random momentary events (e.g., stum-
bles in walking) will compromise the quality of sensor data
collection. Therefore, measurement accumulation can pro-
vide a more reliable prediction. Smartphone-based sensing
modality can continuously and passively track users’ activity
data to obtain this goal with the minimum burden.
Since each time series measurement can be divided into

multiple segments and our medicine effectiveness detection
approach is performed based on segments, we further fully
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match these segments within the same group to generate
multiple triple-wise inputs. A prediction result can be ob-
tained from each triple-wise input. By averaging these re-
sults, we can identify whether such a group of measurements
is identified as high risk of occurring drug resistance or not.
After that, we accumulate the results from multiple groups
and apply adaptive threshold-based voting to make the final
decision on whether this patient occurring an ineffective
medicine response, which can be formulated as:

𝑄 =

{
ineffective medicine 1

𝑁

∑𝑁
𝑖=1 𝑞

𝑖 > 𝜂

effectiveness medicine Otherwise
, (8)

where 𝑁 is the number of groups contributed to the final
decision, 𝑞𝑖 = 1 if the group 𝑖 is predicted as having a high
risk of ineffective medicine response, otherwise 𝑞𝑖 = 0, 𝜂 is
the voting threshold.

6 CLINICAL STUDY DESIGN
6.1 Killer Application Scenario Selection
TherapyPal is a general companion diagnostic tool that can
monitor treatment effectiveness. It can be used for chronic
diseases whose symptoms are measured by mobile sensors.
Parkinson’s disease (PD) is a common neurodegenerative
disease among the elderly. One of the typical PD symptoms
is difficulty walking, such as freezing gait [32], shuffling gait,
and festinating gait, which can be measured by the smart-
phone’s built-in sensors in daily activities. PD symptoms
can be largely reduced after the drug intake (e.g., levodopa,
dopamine agonists [33]). However, nearly 50% of PD patients
develop resistance to L-Dopa treatment as the disease pro-
gresses and cells continue to deteriorate [12]. Consequently,
dopaminergic drug treatment effectiveness detection among
PD patients is a killer application scenario for validating the
performance of TherapyPal.

6.2 Experimental Setup and Preparation
Participants enrollment: Our study is approved by the
Institutional Review Board (IRB). We cooperate with medical
centers to enroll 65 PD patients with diverse demographics
who are under regular use of prescribed dopaminergic drugs
in our study. These PD patients are aged from 43 to 78 years
old. 36 patients are male and 29 patients are female. Their on-
set years are in the range of 2 ∼ 21. Under the instruction of
the physicians, each subject needs to take a standard clinical
drug effectiveness test [8], which is regarded as the ground
truth. This test consists of questions from MDS-UPDRS [34]
to comprehensively evaluate the PD patients’ “off-time” ex-
periences in daily living. The test score is scaled from 0 to
40, and a higher score indicates poorer drug effectiveness. A
score less than 10 is defined as an effective drug response,
and greater than 10 is defined as an ineffective drug response.

Data Collection: Data collection is conducted in a non-
clinical environment. We ask subjects to install a smartphone
App to collect gait data “immediately before medicine”, “after
medicine (when feeling best)”, and “at some other time”. “im-
mediately before medicine” is 10 min before medicine. “After
medicine” is one hour after medication where the frequency
and amplitude of tremors are notably reduced. “some other
time” is the time besides before/after medicine. For each data
recording, subjects are requested to walk straight at least
20 steps while putting the smartphone in the pants’ back
pocket. If patients are without rear pockets, the smartphone
is tied using a belt in the same position. The smartphone sys-
tem provides a device-motion service to obtain the current
gravity vector [35]. By contrasting the current gravity vector
with the real-world gravity vector, the rotation matrix can be
calculated. After multiplying the rotation matrix with mea-
sured accelerometer and gyroscope values, we can mitigate
the impact of random orientations of in-pocket smartphone
and obtain the data in the real-world coordinate system. Our
system is performed based on the gait cycles, so each time
walking recording is then segmented into multiple gait cy-
cles. Finally, we collect 700-1000 gait cycles from each subject
during the study.
Data Partition: The first step is to randomly select 50% of
gait cycles for training the hash learning model for each
subject. After that, the remaining gait cycles are input to
the optimized hash extractor for obtaining hash codes. The
second step is to train and test drug effectiveness detection
model based on extracted hash codes from all subjects. To
avoid overfitting, in addition to involving diverse patients,
we also perform the combination and permutations on gait
cycles to boost the samples. Specifically, we first group each
subject’s gait recordings at “before med𝑡−1”, “before med𝑡 ”,
and “after med𝑡 ” together, and then fully match the gait cy-
cles within the same group to generate multiple triple-wise
samples. In total, we achieve 400000 triple-wise samples.
Among them, three-quarters of subjects (around 300000 sam-
ples) are used for training and the remaining subjects (around
100000 samples) are used for testing. We perform four-fold
cross-validation to examine TherapyPal’s performance.
Neural Network Implementation: The model is imple-
mented on an NVIDIA TITAN Xp GPU by Pytorch. The mini-
batch SGD optimizer is applied in a deep hashing model with
1e-5 weight decay and 0.9 momentum. As for the contrastive
learning model, the Adam optimizer is utilized with 1e-5
weight decay and with a multiplicative factor of 0.9 by every
5 epochs. The learning rates of both models are 1e-3 and
1e-4, respectively. The batch size is 256.
Smartphone-end Implementation: The trained PyTorch
deep hashing model is converted to an intermediate PyTorch
Mobile ecosystem model in the type of PKL file and is dis-
tributed to smartphones. An HTML file is created and sent to
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mobile for specifying the input and parameters of the model
and guides run-time execution.
Evaluation Metrics:We select recall, precision, accuracy,
and F1-score as the metrics for binary classification. It is
a convention to define the class of interest as positive in
medical studies, and our goal is to identify ineffective risks,
so we define the positive class as ineffective drug response.

6.3 Configuration
To maximize the applicability, we employ a long-term track-
ing module to accumulate the gait recordings for obtaining a
more reliable detection result. 1/3 of patient data are used to
select the optimal amount of gait recordings and the voting
threshold, and the other 2/3 of patient data are for testing
in the remainder of the paper. In the searching experiment,
the F1-score improves and the selection of candidate voting
threshold becomes broader, as the amount of gait recordings
increases. The candidate range of voting threshold is nearly
unchanged when the total amount reaches up to 8. With an
input of 8 gait recordings, if the voting threshold is set as
3, the F1-score is more than 2.4% higher than other settings.
Therefore, we choose 8 as the number of gait recordings that
contribute to the medicine effectiveness detection and set
the voting threshold as 3, which means the ineffective treat-
ment result will be obtained if at least 3 of 8 triple-wise gait
recordings are predicted to present ineffective drug response.

7 PERFORMANCE EVALUATION
7.1 Overall Performance
Fig. 5 shows the normalized confusion matrix of drug re-
sponse detection. Overall, our system can achieve 85.1% re-
call, 83.4% precision, and 84.2% F1-score, which shows high
diagnostic performance in digital health, especially in neu-
rological disorder-related studies [8, 36, 37]. The recall is
slightly higher than the precision, indicating that our system
is better at picking up patients who do not respond well to
medicine. Our system leads to 16.4% false alarm reminders
that mostly occur in patients whose symptoms variations
are very small between different medication states due to
the lasting drug effects. If we increase the voting threshold,
the false alarm rate is slightly reduced, but the missing rate
largely increases, which leads to lower overall accuracy.
We further adopt a Cumulative Distribution Function

(CDF) graph to demonstrate the accuracy distribution of
the PD patients. Two groups of dotted lines are plotted in Fig.
6. As observed, more than 50% of PD patients achieve an ac-
curacy above 86.4%, and only 4.7% of subjects cannot be well
differentiated between good and poor medicine response.
These 4.7% subjects are mostly just starting a new treatment
plan or receiving DBS, so their drug effects can continue to
the next medication time, we further discuss it and provide

insights in Section 8.2 and Section 10. These results suggest
that TherapyPal can achieve reliable performance on a large
number of individuals.

Figure 5: The normalized confusionmatrix ofmedicine
effectiveness detection.

Figure 6: The CDF graph describes the medicine effec-
tiveness detection accuracy of all PD patients.

7.2 Smartphone-end Overhead Analysis
TherapyPal is a mobile companion diagnostics tool for daily-
life usage. Therefore, the smartphone-end computation should
not cost many resources and can be operated with a low bat-
tery in the background process. The smartphone-end com-
putation consists of gait cycle spectrogram transformation
and a hash learning-based symptomatic phenotyping model.
We evaluate the overhead on three smartphone models made
in the year of 2017-2020. The experiment is set by continu-
ously processing 20 gait cycles on the smartphone end. As
shown in Table 1, the run time of a gait cycle ranges from 126
ms to 187 ms with around 40% CPU usage, which indicates
that TherapyPal has the ability to process data in a real-time
fashion. As for battery usage, the Pixel 2 consumes the most
battery. If we assume that users take drugs three times a
day, 10 gait cycles are collected before and after each time
medicine, then Pixel 2 is estimated to use 21.6 mAh battery
on our companion diagnostics tool each day, which is only
0.8% of its own 2700 mAh battery.

The Pixel 2 phone model takes 80% CPU and 1.4G memory
during on-device training. In the future, we plan to employ
a Tiny Training Engine [38] to reduce the training overhead.
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Phone
Model

Avg
Runtime

(ms)

Avg
CPU
(%)

Avg
Battery Usage

(mAh)

VIVO V1693A 126 40 0.31
Pixel 2 187 40 0.36
Pixel 4 165 38 0.29

Table 1: Smartphone-end overhead performance.

8 INCLUSIVENESS STUDY
8.1 Demographic Factors Analysis
Impact of Gender. Physiologic variances between males
and females influence drug activity [39]. For example, fe-
males are more likely to have delayed drug effects than men.
Therefore, it is critical to examine whether the medicine ef-
fectiveness detection has a bias on the gender factor. Fig. 7
shows that the gap between males and females is negligible.
Specifically, the average accuracy for males and females is
84.8% and 84.1%, and the median accuracy for males and fe-
males is 89.6% and 86.5%. This is because the drug response
difference induced by gender is consistent and can be miti-
gated by the hash adaptor. Therefore, TherapyPal is inclusive
to the gender.

Figure 7: The influence of gender factors on Therapy-
Pal’s detection accuracy.

Impact of Age. The age difference would affect the drug
movement through the human body, including absorption,
distribution, metabolism, and excretion [40]. As a result, we
evaluate the age impacts on the medicine effectiveness detec-
tion performance. As observed in Fig. 8, the average accuracy
for old-aged subjects (age > 60) and middle-aged (age ≤ 60)
subjects are close, which are 85.9% and 81.8%. However, the
accuracy distribution range of middle-aged subjects is wider
than those of old-aged subjects. Since we have fewer data on
the subjects aged below 50, the drug movement for younger
patients is not sufficiently learned and causes a small num-
ber of outliers. This issue can be solved by introducing more
younger subjects to train the hash adaptor. In general, Thera-
pyPal is an inclusive companion diagnostics tool for patients
of different ages.

8.2 Medical Factors Analysis
Impact of TreatmentDuration. PD is a progressive disease
that relies on dopaminergic drug treatment in a long term.
Therefore, it is necessary to examine whether TherapyPal can

Figure 8: The influence of age factors on TherapyPal’s
detection accuracy.

be applied in different stages of the treatment. As shown in
Fig 9, patients under the treatment for more than three years
achieve a higher precision than those less than three years,
which are 87.2% and 79%, respectively. The gap in the recall
is within 1.7% between these two classes of patients. Overall,
the accuracy of patients under a longer time treatment is
5.2% higher than those under a shorter time treatment. This
is because the drug effect can continue to the next dosage
time for the PD patients who are first initializing medication,
which makes the symptom difference between before and
after medicine very small and causes some false alarm cases.
Since the dopaminergic drug resistance usually occurs in
the middle and late stages of the treatment for PD patients,
TherapyPal is more suggested to be used as a companion
diagnostics tool starting from the middle stage.

Figure 9: The influence of treatment duration on Ther-
apyPal’s performance.

Impact of Disease History. Besides PD, some other dis-
eases can also cause gait impairment. For example, concus-
sion patients often have less single-leg stance duration, and
greater stride width [41]. Stroke patients are characterized
by a larger amplitude variability of steps and a relatively
preserved arm swing [42]. Since our system is developed
based on gait symptom fluctuation, we are curious whether
non-PD-caused gait impairment will interfere with the detec-
tion. Fig. 10 shows that the difference in recall, precision, and
accuracy among PD patients with different disease histories
is less than 1.6 %. Such a close performance indicates that our
system is robust to the complexity of gait patterns. This is
because our system only captures the relative gait difference
caused by medication, even though the disease histories may
have unpredictable impacts on PD gait symptoms. Therefore,
TherapyPal is a reliable companion diagnostics tool inclusive
to patients with diverse health conditions.
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Figure 10: The influence of patients’ disease history on
TherapyPal’s performance.

Impact of Deep Brain Stimulation. Deep brain stimula-
tion (DBS) implants electrodes within brain areas to generate
the electrical impulses that regulate motor symptoms. There-
fore, we are wondering whether symptom relief caused by
DBS surgery will fool the medicine effectiveness detection.
As observed in Fig. 11, the recall in patients with and without
DBS surgery is very close, which are 85.4% and 84.3%, re-
spectively. The precision of Patients without DBS surgery is
7.1% higher than those with DBS surgery. The reason is that
our system identifies small symptom differences between be-
fore and after medicine as ineffective drug response, but the
drug effect is possible to last until the next dosage time for
a few patients whose medicine quality is improved by DBS
surgery. Therefore, some false positive cases decrease the
precision and accuracy, but the recall is not changed much.
For patients with DBS surgery, we will optimize TherapyPal
by considering the phenomenon of lasting drug effect.

Figure 11: The influence of deep brain stimulation
surgery on TherapyPal’s performance.

Impact of Smoking. Tobacco smoke would influence the
absorption, distribution, and metabolism of the medication.
Therefore, we wish to understand if such influence will com-
promise the detection performance. Fig. 12 shows that the
recall and precision of smokers are 4.3% and 3.1% lower than
those who never smoke. Our results suggest that smoking
slightly affects the system performance. Since the smoking
influences on medication are different from person to person,
both false alarm cases and miss cases could occur, but the
amount is not large. To enable a more practical companion
diagnostics tool, we can request the patients to record their
smoking events (e.g., timing and frequency) for developing
an adaptive medicine effectiveness computation model.

Figure 12: The influence of smoking habit on Therapy-
Pal’s performance.

9 PRIVACY-PRESERVING STUDY
9.1 Setup
Data Preparation:We select three groups of PD patients.
The first group is four males and four females, all in old age
and having similar disease histories. The second group is four
subjects with age > 60 and four subjects with age ≤ 60, who
are all female and have similar disease histories. The third
group is four subjects with head injury and four subjects
without head injury, all female and in old age. The gait data
collection and partition are the same in Section 6.2. The
more variational the prepared data is, the more challenging
the privacy extraction will be. Therefore, we use the data
from the same medicine state (i.e., “before medicine") to
create an ideal environmental condition for attackers where
only privacy leakage will lead to clustering. Otherwise, the
clustering could converge to before vs. after medicine. Totally,
20 hash samples are extracted from each subject.
Baseline: Our baseline is a deep feature vector. Recent stud-
ies show that features extracted from deep networks are
more difficult to reconstruct original inputs than those from
shallow representations (e.g., SIFT) or layers. Therefore, deep
feature vectors can protect users’ privacy to a certain degree.
In the experiment, we input each gait cycle to a ShuffleNet
pre-trained on ImageNet and then extract the deep feature
vector from the FC layer as our baseline sample.
Evaluation Metric:We apply feature dimensionality reduc-
tion and visualization approaches, i.e., principal component
analysis (PCA) and multidimensional scaling (MDS), on hash
samples and baseline samples (deep feature vectors). If the
samples tend to cluster with the same identity attribute, it
indicates the high risks of privacy exposure. To further quan-
tify TherapyPal’s privacy-preserving capability, we introduce
a Silhouette-based [43] privacy-masked score, formulated as:

𝑃𝑟𝑖𝑣𝑎𝑐𝑦 𝑆𝑐𝑜𝑟𝑒 = 1−𝑚𝑒𝑎𝑛
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(a) subjects in old-age and middle-age.

(b) subjects with different genders.

(c) subjects with and without head injury history.
Figure 13: Visualization of feature dimensionality reduction on hash samples and baseline samples.

𝑎𝑖 is the mean distance between 𝑖 and all other samples in
the same group, 𝑏𝑖 is the smallest mean distance of 𝑖 to all
samples in any other group. 𝑏𝑖−𝑎𝑖

{𝑎𝑖 ,𝑏𝑖 }𝑚𝑎𝑥
is the Silhouette co-

efficient ranging from -1 to 1. If this value is closer to 0,
it means the sample is on the boundary of different iden-
tity classes, which indicates the highest uncertainty to infer
user’s privacy attributes. In contrast, a value closer to 1 indi-
cates higher confidence to identify users’ identity correctly,
and closer to -1 indicates higher confidence to identify users’
identity in a reverse manner, which is both associated with
high risks of privacy exposure. Our designed privacy-masked
score is calculated on the Silhouette coefficient of two PCA
and MDS. It is in the range of [0, 1], and a higher score
represents a higher ability of privacy protection.

Figure 14: The comparison of the privacy-masked score
for each private attribute.

9.2 Performance
As observed in Fig. 13, after applying PCA, hash samples
are mixed irregularly, with some overlap between different
demographics. In contrast, the baseline samples from the
same subjects tend to cluster together, and each cluster is
distant from the others. This observation remains consistent
across all control groups. From these PCA results, we can
obtain that individuals’ identity attributes are prominent in
baseline samples, but are well hidden in hash samples.
We also use MDS to create a visual representation of the

distance between data points. Fig. 13 shows that the hash
samples scatter randomly regardless of demographic simi-
larities. Although a small number of hash samples with the
same demographics are very close, they are from different
subjects, resulting in a smaller distance between different
subjects than between the same subject. On the other hand,
baseline samples cluster by individuals, and the overall dis-
tance between different demographics is larger than that
between the same demographics. Therefore, we get a consis-
tent conclusion, i.e., hash samples pose much lower risks of
privacy exposure than the baseline samples.

To further quantify system’s capability of privacy protec-
tion, we calculate the privacy-masked score. As observed in
Fig. 14, hash samples achieve above 0.925 privacy-masked
score for each attribute, i.e., age, gender, head injury history,

514



TherapyPal ACM MobiCom ’23, October 2–6, 2023, Madrid, Spain

which is 20% higher than the baseline privacy-masked score.
As the pathological properties are often implicit, the disease
history has fewer exposure risks on baseline samples than
other attributes. Differently, the exposure risks of all private
attributes are almost the same on the hash samples, which
indicates that TherapyPal is more neutral and generic.

10 DISCUSSION
Model Variance. Our model variance is within 4% under
gender, age, and disease history factors, which is acceptable
in healthcare studies. The precision variance under special
conditions (e.g., just starting a new treatment plan or re-
ceiving DBS) is 7.1%-8.2% because the drug effect can last
until the next dosage and cause false alarms. In the future,
we plan to involve healthcare providers in the refinement of
TherapyPal and customize the decision threshold for patients
under special conditions.
Multi-Class Classification. Hashes theoretically preserve
the fine-grained symptom fluctuation information, so Ther-
apPal can be extended to solve multi-class classification prob-
lems bymodifying the downstream learning task in the cloud.
For example, we can employ a supervised contrastive regres-
sion model [44] to learn regression-aware medication effect
representation by contrasting symptomatic features against
each other based on their label distances.

11 RELATEDWORKS
Mobile Health Applications. Mobile health systems at-
tracts great attention recently as they are highly accessible
in daily life [45–48]. Disease screening is a typical applica-
tion that leverages mobile sensors for symptom assessment.
For example, SpiroSonic [49] assessed human lung func-
tion based on acoustic respiration signals. Nandakumar et
al. [50] detected sleep apena events by sending frequency-
modulated acoustic signals and analyzing the reflections.
Another direction is medication management. PDMove [16]
monitored medication adherence by analyzing medication-
caused gait variability. Bae et al. [51] used a Fitbit to assess
behavior risks to predict readmission for post-surgery cancer
patients. PDLens [8] computed medicine-induced symptom
fluctuations through daily-life activities sensing. However,
among these mobile health applications, privacy protection
is underexplored. Prior works (e.g., PDVocal [36]) achieved
privacy-preserving through insensitive mobile data selec-
tion (e.g., breathing sounds), which limits the scope of mo-
bile data collection. In comparison, our work is one of the
first few works contributing to a new privacy-preserving
analytic framework that is generalizable to broader medical
applications with various data formats. In addition to the
exploration of real-world companion diagnostics, we address
an unmet technical need in privacy-preserving and inclusive
mobile health.

Privacy-preserving Machine Learning Framework. Ex-
istingworks exploremany privacy-preservingmachine learn-
ing models in the networked sensor systems, which mainly
have two directions, i.e., on-device federate learning and off-
device encrypted deep learning. In federated learning, each
mobile device trains a model using personal data locally and
only uploads the model parameters to the cloud for updat-
ing the global model [52, 53]. However, it is limited by up-
load bandwidth. Even though FedMask [54] only communi-
cates binary masks, it needs many communication rounds for
model convergence. Moreover, users’ privacy can be likely
recovered from uploaded model parameters [55]. A recent
work [56] protects the training process inside a trusted ex-
ecution environment (TEE) to avoid such recovery attacks,
but the model design is constrained by the memory size
of TEE. On the other side, in encrypted deep learning (e.g.,
CryptoNets [57], CryptoDL [58]), the mobile device encrypts
the private data locally and sends it in encrypted form to the
cloud, but in-cloud computation also needs to be rewritten
using homomorphic operations, which limits the scalabil-
ity and efficiency of machine learning models. In contrast,
our privacy-preserving analytic framework can theoretically
guarantee privacy as well as computation accuracy and effi-
ciency toward daily-life longitudinal user data.
12 CONCLUSION
In this paper, we propose a privacy-preserving mobile com-
panion diagnostics tool, TherapyPal, tomonitor the treatment
effectiveness through daily-life activities sensing. Therapy-
Pal is based on a privacy-preserving computational frame-
work that leverages semantic hashing for privacy-masked
symptomatic phenotyping. Specifically, smartphone’s built-
in sensors collect behavior data and transform them into
spectrograms. Then, we model the symptomatic relationship
based on distribution divergence between extracted deep fea-
ture vectors from spectrograms. A hashing learning network
is further designed to mask the privacy attributes while pre-
serving symptom distance. In the cloud end, with triple-wise
hashes (at different medicine states) as input, we develop
a contrastive learning-based hash adaptor to map person-
alized hashes to a unified medication-related symptomatic
feature space. Finally, we apply a threshold on the sympto-
matic feature distance for medicine effectiveness detection.
Our experiments show that TherapyPal can achieve above
80% accuracy on medicine effectiveness detection among
patients with different backgrounds and medical histories. A
privacy-preserving validation study is further performed to
examine the security of TherapyPal for daily usage.
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