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ABSTRACT

In recent years, biometric techniques (e.g., fingerprint or iris) are
increasingly integrated into mobile devices to offer security advan-
tages over traditional practices (e.g., passwords and PINs) due to
their ease of use in user authentication. However, existing biometric
systems are with controversy: once divulged, they are compromised
forever - no one can grow a new fingerprint or iris. This work ex-
plores a truly cancelable brain-based biometric system for mobile
platforms (e.g., smart headwear). Specifically, we present a new
psychophysiological protocol via non-volitional brain response for
trustworthy mobile authentication, with an application example
of smart headwear. Particularly, we address the following research
challenges in mobile biometrics with a theoretical and empirical
combined manner: (1) how to generate reliable brain responses
with sophisticated visual stimuli; (2) how to acquire the distinct
brain response and analyze unique features in the mobile platform;
(3) how to reset and change brain biometrics when the current bio-
metric credential is divulged. To evaluate the proposed solution, we
conducted a pilot study and achieved an f-score accuracy of 95.46%
and equal error rate (EER) of 2.503%, thereby demonstrating the
potential feasibility of neurofeedback based biometrics for smart
headwear. Furthermore, we perform the cancelability study and
the longitudinal study, respectively, to show the effectiveness and
usability of our new proposed mobile biometric system. To the best
of our knowledge, it is the first in-depth research study on truly
cancelable brain biometrics for secure mobile authentication.
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1 INTRODUCTION

In recent years, biometric authentication is taking over traditional
passwords or PIN based authentication in mobile and wearable
applications because of identification accuracy, convenience and
seamless integration with personal devices. However, existing bio-
metrics, such as fingerprint and face, are prone to prone to being
hacked in everyday life or social media. For example, the Chaos
Computer Club announced that one of its members had been able to
replicate the fingerprint of German Minister of Defense Ursula von
der Leyen, using only photographs taken of her finger [14]. Biomet-
rics are unique to individual. Different from traditional passwords,
once such biometric credentials are damaged or counterfeited, the
user cannot cancel the pre-stored credentials or reset them with a
different biometric input.

How to design a truly cancelable biometric system is an unsolved
historical topic in the biometric research community. Cancelable
biometrics are challenging because stability and cancelability in bio-
metrics are at odds with each other. Stability requires that biomet-
ric traits are immutable and hard to change; cancelability requires
that biometric traits are erasable and easy to change. According
to our literature review, existing works on cancelable biometrics
mainly focus on “soft cancellation”, which means the biometric
system only uses and saves transformed biometric credentials, such
as images with random projection, in the database. Rather than
generating a new biometric credential, once biometric credential
in the database is divulged, soft cancalable biometric system will
have users generate new biometric credentials with a different
transformation formula. For example, Paul et al. [49] introduced a
cancelable template generation algorithm, when previously trans-
formed template is stolen, that produces a new transformed biomet-
ric template. The proposed algorithm can generate new templates
unlinkable to the previous compromised template. Nevertheless,
this soft-cancellation method is privacy-preserving in the biometric
database and only works in case of database breaches. Once original
biometric credentials are disclosed in either daily life or social media
(e.g., stealing raw fingerprint patterns from a photograph), it still
results in permanent biometric compromise in biometric systems.
Therefore, to address this fundamental limitation of biometrics, we
need to seek a new angle on cancelability study.

In recent years, physiological activities from human organs (e.g.,
brains [47]) receive increasing attention in biometric communities.
The advantage of brain electric activity based biometrics is that they
are biologically unique and less prone to forgery because of the
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dynamics of brain responses. For example, event-related potential
(ERP) brainwave is one type of brain electrical signals and can
be changed once different visual stimuli are presented [61]. This
special feature of brain response offers the potential to design a
truly cancelable biometrics, referring to “hard-cancellation". For
example, if an ERP brainwave is produced in response to a series
of images, that ERP brainwave can be canceled, and a new ERP
brainwave can be generated in response to another series of image
stimuli.

Here, we argue that the most secure cryptographic credential
can be obtained by ERP brainwave signals. By definition, ERP is one
of the brain biometric measures that is related to individual-specific
characteristics. Besides its unique property of hard-cancellation,
ERP also possesses another superior attribute compared with tradi-
tional biometrics. While conventional anatomical and behavioral
biometrics, such as a fingerprint, voice, stroke, and gait, are not
confidential to an individual or can easily be altered for imita-
tion [13, 39], ERP biometrics are highly secure; one cannot repro-
duce or copy other person’s mental pass-phrase. Moreover, it is
non-revealable and naturally less prone to spoofing and counter-
feiting [52]. In summary, the ERP-based biometrics stand out with
the following advantages:

e Secure: Traditional brainwaves biometrics require users to
create thought patterns to generate the corresponding brain-
wave credentials [64]. In this case, brainwave credentials
are consciously controlled by users, which can be revealed
either purposely or unintentionally [42]. Instead, ERP is a
non-volitional and involuntary brain response. This mecha-
nism conceals conspicuous interactions and provides better
security, i.e., even a user has no control of ERP generations.

e Cancelable: Part of what makes each brain unique is their
knowledge and memories. The brain network that manages
forming and accessing memories is large, and spans across
many anatomical areas [5]. This provides a potential large ca-
pacity of various brain ERP responses. Therefore, if the ERP
template database is breached, new user’s ERP credentials
are possible to be generated by different stimuli sets. Note
that ERP biometrics also require no memorization burden
on users as other passwords (e.g., PIN, graphical pattern).

Based on the above arguments, we study a new psychophysio-
logical approach for secure and trustworthy user authentication
in a head-mounted display (HMD). An HMD is a computerized,
information viewing device that is worn on the head. It consists of
a small display optic in front of eyes, which covers the entire field
of vision of the user and produces an imaginary screen that appears
to be positioned away from eyes. Since both ERP acquisition sensor
and HMD are mounted on the head (see Section 3 later), it is natural
to employ ERP biometrics for the authentication of smart headwear.

In this work, we study ERP, a non-volitional and involuntary
brainwave response to a specific sensory, cognitive, or visual stim-
ulation, for HMD authentication. To generate distinct ERP patterns
for biometric applications, we utilize a visual stimuli design con-
sisting of the imagery patterns of animal, human face, and text as
examples. Specially, a lightweight wearable brain-computer inter-
face with three channels (i.e., P1, Pz, and P4) is developed for the
brain activity data acquisition. Our main challenge is to figure out
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Figure 1: A single ERP signal is elicited by a specific sensory
and cognitive event. ERP is unique for individuals that dif-
ferent people will have distinct response with the same stim-
ulus.

what is the effective strategy to reset and generate new and secure
ERPs when the ERP credential is divulged. In this study, we present
a novel stimuli update strategy that updates the in-use stimuli to
evoke new stable ERPs. As an analogy to the case where the user
is not allowed to use a password that is too close to a previous
selection, we characterize the sequence of visual stimuli in a joint
spatio-temporal domain and choose the ERP with the maximum
proposed spatio-temporal warping distance as the new credential.
As aresult, the original and newly generated “brain passwords” are
disparate enough that the original ERP cannot be cross-matched
to access the system configured with new ERP credentials. Also,
the system maintains stability as the new ERP retains immutabil-
ity until it is divulged again. To validate the proposed approach,
we further conduct a pilot study to evaluate the system security
via f-score accuracy (f-1), receiver operating characteristic curve
(ROC), equal error rate (EER), and time efficiency. With 179 adult
participants, our system achieves a f-score accuracy of 95.46%, and
EER of 2.503%. The cancelability evaluation proves that our stimuli
update strategy is effective in revoking old ERP and reissuing new
ERP derived from the same physical traits without degrading the
authentication performance. Also, the unlinkability between old
and new ERPs is discussed in this study.

To the best of our knowledge, this is the first in-depth study to
explore secure and truly cancelable biometrics for mobile authenti-
cation. Our contribution is three-fold as follows:

1) We develop an end-to-end brain biometric system integrated
with a head-worn device. We propose a secure and truly cancelable
ERP-based authentication protocol with its application for smart
headwears and study a sophisticated brain response model.

2) We study a joint spatio-temporal domain analysis-based stimuli
update strategy to achieve the cancelability of our proposed bio-
metric protocol. We empirically investigate the biometric capacity
of brain response.

3) We validate the feasibility and effectiveness of our proposed
system with multi-session pilot studies, including the performance
study, cancelability study and longitudinal study in different user
scenarios.

2 BACKGROUND AND RATIONALE
2.1 HMD Authentication

Significance: In recent years, HMDs have been widely developed
and improved for a variety of purposes. Main applications include
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Figure 2: A Brain Password-based HMD authentication system framework is illustrated. (a) When a user attempts to access
a head-mounted device (such as a VR headset or Google Glass), a set of visual stimuli will be displayed on the display optic,
and the dry sensors implemented in the device will measure brain-responses. (b) Obtained brain signals will be processed and
analyzed. (c) The ownership will be identified by comparing with pre-stored templates of the device owner.

virtual reality (VR) for simulation of user’s presence in artificial
environments (Samsung VR [57]) and realistic experience of 3D
games (PlayStation VR [50]). Also, some HMDs provide an aug-
mented reality (AR) to integrate digital information with user’s
real-world environment (Google Glass [27]), medical visualization
for surgeon’s natural view of the operation [37], and military sim-
ulation and training for either dangerous or costly situation [63].
According to the analysts [41], the HMD market is expected to
reach up to 15.25 billion dollars by 2020.

Challenges: To date, existing authentication approached for HMD
are limited in multiple aspects. Since HMDs are lacking in either
physical keyboards or touchscreen, current authentication systems
in HDM often rely on additional mobile devices, which must be
carried along, registered, and paired via a wireless connection (e.g.
Bluetooth). For hands-off devices, this authentication mechanism is
not only inconvenient but also vulnerable to hacking if the paired
device is lost or stolen. In fact, technological advancements provide
better security mechanisms using biometrics, such as eye blink-
ing [55], head movement [36], and hand gesture [16], for authentica-
tion in HMD. Yet, addressed methods are not perfectly trustworthy
because a majority of biometrics can be surreptitiously duplicated
or revealed by attackers [8].

2.2 Brain Response to Visual Stimuli

2.2.1 ERP Rationale. ERP is a stereotyped brainwave response
to a specific sensory, cognitive, or motor event. Part of what makes
each human unique is their memory. No two people have had
exactly the same experiences. Importantly, no two people interpret
similar events exactly the same way. Each person’s interpretation of
an event is based on their semantic memory, a part of memory that
includes a person’s knowledge about what images depict and how
they relate to their own experiences [48]. Thus, semantic memory
is individually unique in this way, and the activity of semantic
memory is visible in the scalp-recorded ERP, as shown in Fig. 1.

2.2.2  Characteristics of ERP. In this part, we will discuss the
key properties of ERP in biometric applications, including three
aspects:
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Cancelable: In traditional authentication systems, users can eas-
ily replace the password when their credential is divulged. As an
analogy to this, we argue that hard-cancellation can be achieved
with ERP biometrics by changing visual stimuli. No person has
exactly the same experience and memory on different events. Since
the ERP is a stereotyped response to a particular event, we claim
that changing the event can alter the characteristics (e.g., shape,
occurrence duration) of individual’s ERP signal and provide new
ERP signatures for the password reset.

Stable: Electroencephalogram (EEG) is a type of brainwaves that is
often collected without stimulation. Therefore, the performance of
EEG biometrics can be highly unstable as it depends on individual’s
emotional and physical states at the moment of authentication.
Moreover, Ruiz-Blondet et al. [56] demonstrated that typical EEG
signals cannot reflect narrow, specific and cognitive processes as
they are not captured time-locked to any stimulus. In our study,
we present a much more stable authentication method by utilizing
the ERP signal, a stimulus-averaged signal that is time-locked to a
specific event.

Non-volitional: In the absence of stimulation, EEG can be volition-
ally modulated. For instance, a volitional control of neural activities
can be achieved by real and imagined movements and cognitive
imagery [23]. Thus, without stimulation, EEG can be controlled
by conscious thinking of the user, which denotes that EEG is less
secure to be used for authentication in case that users intention-
ally disclose their EEG credentials. In contrast, ERP biometrics are
evoked by the stimulus, and therefore it is not under control of the
user. This characteristic prevents the user from manipulating the
brainwave contents purposely [56].

3 ERP AUTHENTICATION FRAMEWORK

3.1 Framework Overview

Our proposed system comprises of three modules: visual stimuli
selection, ERP signal acquisition, and signal pattern analysis. Pri-
marily, a series of stimuli are selected according to our designated
stimuli selection strategy. Brainwave signals are then acquired and
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Figure 3: Certain areas of human brain largely influence cer-
tain cognitive functions.

averaged into the stimulus-averaged ERP signal. Then, the ERP sig-
nals are filtered, and the features are extracted via autoregressive
model (AR), power spectral density (PSD), and eigenvector. Lastly,
the classification of feature vectors is performed via support vector
machine. The illustration of the ERP-based authentication system
is shown in Fig. 2.

3.2 Visual Stimuli Design

Design Fundamentals: To generate effective ERP biosignals, we
use a distinct stimulation protocol that consists of a large set of
various stimuli. As an analogy to a strong personal identification
number (PIN) that requires a mix of numbers, letters, and special
characters, (e.g., 1IE@2R!3P), our brain password design also in-
cludes a mixture of various visual stimuli to enhance the “brain
password” strength.

The criterion of stimuli selection is that the chosen stimuli must
stimulate certain brain areas and reflect certain functional capabili-
ties of the human brain. In this way, our brain password can satisfy
the design diversity, thus forming a secure and robust credential. As
shown in Fig. 3, three special areas exist at the back of the human
brain, including intraparietal sulcus, inferior parietal lobule, and
temporo parietal junction, each of which corresponds to a dedicated
function of human brain. Specifically, intraparietal sulcus controls
the declarative memory [66], inferior parietal lobule processes the
face recognition [29], and temporo parietal junction manages the
reading comprehension [35]. When a certain function is evoked,
a distinct characteristic of the brain waveform is exhibited. In our
design, pictures of animal, celebrity human face, and the segment of
texts are selected as the effective stimuli for aforementioned brain
areas to process declarative memory, face recognition, and read-
ing comprehension, respectively. The examples of the three visual
stimuli are shown in Fig. 4.

Declarative memory is the memory of facts and events, and refers
to those that can be consciously declared [22]. It can be further
sub-divided into episodic memory and semantic memory, in which
semantic memory is a structured record of knowledge about the
external world that we have acquired, including general factual
knowledge, shared and independent of personal experience [65].
The rationale for choosing pictures of animal for the declarative
memory is that one’s semantic memory on the appearance of a
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Figure 4: Examples of visual stimuli, including animals,
celebrity human faces and texts.

certain animal is highly individualized [68]. For example, a per-
son who has suffered a spider bite will react differently to a spider
picture than a person who has never been bitten by a spider. More-
over, the brain activation of people with particular emotion to a
certain category of animal is different from the brain activation
of people who don’t possess such emotional state when the visual
representation of that category of animal is exposed [68]. As for the
human face, neurophysiology studies [33, 70] prove that the unique
subject-specific brain signals can be obtained during the human
face recognition process. For instance, face stimuli elicit a larger
peak of the negative brain potential at 170 ms (N170) compared to
the ERP evoked by non-face stimuli [62]. Furthermore, texts are
used to elicit semantic memory as it is extremely unlikely for any
two people to have same ability to comprehend text. Also, texts
are known to elicit a distinctive negative brain potential for each
individual [6].

Visual Stimuli Design and Selection: To choose effective images
from three stimuli types for each person, we require the ERP signal
from each type of stimuli to be distinct from the ones from other
types of stimuli, such that each ERP signal can significantly reflect
the attributes of their corresponding brain areas. Therefore, we aim
at selecting stimuli whose ERP signals can achieve maximization of
the dissimilarity among them. Specifically, let p(t) be the continuous-
time 2D ERP signal and T be the sampling period. The discrete
ERP sample for each stimulus can be written as p; = p (iTs). For
the jth ERP signal from animals stimuli, it can be written as:

1,2,---,N,

. . AT
aj = {pfd,pg’}’... Pz‘ifs]} .J (1)

where N denotes the number of the sample size in the ERP signal,
and N denotes the total number of the ERP for each type in the
pool of collected data. The superscript a indicates that the signal
belongs to the animals stimuli category. Likewise, ERP signals from
texts and human faces can be written as t; and f;.

ERP signals corresponding to the same stimulus can be expressed
and mapped as a dot in a high-dimensional space, where each point
has the dimensionality of N. For ease of representation, we depict
the geometric relationship of ERP signals in a 3D space, as shown in
Fig. 5. The ERP signals from the same type of stimuli are aggregated
as a set, namely, A for animals, T for texts, and F for celebrity faces.
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Figure 5: A geometric illustration on visual stimuli selection.
Images of animals, celebrity human faces, and texts are dis-
tributed in the 3D space as three clusters. We aim to find
three dots from clusters with the maximum perimeter.

To maximize the diversity among the ERP signals from different
types, we aim to find a triangle, as shown in Fig. 5, which has
the largest perimeter. Thus, the visual stimuli selection can be
formulated as follows:

maix}nlgize Ha,' - tJ'“z + |la; — fk||z + Htj - fk||2 s )
s.t. aiGA,tjET,fk eF,i,j,k=1,2,---,N. (3)

By solving the above formulation, we can use the solution set {i, j, k}
as the ERP stimuli set.

Password Set Expansion: We can define the size of the ERP stim-
uli set by finding the sub-optimal solution with a certain dimension
in Eq. (2) and (3). This is similar to expanding the PIN password
length from “1@a” to “1@a2!b”. In this study, we define the size of
the ERP password set as Np, where we consider one combination
of three stimuli types (one triangle) as one password set (Np = 1).
The performance of various N values are evaluated and discussed
in Section 7.3.4.

3.3 ERP Acquisition Protocol

In our ERP acquisition protocol, three types of images are presented
in a certain order. The order of the stimulus presentation is from
Animal, human Face to Text (short for A-F-T). When this stimuli
sequence with certain images repeats for four times, the acquired
EEG signal undergoes the ERP processing method (see Section 5)
and produces a single stimulus-averaged ERP, which we simply
refer to as an ERP signal, for each stimulus type. During the data
collection task, participants were instructed to pay attention to
the image. Each image is flashed for only 200 ms to avoid the
use of exploratory eye movements, and 200 ms interval is applied
in between two images to make each stimulus independent of
the previous stimulus (see Fig. 6). In our experimental protocol,
the acquisition of ERPs for the animal, human face, and text took
approximately 4.8 seconds. The appropriate duration of stimulus
presentation is further investigated in Section 7.3.4.
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4 SYSTEM IMPLEMENTATION

4.1 System Overview

Fig. 7 shows the flowchart of our proposed system. A set of visual
stimuli is selected from the database and displayed to the user
through the VR headset. The generated ERP signal is extracted and
analyzed for later matching with the owner record. If it matches,
the user is considered as the owner. Otherwise, the user is rejected
as the intruder.

4.2 ERP Acquisition Device

To capture the ERP data, our team has developed an ERP brain
sensor headset, which is equipped with dry electrodes. Such elec-
trodes utilize a set of angled legs and permit the legs to flex outward
under pressure which help push aside hair for better contact. The
sensors are coated with metallized paint for conductivity, provid-
ing low impedance contact (100-500 kQ) to suppress noise in the
ERP acquisition. The headset employs the channel P3, Pz, and P4
(International 10 — 20 System) with two grounds (Fp1 and Fp2) and
reference on A1l (See Fig. 8). The brain sensor headset can conve-
niently collect brainwave signals at the sampling rate of 1000Hz.
The collected data can be saved locally or streamed to a computer
via Bluetooth.

4.3 Electrode Placement

In standard practice, 32 to 64 electrodes are used for ERP measure-
ment, and the number of electrodes can increase up to 256 to obtain
detailed information [59]. However, the implementation of multiple
electrodes in the HMDs is problematic due to the heavy weight,
low cost-efficiency, and highly complex data acquisition process [8].
Therefore, we customized a sensory headset that is suitable for
HMD applications. Our brain sensor device contains three channels
(i.e., P3, Pz, and P4) on the parietal lobe.

According to previous studies [19, 30, 40], brain-computer inter-
face (BCI) classification accuracy can be significantly increased by
utilizing the parietal electrodes P7, P3, P4, Pz, and P8 because the
negative peak of ERPs in the parietal region is unique compared to
other regions. Also, since the parietal lobe has an important role
in the recollection of episodic memory [10], the parietal electrodes
are highly recommended as an alternative to using the complete

Time (sec)

Figure 6: The time interval between images. Each image
flashes for 200 milliseconds, and it takes another 200 mil-
liseconds to switch to the next image. This image sequence
is shown for four times, and four brain responses from each
image are combined into an aggregated ERP response repre-
sentation.
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EEG channel set. More importantly, as shown in Fig. 8(a), P3, Pz
and P4 are placed on the brain areas addressed in Section 3.2. Also,
since the headband of HMD is typically placed on the back, these
electrodes can be easily implemented in the headband, providing
more convenient and non-invasive data acquisition process.

4.4 Motion Artifacts Suppression

Motion artifacts generated by the head movement may compro-
mise the ERP recordings. However, this is inevitable while wearing
smart headwears. In our proposed method, the automatic epoch
rejection removes the data epoch with extreme artifact noises using
visual inspection and measurement statistics including mean, stan-
dard deviation, skewness, kurtosis, and median. Then, an infinite
impulse response filter reduces high-frequency noises. To further
compensate for artifact noises, we applied a channel-based arti-
fact template regression procedure and subsequent spatial filtering
approach [28], which removes the ambulation-related movement
artifacts. After that, an adaptive independent component analysis
(ICA) mixture model parses the EEG signals into maximally inde-
pendent components (IC), which undergoes the component-based
template regression procedure. The feasibility of this approach
is proved by the data collected while walking and running on a
treadmill.

5 ERP PROCESSING

5.1 Pre-processing

Pre-processing is applied to improve the resolution of brain signals.
After obtaining a full EEG waveform, the signal is segmented from
the start to the end of the stimulus hit. Thus, each ERP segment
has a length of 200 milliseconds. Automatic epoch rejection [21] is
applied at the probability threshold of 2.5 to remove the segments
with abnormal electrode activity. Then, four ERP segments of the
same type are averaged into a single stimulus-averaged ERP signal.
These ERP signals of animal, face, and text type are combined into
one vector. Therefore, there is 600 milliseconds stimulus-averaged
ERP template per channel per subject. Then, an infinite impulse
response (IIR) Butterworth filter is employed to produce a zero
phase-shift. The diagram that shows the whole ERP processing is
illustrated in Fig. 2 (b).
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Figure 8: The hardware setup in Brain Password. Fig. 8(a)
the standard electrode location in International 10-20 Sys-
tem. The electrode in green represents the reference, the
electrodes in blue are grounds, and the electrodes in red re-
flect the channels used. Fig. 8(b) the placement of the Dry
EEG Headset.

5.2 Feature Extraction

Each channel has 280 feature elements, and the feature vector of
the channel is attached to the feature vector of other channels.
Therefore, the final length of one feature vector is 840. The following
features are extracted for each feature vector:

Autoregressive Model: We utilize three 6th order autoregressive
(AR) models [34] to extract ERP features. AR model is advantageous
with short data segments because the frequency resolution of AR
spectrum is infinite and does not depend on the length of analyzed
data [2]. Since our ERP signals are short data segments, AR model
is suitable for our system. By definition, the AR model is a linear
difference equation in the time domain:

P
Xt = Zaixt—i + ¢,

i=1

4

where X; is the signal at the sampled point ¢, p is the order of
the model, a; is the AR coefficient, and ¢; is an independent and
identically distributed white noise input [32]. To obtain normal-
ized autoregressive (AR) parameters, we employ the Yule-Walker
method [24], which exploits the approximate of the autocorrelation
data function. Then, the Burg method [12] is utilized to reduce linear
prediction errors. Lastly, the covariance and modified covariance
methods are used to minimize the forward and backward prediction
errors. Since each model consists of six parameters, 24 AR coeffi-
cients are obtained for each channel. With all three channels, there
are 72 features attached to the vector.

Power Spectral Density: To accurately detect the spread of power
with respect to frequency, the power spectral density (PSD) estimate
is obtained by the Welch’s overlapped segment averaging estima-
tor [3]. First, ERP signals are divided into frames of 128 to utilize
periodogram method for ERP application. Then, the Welch power
spectrum estimates the PSD by averaging modified periodograms.
We extract 128 features from the estimates for each channel and
consequently attach 384 features to the feature vector.
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Eigenvector: Since the skin electrode interfaces in dry EEG may
induce signal noises, the eigenvector spectral estimation method
is used to compensate the effect of the noises. The eigenvector
method is known to provide a suitable resolution for artifact cor-
rupted signals by calculating a pseudo-spectrum estimation, which
is defined as [2, 58]:

P(f) = !

SN o Ve 1y

where VjH e(f) represents a Fourier transform, N is the dimension
of the eigenvectors, i indicates the integer value of the dimension
of the signal subspace, and A; represents the eigenvalue of the
matrix. ERP signals are divided into frames of 128, and the pseudo-
spectrum is measured by estimates of the eigenvectors. We extract
128 features for each channel, and a total of 384 features are obtained
for the feature vector.

®)

5.3 User Authentication

The user authentication process is described as below. Initially, the
owner’s template is stored in the system. Then, the anonymous
user attempts to access the system by wearing the smart headwear
device. After detecting the user presence, the system provides a
series of stimulus and elicits brain signals of the unknown user. The
stimulus-averaged ERP signal from the corresponding user is then
verified against the pre-stored templates. During the authentication
process, we employ support vector machine (SVM) with a radial
basis function (RBF) kernel [31] for the classifier. SVM with RBF
kernel enables classification operation in a high-dimensional, im-
plicit feature space without ever computing the coordinates of the
data in the input space, where two parameters y and C dominates
the kernel function. y can be seen as the inverse of the radius of
influence of samples selected by the model as support vectors and
C trades off misclassification of training examples against simplic-
ity of the decision surface. In our study, y and C of RBF function
are chosen as 0.001 and 10000, respectively. The LIBSVM library
for SVM [15] is used for the calculation and decision making. The
details on cross validation and evaluation is described in Section
7.2.

6 CANCELABILITY AGAINST ATTACK

Traditionally, once a human biometric, such as iris or fingerprint, is
divulged, the authentication system is compromised and no longer
safe to use. Comparing with these biometrics, ERP-based brain
password is superior because the originally stored credential of
brainwave can be canceled if divulged or suffered attack. In other
words, our system updates the in-use stimuli to avoid any potential
risk. In practice, when a user need to change their password, the
system will present a large number of images from the pool to the
user and record the brainwave signal, then there is an offline phase
where a new password is chosen corresponding to a subset of the
images where the selection of that subset follows a stimuli update
strategy. In the following, we will deliberate the stimuli update
strategy to cancel ERP credentials.

6.1 Stimuli Update Strategy

The candidates for new visual stimuli must satisfy two conditions:
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Figure 9: Illustration of stimuli update strategy in Brain
Password. The original password design is depicted on the
left, and the new one is depicted on the right. The update
strategy intends to maximize the difference (i.e., the desig-
nated distance) between the original ERP-based biometric
credential and the newly generated one.

(1) the new brain password should achieve comparable authentica-
tion performance comparing with the original one. Therefore, the
new stimuli should also comprise of images from the three diverse
categories separately.

(2) the ERP signals evoked by these images should be distinct from
the ones evoked by the original images, which is analogical to
the case where we are not allowed to use the previously used
passwords when resetting passwords. In this way, we guarantee
the two passwords are disparate enough that the original brain
password is not accessible to the system configured with the new
brain password. In other words, we aim to maintain an extremely
low false acceptance rate by preventing unauthorized access.

Base on the above discussion, the update strategy is illustrated in
Fig. 9, where the original password design is depicted on the left, and
the new one is depicted on the right. As previously depicted in Fig. 6,
visual stimuli and the corresponding ERP signals can be considered
as time series signals. In the meantime, for a specific image, its
ERP signal can be expressed as a dot in high-dimensional space
(see Fig. 9). Therefore, the time series of ERP signals exhibit spatio-
temporal attribute. To quantify the dissimilarity of ERP signals
that are generated by the original and new selection of images,
we propose a dissimilarity metric, i.e., spatio-temporal warping
distance, and compare the two password designs (i.e., ERP stimuli
sets) in the joint spatio-temporal domain. Our goal is to find the
maximum dissimilarity between two password design in terms of
the spatio-temporal warping distance.

6.2 Dissimilarity Metrics

In the following, we will elaborate the design of spatio-temporal
warping distance as the dissimilarity measurement metric.

Spatial Domain Analysis: Suppose the jth images are considered
for both original and new ERP signals, and the ERP signals can be
represented in the form of vectors:

T S T
_ T T _ v ) Y.J :
y]—{aj,tj,fj} —{Pl P ,"',P3Ns} »J

1,---,N, (6)
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and likewise y;, where each element is as defined in Eq. (1). The
superscript y indicates the element belongs to y. Both y;j and y;
have the dimension of 3Ns.

For the pair of y; and ¥}, each element in the vector is normalized

by dividing the sum of all elements in the vector, written as: q’ =

yJ . 5V-J
2352 ek q;( = 232’;‘? ~. Here, we use q] and q;C to denote the
i=1 Fi k=1 'k

normalized value, and the superscript y is removed since there is
no ambiguity for the symbol ¢q and g. Then we define the cost c;j
of transporting between ith data from y;, which is qf and kth data
from yj, which is 5;( Specifically, we use the Euclidean norm for
the cost definition.

The next task is to find a flow, F (i, k) = f;k, such that the match-
ing work between two datasets y; and y; will have the least cost:

3Ns 3N
minimize cik fiks (7)

i=1 k=1
st 3N5q1 aquLf,k201<i<3Ns, <k <
3NS,Z < g1 <i <3N, q;C <k <

3NS’23Ng 3Ngflk_mm(23N9q/ ZSN”I;C)

By solving the above formulation, we can find the optimal flow
F, the spatial matching (SM) metric is found as the matching work
normalized by the total flow:

3N, 3N
2t Zpo; Cikfik

3N, 3N
Zimt gy Jik

SM (v7,vj) = ®)

Temporal Domain Analysis: Suppose the password set size Ny >
1, which means there are more than one image set from three
clusters, we can incorporate the temporal domain analysis in ad-
dition to the spatial domain analysis. To measure the similarity
between these two sequences of images illustrated in Fig. 6, an
Np X Np matrix D is created, called distance matrix. The value
of the (m*", n'") element in D represents the distance d (yn, ym)
between two sets of ERP signals yn and ym. Then the SM de-
fined above is adopted as the distance metric, and we can obtain:
D (n,m) =d (Yn,Ym) = SM (Yn, ym) . With the guidance of the dis-
tance matrix, the shortest warped path through the matrix can be
derived [54]:

cdln—-1,m-1)
cd(n,m—1)
cd(n—1,m)

cd(n,m) =d (yn,ym) + min 9)

and 1<n<Np, 1<m<Np, where cd(n, m) is the current minimum
cumulative distance for D(n, m), and the initial setting is c¢d(0, 0) =
0, cd(0, m) = cd(n,0) =

After that, the overall minimized cumulative distance cd (Np, Np)
can be found. Finally, the spatio-temporal warping distance is cal-
culated as:

(10)

Overall, our aim is to find a new design that has the maximum Dist
to the original design.
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7 PERFORMANCE EVALUATION
7.1 Participants

In the pilot study, brainwaves are obtained from 179 adult partic-
ipants with a mean age of 29.85 and standard deviation of 7.72.
Among 179 participants, 93 of them are male participants, and 86
of them are female participants. Consent forms for participation in
the research study were obtained at the time of the study, and all
participants have received a comprehensive description of the exper-
imental procedures. As mentioned above, electroencephalography
is a safe monitoring method with no side effects [11]. Moreover, our
headset is in dry form that does not require gel or other fluids. To
alleviate possible eye irritation that may occur due to the various
stimuli used in the procedure, we avoided the use of extremely
bright colors and flashing lights.

As described above, the system evaluation relies on a strategically
developed experiment that will involve a cohort of participants. We
hold an existing active IRB protocol from both the University at Buf-
falo and University of Colorado Denver, which allows for recording
brainwave from human participants for user authentication.

7.2 Description of Experiment

The data are collected in three sessions. The data from the first
session is used to evaluate the system performance and cancelability,
and the data from the second and third sessions are used for a
longitudinal study. Among 179 participants, 80 have participated in
the second session (short-term study), and the third session (long-
term study). Because some data from 2 participants are damaged, the
valid participants for the longitudinal study is 78 with the average
age of 27.36.

As there are a total of 179 participants, one of the subjects acts
as an owner once while the remaining subjects act as attackers.
This process repeats for all subjects. Here, 10-fold cross validation
is used to prevent overfitting. The data set is randomly separated
into 10 equal-sized subsets. For each trial, one of the 10 subsets is
used as a test set, and the remaining subsets are used as a training
set. Cross-validation is repeated with each of the subsets.

For each session, the data collection task is organized in a series
of 300 images with 100 images for each stimulus type. As mentioned
in Section 3.3, a series of same images repeats for four times. Thus,
there are 25 different images among 100 images for each type. In
other words, the number of stimulus-averaged ERP (N) in the pool
of each animal, human face, and text set is 25, which corresponds to
the total number of dots in each cluster. For the authentication, one
dot for every cluster (one triangle) is used for one-set password (N,
= 1), two dots for every cluster (two triangles) are used for two-set
password (N = 2), and three dots (three triangles) for every cluster
are used for three-set password (Nj = 3). The maximum number of
set is N, which is equivalent to 25. We used the one-set password
for all evaluations except for Section 7.3.4. To produce multiple
ERP templates, we repeat the data collection task 20 times for each
participant.

7.3 System Performance

7.3.1 F-score accuracy. The accuracy (ACC) [44] is predomi-
nantly used for the statistical classification. However, ACC is an
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Figure 10: System performance evaluations of F-score and
ROC curve.

inappropriate accuracy metric when negative and positive classes
are not balanced. Thus, to avoid an unbalanced accuracy measure-
ment, we evaluate our system performance based on f-score ac-
curacy (F1), which is preferred for the sake of non-sensitivity to
class imbalance. Fig. 10(a) depicts the f-score comparison among
various stimulus types. As shown, A-F-T indicates the combination
of animal, face, and text stimuli that is designed based on our visual
stimuli model (see Section 3.2). The stimuli for animal, face, and text
types are identical to the pictures used in A-F-T. Among four types,
A-F-T achieves the best accuracy of 95.46% with the least standard
deviation (STD) of 5.42%. The accuracy of A-F-T is higher than
that of animal, face, and text stimuli by 4.43%, 11.67%, and 14.48%,
respectively. Moreover, the STD of A-F-T is lower than other three
types by 2.13%, 15.28%, and 12.67%, respectively. The results prove
that our visual stimuli model improves security and robustness of
the brain password by satisfying the design diversity.

7.3.2  Receiver operating characteristic curve. For a comprehen-
sive evaluation of the system performance, a receiver operating
characteristic curve (ROC) is investigated. By definition, it visual-
izes the sensitivity or TPR (true positive rate) against FPR (false
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positive rate) as the threshold is varied. As the curve follows the
top-left portion of the graph, the system has a high sensitivity and
specificity and is more accurate. In Fig. 10(b), the average ROC
curve of A-F-T, animal, face, and text stimulus type are plotted.
Among four curves, A-F-T follows the most upper-left portion of
the graph, indicating that our system is robust and feasible.

7.3.3 Equal error rate. The equal error rate (EER), a rate that
corresponds to an equal probability of an acceptance error and
rejection error, can be derived from the average ROC curve. Specif-
ically, the x-axis value of intersection point between the curve and
the diagonal of the unit square is known as EER. More specifically,
the EER value of A-F-T is 2.503% and the EER of animal, face, and
text are 3.114%, 5.559%, and 7.517%, respectively (derived from
Fig. 10(b)). Again, A-F-T achieves lowest EER, which indicates that
our visual stimuli model increases the system performance.

7.3.4  Optimization of authentication time efficiency. Since our
authentication system targets smart headwear application, the opti-
mization of the authentication time is essential. Thus, we examine
several methods to optimize the authentication time efficiency.

Stimulus Duration: In the experiment, each stimulus is presented
for 200 ms, and the black screen is displayed for 200 ms to separate
each stimulus. By discovering the optimal stimulus duration, the
authentication time can be reduced. As shown in Fig. 11(a), the
accuracy declines by 3.5% and the STD increases by 4.37% as the
stimulus duration increases from 200 ms to 400 ms. Similarly, when
the duration of stimulus exceeds 600 ms, the accuracy reaches
85.46%, which is 10% lower than the accuracy of 200 ms. Also, the
STD increases by 7.4% at 600 ms. The reason for this phenomenon
is because stimulus presented for more than 200 ms will induce
exploratory eye movements, which in some extent will compromise
the collected EEG signal dedicated as a response to the visual stimuli.
Although the accuracy increases with decreasing duration, the
stimulus duration less than 200 ms is too instantaneous for the
average human reaction time to the onset of a visual stimulus [4].
Thus, the optimal stimulus duration is 200 ms.

Password Set: As described in Section 3.2, we can optimize the
authentication time efficiency by adjusting the size of password
set (see Fig. 11(b)). For one-set password (N, = 1), the system ac-
curacy reaches 95.46%. When two-set password (N = 2) is used,
the accuracy increases by 1.56% and the STD decreases by 3.01%.
When three-set password (N, = 3) is employed, the accuracy is
increased by 0.71% and the STD is reduced by 0.4%. This result
indicates that the accuracy and stability of the system increase as
the size of password increases.

Time Efficiency: As the stimulus duration and size of password
set increase, the authentication time increases as well. In brief, the
optimal time can be calculated as:

Time (s) = Np - Navg * 3 (stimu_duration + 0.20), (11)
where N, indicates the size of password set, and Ngy4 represents
the number of the segments that are averaged into a stimulus-
averaged ERP, which is 4. In the formula, the interval duration (0.20
second) and the number of stimulus type (3 for animal, face, and
text) are included. With the optimal stimulus duration (200 ms),
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(a) Stimulus duration impact. The
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word, we achieves 95.46% F-score.

Figure 11: The authentication time optimization via stimu-
lus duration and password length adjustment.

one-set password takes approximately 4.80 seconds, two-set pass-
word takes 9.60 seconds, and three-set password takes 14.4 seconds.
Also, more computation is necessary for higher N, value. Since the
authentication for smart headwear devices must be reasonably fast,
we select the one-set password (N, = 1) and the optimized time is
4.80 seconds.

8 CANCELABILITY ANALYSIS

To properly revoke and reissue the credential, the cancelability
must satisfy two properties: revocability and unlinkability [45].

8.1 Revocability

Objectives: In this section, we verify the revocability of ERP in
two ways. First, we prove that new ERP is distinguished from
the original ERP, thereby corroborating its robustness against the
attack using the original password. Second, we demonstrate that
new ERP generated according to our stimuli update strategy has a
high accuracy to serve as a new brain password.

Description of Experiment: The updated stimuli set is given to
the participants, and 20 new ERP templates are obtained per subject.
Again, each subject acts as an owner and the rest act as an attacker.
The SVM classifiers are used with 10 fold cross-validation. For the
second objective, we assume the user generates new ERPs according
to the stimuli update strategy and updates the user profile. The
attacker uses the replication of user’s original ERP to access the
system configured with the new ERP. For evaluation, we randomly
select a portion of new ERPs to create the updated profile and test
the performance by authenticating with the remaining new ERP
templates and original ERP templates from Section 7.3. We employ
SVM with a 10 fold cross-validation. This repeats for each subject
and the FRR and FAR is averaged of all subjects.

Results and Discussion: The evaluation results are shown in Ta-
ble 1, where it reveals that the original visual stimuli will result in
true negatives when adopting them to a system configured with
new stimuli. The new ERP credential provides the recall, precision,
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and f-score of 94.64%, 95.62% and 94.87%, correspondingly. The
STD are 6.03%, 5.11%, and 3.69%. Although the recall, precision,
and f-score of the original ERPs are slightly higher by 1.04%, 0.29%,
and 0.59%, these discrepancies are not significant. Therefore, the up-
dated strategy does not degrade our system performance. As shown
in Table 2, our second revocability task achieves a high recall and
precision value of 99.20% and 99.05% with low FRR and FAR of
0.775% and 0.789%. These results indicate that our updated ERPs
are highly distinct from the originals such that the replicated origi-
nal credential is unlikely to be used to access the system configured
with new credential. This result validates our two hypotheses. First,
the ERP biometrics are truly cancelable as the change of the visual
stimulus alters the characteristics of ERP. As mentioned previously,
the reason is that no one has exactly the same memory on different
images. For instance, a person’s memory of the spider is highly
likely to be different from the memory of the dog. Hence, changing
the stimulus from the spider picture to the dog image elicits new
characteristics in ERP. Second, our stimuli update strategy amplifies
such alteration by finding the maximum dissimilarity among ERPs
in response to a larger pool of images.

8.2 Unlinkability

Description of Experiment: We employ the original and new
ERP data from Section 8.1 and specifically use the Pearson’s corre-
lation coefficient, R, which is defined by the following [38]:

N

1
:N—lZ

n=1

(ain B l'lai) (b]n - ij)

Oa;

Ri; p (12)
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where a;,, bj, are the feature element of the original and new ERP
template. 14, and oy, represent the mean and STD of all feature ele-
ments of the corresponding original ERP template while 1, and oy,
signify the mean and STD of the elements of the new ERP template.
Every template is composed of 840 feature elements as mentioned
in Section 5.2, and thus N equals to 840. To avoid increasing the
correlation coefficient in all ERP templates, we suppress the feature
trend by normalizing each template with the mean of all templates
as below:

A.
Normalized(A;) = #; 1<i<k, (13)
13 szl AP
Normalized(Bj) = #; 1<j<k, (14)
k szl Bp

where A; and B; represent the original and new ERP template,
respectively. k is the total number of templates for each subject ex-
perimented on the same stimuli set, which is equivalent to 20. The
correlation coefficient, R, is computed by comparing each normal-
ized template of the old stimuli set with every normalized template
of new stimuli set (k X k comparison).

Table 1: Performance table for each stimuli set.

Trial Recall (%) | Precision (%) | F-score (%)
Original ERP | 95.68+6.89 95.91+4.91 95.46+5.42
New ERP 94.64+6.03 95.62+5.11 94.87+3.69
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Figure 12: The correlation test between original and new
ERP-based brain password.

Results and Discussion: As shown in Fig. 12(a), the Gaussian
curve of the results centers at zero, which indicates that the original
ERP and updated ERP are highly independent. At 95% confidence in-
terval (@ = 0.05), an estimate of the mean is 0.0130 and an estimate
of the STD is 0.2212. Moreover, the lower bound of the confidence
intervals for the mean is 0.0040, and the upper bound is 0.0219. In
addition to the frequency distribution histogram, Fig. 12(b) shows
the normal probability plot to identify any substantive departure
from normality. The dotted line in red provides the reference for
a perfect normality. The upper end of the plot bends below the
diagonal line while the lower end bends above that line, forming an
S shaped-curve, which indicates a light-tailedness. In other words,
our correlation results have less variance than expected. In this
graph, we can also observe that approximately 90% of the data has
a weak association because the probability from 0.05 to 0.95 has
the correlation ranging from —0.3 to 0.3, which is considered as a
weak strength of association. Thereby, we prove the independence
between two ERPs and ensure that attackers are unlikely to link
the old ERP to the new ERP.
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Table 2: Authentication of the system configured with the
new ERP.

Recall (%)
99.20+1.829

FRR (%)
0.775%1.805

FAR (%)
0.789%1.775

Precision (%)
99.05+2.034

9 LONGITUDINAL STUDY

Description of Experiment: We follow the same experimental
settings as Section 7.3. In the enrollment phase, we randomly select
a part of owner data and use them to create a profile of the user.
Then, we test the performance of the classifier by authenticating
the user with the owner templates and all attacker templates. Here,
we refer the authentication phase as a pre-trial and re-test for either
short-term or long-term study as a post-trial. For the short-term
study, the interval between the pre-trial and post-trial is five days.
For the long-term study, participants are experimented five months
after the pre-trial. The average time interval is 142.8 days. During
the short-term study, the participants are familiarized with the
stimuli set by observing the set before the experiment. For each
subject, the profile of user remains the same and newly collected
data are used for login attempts. Each subject acts as the owner
once, and the rest acts as the attacker. This test repeats for every
subject. Thus, there are total 78 tests for short-term study and 78
tests for long-term study with each test consisting 77 user attempts
and 77 attacks from each attacker.

Results and Discussion: The overall performance change is sum-
marized in Table 3. The f-score is increased by only 0.02% during
the short-term study. The possible reason is that our stimulus pre-
sentation is too fast to properly trigger a short-term memory, and
therefore an intrinsic reaction from the semantic memory, a portion
of long-term memory, overrides the response from the short-term
memory. Conversely, the performance is declined by 1.01% during
the long-term study. This change is slightly higher than the change
observed in the short-term study. However, it should be noted that
this change is still insignificant.

10 DISCUSSION

Liveness Detection: To prevent spoofing attacks, the authentica-
tion system must differentiate real biometrics from counterfeits.
Most promising way to distinguish them is to detect physiologi-
cal signs of liveness. Existing methods [9, 25] either request the
user to provide signs of liveness or force user to interact with the
system continuously, which decrease the user comfort. In contrast,
our proposed ERP-based approach is a dynamic and continuous
biometric credential, which itself provides the physiological sign
of liveness as the active EEG must always come from living indi-
viduals. Therefore, the dynamic nature of the brain response [69]
provides us a potential method to distinguish the recorded replay
attacks injected through the electrodes.

Aging Effect: Most biometrics (e.g., fingerprint, iris, and face) spon-
taneously morph over the lifetime in a extremely slow pace. Simi-
larly, age-related alterations of brainwave includes the overall EEG
power decrease, slower alpha frequency, and slight diminution in
P3 amplitude. Yet, they are orthogonal to ERPs obtained from vi-
sual stimuli [51]. As shown in the longitudinal study, we do not
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Table 3: Overall performance variation (f-score)

Duration | Pre-trial (%) | Post-trial (%) | Change(%)
Short-term | 96.43+3.99 96.45+4.32 +0.02
Long-term 96.00+5.81 94.99+6.30 -1.01

observe any significant mutation of brain signal in a long period.
Nevertheless, regular ERP profile update can be a potential solution.

Privacy Preservation: In the context of privacy concerns, one
natural question is “will this brain biometrics leak privacy infor-
mation?" The answer is “No". Previous works indicate that brain
leakage requires a satisfactory data, such as high-fidelity brain-
waves with a professional device (e.g., BCI2000-64 channels [42])
or invasive measures by embedding chips into brain [53]. On the
contrary, our system only requires three channels with a small
information disclosure. Moreover, our system only collects ERP
P/N200 (i.e., within 200ms post-stimulus onset response), while
most of the semantic memory attacks require the relatively long-
term brainwaves (e.g., non-ERP sections from seconds to minutes
(43

Further motion artifacts cancellation: While our method de-
scribed in subsection 4.4 is effective for non-continuous motion
artifact noises, it could be vulnerable when extreme physical activi-
ties continue throughout the authentication. Thus, further process-
ing to counterbalance artifacts from the continuous gait events are
needed. With a three-dimensional accelerometer, the system can
detect artifacts induced by head movements and remove the brain-
wave synchronous with the recorded acceleration above certain
threshold [20]. To describe in a more detailed way, head accelera-
tions are measured relative to the initial position, and ICA identifies
EEG components that are statistically independent. Then, compo-
nents that correlate with the recorded acceleration above certain
threshold are removed [20].

Future Work: Though we have utilized the Pearson’s correlation
analysis for the unlinkability property assessment, we plan to pro-
vide a more comprehensive evaluation to prove that the reissued
brainwave biometrics is indeed unlinkable. Specifically, Spearman’s
rank order correlation [26], Kendall rank correlation [1], and Haus-
dorff distance [67] will be employed for the analysis. At the current
stage, we validated the feasibility of our brain password with 177
adult participants, a further study with a much larger sets of partic-
ipants to verify the uniqueness and stability of the brain biometrics
is in our plan. Another promising research direction to pursue is
to investigate the impact of visual stimuli protocols, such as full
color versus black and white, designated visual stimuli under other
different categories.

11 RELATED WORK

Headwear User Authentication: In recent year, how to authen-
ticate users in untraditional personal device, such as head-mounted
displays, has been increasingly explored in both mobile and secu-
rity research communities. Chauhan et al. [16] developed a touch
gesture-based continuous authentication for wearable devices like
Google Glass. Similarly, Li et al. [36] proposed an authentication
system for head-worn devices using user’s unique head movement
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patterns in response to music. Also, Rogers et al. [55] presented the
method to identify an HMD user based on the user’s unconscious
blinking and head movement. Other existing techniques, such as
eye movement biometrics [60], can be conveniently integrated into
HMD devices. However, such physiological and behavioral char-
acteristics are prone to compromise in daily life and thus can be
surreptitiously duplicated and counterfeited.

Authentication via Brainwaves: Most brainwave authentications
have used EEG as the biometric. Chuang et al. [17] presented an
subject authentication scheme based on single-channel EEG signals.
Similarly, Ashby et al. [7] employed EEG signals for person authen-
tication with AR model and power spectral density. However, their
results are limited to the controlled condition as the regular EEG
signal is sensitive to factors such as human emotion. In contrast,
the proposed ERP signal is stimulated based on the inherent human
experience. One nascent work [6][56] brings up the concept of
ERP-based user authentication, but there is no in-depth exploration
regarding the biometric cancelability. While this work focuses on
the biometrics cancelability including update strategy design and
cancelability analysis.

Cancelable Biometric Systems: Cancelability is one of the most
desired features in biometrics. Connie et al. [18] proposed a method
which uses existing biometric palmprint features with a set of
pseudo-random data to generate a unique discretized code for ev-
ery individual. Similarly, Paul et al. [49] developed a cancelable
biometric template generation algorithm using random projection
and transformation-based feature extraction for multi-modal face
and ear biometrics. Further, Ouda et al. [46] exploited the feature
domain transformation for protecting IrisCode. The feature trans-
formation is accomplished by IrisCode generation, consistent bits
extraction, and cancelable BioCode generation. However, these
methods are based on a soft-cancellation, which generates a can-
celable biometric through the alteration and transformation of ex-
isting templates. For the first time, we introduced the notion of
hard-cancellation as a generation of totally new bio-features.

12 CONCLUSION

In this paper, we presented the first study to explore secure and
usable authentication to headwear devices using cancelable ERP
biometrics. The evaluation results show that our approach achieves
the f-score accuracy of 95.72%, and equal error rate (EER) of 2.503%.
Thus, for the first time, we have validated the feasibility of using
unique, non-volitional components of brainwave response for au-
thentication of smart headwear users. Also, we introduced cancela-
bility to the brainwave biometrics through a novel stimuli update
strategy. A further cancelability analysis in terms of revocability
and unlinkability is conducted to prove the effectiveness of the
reissued biometrics credential.
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