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ABSTRACT
The advent of smart devices has caused unprecedented security and
privacy concerns to its users. Although the fingerprint technology
is a go-to biometric solution in high-impact applications (e.g., smart-
phone security, monetary transactions and international-border
verification), the existing fingerprint scanners are vulnerable to
spoofing attacks via fake-finger and cannot be employed across
smart devices (e.g., wearables) due to hardware constraints. We
propose SonicPrint that extends fingerprint identification beyond
smartphones to any smart device without the need for traditional
fingerprint scanners. SonicPrint builds on the fingerprint-induced
sonic effect (FiSe) caused by a user swiping his fingertip on smart
devices and the resulting property, i.e., different users’ fingerprint
would result in distinct FiSe. As the first exploratory study, exten-
sive experiments verify the above property with 31 participants
over four different swipe actions on five different types of smart
devices with even partial fingerprints. SonicPrint achieves up to
a 98% identification accuracy on smartphone and an equal-error-
rate (EER) less than 3% for smartwatch and headphones. We also
examine and demonstrate the resilience of SonicPrint against finger-
print phantoms and replay attacks. A key advantage of SonicPrint
is that it leverages the already existing microphones in smart de-
vices, requiring no hardware modifications. Compared with other
biometrics including physiological patterns and passive sensing,
SonicPrint is a low-cost, privacy-oriented and secure approach to
identify users across smart devices of unique form-factors.

CCS CONCEPTS
• Security andprivacy→Biometrics; •Human-centered com-
puting→Ubiquitous andmobile devices; •Hardware→ Sig-
nal processing systems.
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1 INTRODUCTION
Fingerprint technology has become highly ubiquitous with wide-
scale adoption in smartphones and smart devices for user identifi-
cation. Unlike the privacy concerns raised by face biometrics (San
Francisco face ban [1]), low degree-of-freedom in iris detection
[2] and inferior robustness of voice authentication [3], fingerprint
possesses high social acceptance due to its uniqueness and usability.
In current digital era, the necessity to track vital signs, automate
day-to-day tasks and improve the quality of life fuels the growth of
diverse smart devices. A report by Gartner describes a typical family
home to contain 500 smart objects by 2022 [4]. For protecting the
smart environment, it is evident that smart devices will continue
to rely on biometrics, with fingerprint being the first choice as key
to user’s confidential data.

Figure 1: A new dimension of fingerprint sensing adopt-
able across diverse smart devices and resilient to fake-finger
spoofing.

Even after decades of development, the existing fingerprint
modalities suffer from two limitations. For accurate user identi-
fication, a high-resolution fingerprint needs to be acquired through
dedicated hardware scanners (e.g., optical, capacitive or thermal
[5]), which are expensive and cumbersome. The diversity in terms
of embedded sensors, shape and size makes the adoption of exist-
ing fingerprint biometrics infeasible in upcoming smart devices.
Secondly, fake-fingers can be exploited to spoof fingerprint traits
[6–8]. Even the in-display ultrasound sensors, targeted towards
enhancing usability, are susceptible to 3D finger models [9].

It is a known fact that when two objects slide against each other,
kinetic energy is released in the form of sonic wave and heat. The
harmonics of this friction-excited sonic wave are dependent on the
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surface characteristics of objects and their internal composition.
Our key contribution is the observation that the sonic waves from
a user swiping his fingertip on a surface can serve as biometric
traits. Since every person has a unique fingerprint, we hypothesize
that two users swiping their fingertips on a common surface should
result in distinct fingerprint-induced sonic effect (FiSe). Although
the statistical properties of FiSe may change depending on the
user’s swiping speed, pressure or surface roughness, the inherent
uniqueness is dependent on the surface texture (i.e., fingerprint
ridge patterns) and the finger’s constitution. If this hypothesis
holds, FiSe can be observed across smart devices and measured
using inbuilt microphones. The goal of this work is to explore the
knowledge and validation of a new fingerprint sensing modality
and open discussions for emerging mobile security research.

As a natural communication interface, microphones are actively
employed in IoT-enabled devices, virtual-reality (VR) headsets as
well as smart city initiatives [10]. To this end, our novel biometric
provides two distinct advantages over existing fingerprint technolo-
gies as illustrated in Figure 1:
• Adoptability: our method requires no specific hardware and
utilize low-cost off-the-shelf sensors in smart devices. The biometric
trait is available across devices with diverse flexibility, geometry
and composition.
• Anti-Spoofing: unlike the traditional fingerprint methods, our
proposed approach leverages the advantages of both fingerprint
and audio domain to prevent against fake-fingers, replay or side-
channels attacks.

Building on this, we aim to transform everyday smart devices
into fingerprint scanners. To achieve this, three challenges need
to be addressed: (1) FiSe is typically of low power and submerged
in dynamic background noises. How to acquire the target FiSe
without any information loss? (2) To enable high accessibility and
acceptance, it is important to provide freedom to the users while
swiping the surface. In the case where a user’s swiping speed and
pressure are not controlled, how to select appropriate features that
closely resemble the fingerprint? (3) For real-world applications, it
is critical that the FiSe cannot be compromised. How to evaluate
the vulnerability of our system which relies on characteristics of
both fingerprint and audio domain?

In this work, we propose the first systematic framework that
leverages FiSe from a user swiping on smartphone and smart devices
as a new biometric. We first validate the uniqueness of fingerprint-
induced sonic patterns by comparing the resulting spectrum of
fingerprints with different textures. Then, we leverage the underly-
ing microphone in a smartphone to acquire FiSe and investigate a
sequence of spectral and wavelet denoising approaches for back-
ground isolation. An adaptive segmentation method is designed
to remove the tap noise and other entities which can be easily
misinterpreted as the target signal. Afterward, we propose a novel
taxonomy that highlights the semantic relationship between the
fingerprint and audio domain and identifies multi-level features
that fundamentally share the same concept as a fingerprint. Based
on these insights, we design and implement our system, SonicPrint,
to facilitate secure sensing of FiSe for user identification. Finally,
a comprehensive evaluation is performed with 31 participants on
five smart devices across six sessions over two months to validate

the effectiveness and inclusiveness of SonicPrint under real-world
scenarios.
Summary: Our contribution in this work is three-fold:
• We explore a novel fingerprint-based biometric approach
for user identification. We find that when a user swipes his
fingertip on a surface, the FiSe contains intrinsic fingerprint
information.
• We design and implement SonicPrint, an end-to-end biomet-
ric system to facilitate secure, accessible and user-friendly
fingerprint sensing on everyday smart devices in practice.
• We validate the effectiveness and inclusiveness of SonicPrint
through extensive experiments with results showing up to
98% accuracy. We conduct comprehensive studies to show
the resilience of SonicPrint against fake-finger and replay
attacks.

2 BACKGROUND AND PRELIMINARIES
In this section, we provide a background on friction-excited sonic
waves and the rationale behind its uniqueness in terms of human-
to-material interaction. We also perform a feasibility study to prove
this concept.

Figure 2: FiSe arises from the friction between fingerprint
and surface and can be sensed by a conventional micro-
phone.

2.1 Fingerprint-Induced Sonic Effect
Friction develops from two surfaces sliding against one another irre-
spective of the intensity of their relative motion. This friction leads
to distinct waves and oscillations within the interacting mediums
resulting in the emission of sonic waves to the ambient environ-
ment [11]. In daily life, there are several instances of friction-excited
sonic waves from an interaction between sneakers on the floor or
chalk on the blackboard. In this paper, the context of sonic wave
differs from the roughness noise, which is generally random (e.g.,
rubbing of two sandpapers). Under strong contact conditions, the
sliding surfaces become a coupled system and generate an intricate
and often nonlinear response. Previous studies have shown that
physical parameters, including speed and pressure, only affect the
magnitude of power spectral density to a certain extent, but not
the overall distribution [12]. The roughness of the sliding surfaces
impacts the sound pressure level (SPL) as:

Δ𝑆𝑃𝐿 = 20 log10 (
𝑅2
𝑅1
)𝑚, (1)
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Figure 3: A proof-of-concept (three subjects) for FiSe-based identification under the impact of (a) different fingerprint patterns;
(b) fingerprint and covered finger interaction with surface; (c) human dynamics (i.e., swiping speed and pressure).

where 𝑅2 and 𝑅1 correspond to the roughness of friction pair and
𝑚 is an empirical factor varying based on the surface texture. The
SPL of sonic waves can be similar between different friction pairs
and thus impacts its sensing rather than uniqueness. A person
with rough fingertip would produce a more audible sonic wave
when rubbing a surface, in contrast to a soft skin fingertip. More
importantly, for different friction pairs (e.g., finger against metal
vs. finger against plastic), the uniqueness of sonic waves arise from
the interface properties (i.e., texture) and the constitution of objects
(e.g., weight distribution). The surface deformation during contact
is highly minute [13] and its intensity is inconsequential to surface
roughness.
Hypothesis:When a user swipes his fingertip on any surface (refer
to Figure 2), the resulting friction-excited sonic wave depends on
the intrinsic fingerprint patterns, underlying structure of finger
and opposing material. Since every user has a unique fingerprint,
the FiSe from two users swiping on the same surface should be
different. Moreover, the low SPL of FiSe provides a strong resilience
against spoofing attacks.

2.2 A Feasibility Study
Proof-of-concept Setup: To validate the uniqueness of FiSe from
different fingerprints, we conduct a preliminary study (n = 3) to
perform straight-downward swipes with the right index finger
(dry state), 20 times each, on the back surface (aluminum) of a
commodity smartphone. The subjects are told to swipe naturally
without exerting intense pressure or speed. During the second trial,
we cover the subject’s fingertip with a scotch tape and repeat the
swipe actions. In another experiment, we ask two subjects to re-
peat 15 swipes with gradually increasing pressure and speed in
each trial. The resulting FiSe is recorded by the inbuilt microphone
(sampling rate-44.1KHz) of a smartphone. For the sake of isolating
environmental dependency, this study is performed in a confer-
ence room (21◦C) with low ambient noise. After processing the
fingerprint-induced sonic waves, we aim to extract features that
can provide a clue towards the inherent fingerprint.
Feature Distinction Analysis: Level I characteristics of the fin-
gerprint depend on its macro details, i.e., the pattern and ridge flow
and can be visually perceived through naked eye [14]. Similarly,
in the audio domain, power-based temporal features highlight the
changes in signal over time and perceptual features (e.g., pitch,

loudness) have semantic meaning to a human listener. Therefore,
we select features, including temporal centroid, log attack time,
harmonicity, pitch and spectral features (i.e., centroid, crest, de-
crease, entropy, flatness, rolloffpoint and spread) as Level I friction
descriptors. For ease of the comparison, Figure 3 illustrates the vari-
ations against average and standard deviation of descriptors after
normalization. Each FiSe yields a data point on the graph and the
points from multiple FiSe by the same fingerprint exhibit a cluster.
Insights: Our preliminary analysis reveals that (1) every user has
a unique fingerprint pattern (e.g., line, arch and whorl pattern in
Figure 3(a)) which generates a unique FiSe during the swipe action;
(2) Figure 3(b) proves that distinctiveness of FiSe is dependent on
the fingerprint rather than the overall geometry of the fingertip;
(3) variation in pressure and speed has a limited effect on the iden-
tifiability of FiSe (see Figure 3(c)). However, considering different
swipe dynamics, the decision boundary might overlap when only
using Level I friction descriptors.
Summary:We prove that FiSe depends on the underlying finger-
print. To improve accuracy, we continue to recruit appropriate
features highlighting the intrinsic fingerprint information (Level
II and Level III) from the sonic waves. In the following paper, we
discuss the application of FiSe for smartphone security and provide
insights to consider before real-world deployment. We also examine
other types of smart devices in Section 9.1.

3 THREAT MODEL
We consider an attacker, namely Alice, who intends to steal pri-
vate information from the victim’s smartphone. We assume that
the smartphone comprises of a standalone defense mechanism, i.e.,
SonicPrint. Upon realizing the fundamental operation of SonicPrint,
Alice explores the existing literature for methods to compromise fin-
gerprint and audio security. Specifically, we consider the following
attack scenarios:
• Fingerprint phantom attack: Typically, Alice can either exploit
social media of the victim or remotely capture the desired finger-
print through high-resolution cameras. Afterward, the fingerprint
and overall finger geometry can be utilized to create a fingerprint
phantom (i.e., fake-finger). This fake-finger is highly identical to
the victim’s live-finger and can be used to spoof the system. During
the entire process, the victim has no idea of the ongoing threats. It
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Figure 4: The overview of SonicPrint, a fingerprint-biometric based user identification system.

is worth mentioning that conventional fingerprint scanners can be
compromised using this stealthy attack [15].
• Replay and Side-Channel attack:Without the victim’s knowl-
edge, Alice places a high-sensitive microphone near the smartphone
and records the FiSe during an access attempt. This recording is
replayed to the target device through direct FiSe matching or vibra-
tion injections by leveraging sophisticated hardware. Studies show
that this attack can compromise the security of traditional voice
authentications within five trials [16].

In our work, we assume that Alice is not able to place the record-
ing device very close to the victim’s smartphone (i.e., < 20𝑐𝑚) during
the access attempt. This assumption is practical since the malicious
hardware will be at line-of-sight to the victim, raising his suspicion.
Moreover, even prominent biometrics (e.g., voice) are inapplicable
under the identical scenario. We assume that Alice cannot create a
biological replica of victim’s finger using organic 3D printers. These
printers are economically unfeasible, costing millions of dollars and
require advanced knowledge of printing. SonicPrint can leverage
FiSe for secure user identification.

4 SONICPRINT SYSTEM OVERVIEW
By analyzing the FiSe caused by fingertip and surface interac-
tion, SonicPrint can reveal fingerprint dependent characteristics
in the received signal. Figure 4 illustrates four primary modules
of SonicPrint: (1) Background isolation; (2) Friction event detec-
tion; (3) Acoustic fingerprint analysis; (4) Ensemble classification.
First, when a user swipes his fingertip on the smartphone surface,
the inbuilt microphone is used to capture the FiSe. A series of
pre-processing techniques including clutter suppression, target en-
hancement and ambient denoising are applied to acquire the precise
sonic wave. Once its position is verified, a multi-level representa-
tion of acoustic fingerprint is obtained from specific features of the
target signal. Finally, the representation is input to an ensemble
classifier to precisely identify the legitimate user.

5 FISE PROCESSING SCHEMES
In this section, we discuss the nature of friction excited sonic waves
from a coupled system consisting of fingertip and material. When
a user swipes his fingertip on the smartphone surface, a FiSe is
generated, which can be captured by the inbuilt microphone and
can span the entire frequency band (0-22KHz).

5.1 Pre-processing
The sonic wave is typically submerged in the dynamic ambient
noises (e.g., human talking, music) due to its low power. Considering

the diverse and known frequency bands in the noise spectrum, it
is effective to use high-order cutoff in one-pass filters. However,
this also eliminates the intrinsic fingerprint information in the
lower frequency bands. To remove the low frequency noise from
human speech and music, we employ a high-pass filter with cutoff
2.2KHz to remove the arbitrary clutter and recover the signal with
a frequency range from 2.2KHz to 22KHz.

5.2 Sonic Effect Enhancement
Although the human voice and background clutter can be sepa-
rated based on information content, the FiSe might be perceived as
generic noise due to its low power. Multi-band spectral subtraction
[17] is a widely used method to enhance the target signal that is
degraded by additive noise without introducing any distortions.
Given that noise does not affect the entire frequency band of FiSe
uniformly, we need to ideally subtract the appropriate noise spec-
trum from each frequency bin. This would restrict any excessive
subtraction of intrinsic fingerprint information. We acquire the
clean and enhanced spectrum of FiSe in the 𝑖𝑡ℎ frequency band by:

|𝑆𝑖 (𝑘) |2 = |𝑌𝑖 (𝑘) |2 − 𝛼𝑖𝛿𝑖 |𝐷𝑖 (𝑘) |2 𝑏𝑖 < 𝑘 < 𝑒𝑖 , (2)
where 𝑌𝑖 is the power spectrum of noisy FiSe signal, 𝐷𝑖 is the noise
estimate, 𝑏𝑖 and 𝑒𝑖 are starting and ending frequency bins. 𝛼𝑖 is
an over-subtraction factor and 𝛿𝑖 is empirically chosen for each
frequency band. For calculating 𝛿𝑖 , we leverage a pre-recorded two
second audio sample in daily environment with human voices as
noise estimate. We update over-subtraction factor 𝛼𝑖 as:

𝛼𝑖 = 𝑐1 · 𝑙𝑜𝑔10 (
∑𝑒𝑖
𝑘=𝑏𝑖
|𝑌𝑖 (𝑘) |2∑𝑒𝑖

𝑘=𝑏𝑖
|𝐷𝑖 (𝑘) |2

) + 𝑐2, (3)

where 𝑐1, 𝑐2 are empirically chosen values. After nonlinear power
spectrum subtraction, the enhanced FiSe is derived from its spec-
trogram. However, there still exists residual clutter between the
intervals of FiSe.

5.3 Denoising-Aware Wavelet Reconstruction
Given the advantages of (1) multi-scale analysis [18] and (2) opti-
mal resolution in frequency and time domain, we employ wavelet
denoising to eliminate the residual noise from the FiSe that remains
even after sonic effect enhancement. Using maximal overlap dis-
crete wavelet transform (MODWT) [19], the signal is first subjected
to decomposition to acquire detail coefficients (𝛼𝑘 ) and approxima-
tion coefficients (𝛽𝑘 ):

𝛼
( 𝐽 )
𝑘

=
∑
𝑛∈𝑍

𝑥𝑛𝑔
( 𝐽 )
𝑛−2𝐽 𝑘 𝛽

(𝑙)
𝑘

=
∑
𝑛∈𝑍

𝑥𝑛ℎ
(𝑙)
𝑛−2𝑙𝑘 , (4)
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Figure 5: The spectrogram of (a) original and (b) denoised
FiSe from three swipe actions.

where the levels 𝐽 ∈ 𝑍 and 𝑙 ∈ {1, 2, 3, ..𝐽 }.We choose theDaubechies
3 wavelet (dB3) and reduce the FiSe to 6 levels. Afterward, we apply
the detail coefficient threshold for each level to discard the ambient
clutter. Finally, a level-dependent reconstruction is employed using
all the coefficients as:

𝑥𝑛 =
∑
𝑘∈𝑍

𝛼
( 𝐽 )
𝑘

𝑔
( 𝐽 )
𝑛−2𝐽 𝑘 +

𝐽∑
𝑙=1

∑
𝑘∈𝑍

𝛽
(𝑙)
𝑘

ℎ
(𝑙)
𝑛−2𝑙𝑘 , (5)

where 𝑔 and ℎ are rescaled discrete orthogonal functions. The spec-
trogram of FiSe before and after the processing stage is shown
in Figure 5. It is worth mentioning that the signal-to-noise ratio
(SNR) is significantly improved from -3 to 23 decibels. In the next
subsection, we discuss the challenges of localizing the FiSe in the
overall signal and our proposed solution.

5.4 Friction Event Detection
Considering the FiSe is caused by a user swiping his fingertip on
the smartphone surface, there are three challenges in tracing the
target’s precise location in the measured signal:
• The length of FiSe would vary among different swipes and differ-
ent users. Generally, the FiSe from a swipe action ranges from 0.05
to 0.3 seconds.
• Due to the variations in SPL of FiSe from human dynamics during
the swipe action (see Section 2.1), the traditional threshold-based
separation [20] algorithms are inadequate without optimization.
• During a swipe action, there may be an initial tap sound (i.e.,
finger colliding with device surface) or closing drag sound (i.e.,
finger slipping when lifting) enclosing the FiSe. Since the amplitude
of tap and drag sound are arbitrary, peak detection methods are
ineffective.

To this end, we specially design our segmentation process (see Al-
gorithm 1), to address the above challenges and isolate the starting
and ending periods of each FiSe.
i) AdaptiveDetection viaHMMmodel: The hiddenMarkovModel
(HMM) has proven to be an effective method for acoustic event
detection [21]. It computes the probability of an occurrence of FiSe
in every segment of the recorded signal and only consider those
with high probability as friction events. Specifically, we first divide
the recorded sample in non-overlapping frames, where each frame
is 0.01 second period. A discrete fourier transform (DFT) is applied
to each frame, after which an unbiased noise variance is calculated
based on the optimally smoothed power spectral density estimate

Algorithm 1 Roughness-aware FiSe detection.
Input: 𝑥 (𝑘),𝑊 : k frames from signal with size W

𝑆𝑇𝑇,𝑇𝑇𝑆 : Probability thresholds for HMM
Output: 𝑅: Target fingerprint-induced sonic
1: 𝑃𝑖 , 𝐿𝑖 ,𝑇 ← 0 ⊲ Initialize parameters.
2: for 𝑖 ∈ {1, .., 𝑘} do 𝑃𝑖 = 𝐻𝑀𝑀 (𝑥 (𝑘), 𝑆𝑇𝑇 ,𝑇𝑇𝑆); ⊲ Compute

likelihood 𝑃𝑖 that frames contain FiSe.
3: end for
4: 𝑇 = 𝑠𝑒𝑔𝑚𝑒𝑛𝑡𝑠 (𝑃𝑖 ≥ 0.9); ⊲ Extract segments.
5: {𝑑𝑟𝑦, 𝑏𝑎𝑙𝑎𝑛𝑐𝑒𝑑, 𝑠𝑜 𝑓 𝑡} = 𝑐𝑜𝑚𝑝𝑎𝑟𝑒 (𝑐𝑜𝑢𝑛𝑡 (𝑇 ), 𝑘 ×𝑊 ); ⊲ Pre-

dict roughness by comparing number of detected vs expected
segments based on window size.

6: if !𝑑𝑟𝑦 then
7: Repeat lines 2-4 with optimized thresholds;
8: end if
9: 𝐿 = 𝑃ℎ𝑎𝑠𝑒 (𝑥 (𝑘)); ⊲ Compute linearity index.
10: 𝑚𝑖𝑛𝑇𝑖𝑚𝑒,𝑚𝑎𝑥𝑇𝑖𝑚𝑒 = 𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛(Δ𝑚𝑎𝑥 (𝑃𝑖 , 𝐿𝑖 ));

⊲ Determine the period range of target FiSe based on consecu-
tive high likelihood and linearity index.

11: if 𝑚𝑖𝑛𝑇𝑖𝑚𝑒 ≤ 𝑙𝑒𝑛(𝑇 ) ≤ 𝑚𝑎𝑥𝑇𝑖𝑚𝑒 then
12: 𝑅 = 𝑇 ; ⊲ Verify duration of segments.
13: end if
14: return 𝑅

and spectral minima from each frequency band [22]. Finally, a
widely used log-likelihood ratio test and HMM-based hang-over
scheme [23] is used to determine the probability of friction event.
To regulate the prior SNR [24] in log-likelihood, we define two
additional parameters, i.e., TargetToSilence (TTS) probability and
SilenceToTarget (STT) probability.

In a scenario where the swipe action of a user is controlled, the
TTS and STT thresholds can be set to a fixed value, similar to speech
recognition applications. However, considering the dynamic nature
of FiSe, a fixed cutoff would lead to a reduction in the identified
target segments. Therefore, for ensuring the identification of FiSe
with even low audibility, we design an adaptive technique that ranks
the roughness of user’s fingertip based on the statistical analysis of
the signal. In particular, the roughness can be categorized as dry,
balanced or soft by comparing the number of detected FiSe vs. the
expected FiSe based on overall period. Depending on the predicted
roughness, the TTS and STT probabilities are optimized to retrace
the optimal friction events. In scenarios where the SPL of FiSe is
very low, our adaptive detection can raise the number of identified
events by more than 84% (counted manually).
ii) Phase-based Detection: The tap sound and drag sound are
of arbitrary characteristics and challenging to remove by conven-
tional statistical methods (e.g., maximum amplitude, mean, standard
deviation). Previously, phase-based detection schemes have been
proposed to suppress the impact noise [25]. The acoustic signal
is first divided into non-overlapping frames of 0.01𝑠 . Considering
that there is only one dominant pulse of magnitude 𝑎 at 𝑛0 in the
current frame, the signal 𝑥 (𝑛) = 0 except at 𝑛 = 𝑛0. Afterward, a
DFT is applied to individual frames with the 𝑘th frequency bin and
the phase slope as:

𝑋 (𝑘) = |𝑋 (𝑘) |𝑒 𝑗𝜃 (𝑘) = 𝑎𝑒−𝑗2𝜋𝑘𝑛/𝑁 , (6)
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Figure 6: A taxonomy of multi-level friction descriptors corresponding to intrinsic fingerprint.

Δ𝜃 (𝑘) = tan−1 𝐼𝑚(𝑋 (𝑘) · 𝑋
∗ (𝑘 − 1))

𝑅𝑒 (𝑋 (𝑘) · 𝑋 ∗ (𝑘 − 1))
𝑋 (𝑘) = 𝑋 (𝑘)

|𝑋 (𝑘) | , (7)

where ∗ represents the complex conjugate. Lastly, based on the
phase slope and the 𝑛0 position in current frame, a linearity index
is defined as:

𝐿𝐼𝜃 (𝑘) = Δ𝜃 (𝑘) − −2𝜋𝑛0
𝑁

. (8)

The linearity index varies significantly between the FiSe and
residual noise. However, its magnitude for tap/drag sound is similar
to the FiSe, implying that they are of similar phase. Therefore, we
employ the last processing step to select optimal FiSe events.
iii) Duration Verification: The sequence of occurrences with a
high magnitude linearity index differs between the tap/drag sound
and the FiSe. Even in cases where a user has a soft fingertip with
low SPL, the duration of FiSe would still be distinct. Based on the
insights from HMM model and the linearity index, we conduct a
final check by removing the segments whose duration does not lie
from 0.05 to 0.3 seconds.

It is worth noting that the proposed event detection is applicable
for acquiring FiSe across different smart devices and surfaces (see
Section 9.1) since it does not assume the swiping behavior of users.

6 TAXONOMY OF ACOUSTIC
FINGERPRINT

The uniqueness of friction-excited sonic wave is dependent on the
texture of contact surface, i.e., the fingerprint. As shown in Section
2.2, Level I friction descriptors are not sufficient since they can only
relate to Level I optical fingerprint patterns. To this end, we propose
a novel taxonomy (see Figure 6) that bridges the gap between Level
II and III fingerprint patterns and acoustics to select valid features
for FiSe classification.

6.1 Level II Friction Descriptors
In the fingerprint domain, Level II features involve Galton character-
istics, also known as minutiae points (e.g., hooks and bifurcations).
These features possess a high variance between fingerprints of dif-
ferent users and are actively used in classification models. For the
discrimination of audio sources, features such as the mel-frequency
cepstral coefficients (MFCC) are essential since they can capture the
timbral characteristics. Other cepstral features generally employ
the perceptual filter bank and autoregression model to approximate
the spectral envelope. Based on this semantic relationship, for the

Level II friction descriptors, we select 14 MFCC (with Δ and ΔΔ),
12 linear prediction cepstral coefficients (LPCC) and 27 perceptual
linear predictions (RASTA-PLP [26]). These descriptors can provide
insights into the minutiae features of the fingerprint.
6.2 Level III Friction Descriptors
Although being unique, Level II fingerprint features are prone to
spoofing since they could be visually perceived through the naked
eye or even in low-resolution images. Thus, Level III fingerprint
features are proposed based on the dimensional ridge informa-
tion, including width, pores and edge contour. Similarly, short-time
fourier transform and adaptive time-frequency decomposition can
reveal various physical attributes of FiSe. These features have in-
ferior meaning to human perception [27] and thus are difficult to
spoof. To reveal the intrinsic fingerprint from FiSe, we select 12
linear prediction coefficients (LPC), 12 linear spectral frequencies
(LSF), 26 log filter bank and spectral statistics (i.e., flux, kurtosis,
skewness and slope) as Level III friction descriptors. Besides, we
also employ 16 wavelet cross-level coefficients and 32x20 C1 & C2
amplitude spectra [28] relating to the texture of FiSe.

6.3 SonicPrint Identification
Two-check Feature Selection:Majority of the feature selection
methods [29, 30] focus on finding minimal-optimal subset based on
the classification accuracy. Yet, the limited accuracy for a specific
model is not sufficient to confirm a feature as irrelevant. Therefore,
we employ Boruta algorithm [31] to determine the all-relevant fea-
tures for FiSe classification. It relies on the computationally efficient
Random Forest classifier to iteratively discard the less relevant fea-
tures. We utilize a two-step correction, i.e., Benjamini Hochberg
FDR for evaluating features against random and Bonferroni correc-
tion [32] for testing identical features repeatedly. After applying
the feature selection on our multi-level friction descriptors, the ma-
jority of features are chosen, except C1 & C2 amplitude spectra. The
feature vector, initially of 802 features, is reduced to 162 friction
descriptors and fed to our classification model.
Ensemble Classifiers: As the first exploratory study using FiSe
for biometrics, we employ the following prediction models which
have shown superior performance in user identification [33–35]:
• Logistic Regression (LR): It models the outcome through lo-
gistic sigmoid function to deliver a probability measure that
is mapped to a specific class. We set the maximum iterations
as 1000 and a cross-entropy loss for multi-class problem.
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• Support Vector Machine (SVM): It is a statistical learning
method with linear kernel that determines an optimal hyper-
plane to divide classes by maximizing the margin between
the closest points.
• Random Forest (RF): It fits specific decision tree classifiers on
the sub-samples and employs averaging to reduce overfitting.
We set the estimators as 200 and use an entropy criterion for
prediction.
• Linear Discriminant Analysis (LDA): By utilizing the Bayes’
rule and approximating class conditional densities to sam-
ples, it creates a linear decision boundary to separate the
classes. We select singular value decomposition as the solver.
• Gaussian Mixture Model (GMM): It provides a parametric
probability distribution of audio signal and related features
and characterizes the weighted sum of Gaussian components
as a density function. We assume 5 components in our model.

From our empirical analysis, LDA is most suited for FiSe classifi-
cation, followed by RF and SVM. Therefore, we assign a weight to
each classifier (LR, SVM, RF, LDA, GMM) as 1, 2, 2, 3, 1, respectively.
Finally, we perform hard voting on the observations generated from
the classifiers to decide the legitimate user.

7 EVALUATION SETUP
7.1 Experimental Settings
We conduct a pilot study to validate the uniqueness of FiSe caused
by the swipe motion on a smartphone. From reviewing the recent
development in touch-based biometrics [36], we observe that two
swipe actions are the most convenient and acceptable among users,
as shown in Figure 7. 1Hand Swipe: a user holds his phone nat-
urally in right-hand and uses the index finger of the same hand
to swipe on the surface. 2Hand Swipe: left-hand firmly holds the
phone while the other is used to perform the swipe. The 2Hand
swipe is more robust to artifacts and allows for precise stroke cap-
ture. To provide a better understanding of the experimental process,
we create a code to describe the performed swipe action. The code
comprises of three parts, i.e., Swipe-Sensing Distance-Surface.
The swipe could vary between 1Hand and 2Hand; sensing dis-
tance differs among 1𝑐𝑚, 7𝑐𝑚 or 11𝑐𝑚 from inbuilt microphone;
and surface could be aluminum, glass or others. Our experimental
setup for the pilot study involves the participants to sit on a chair
in a conference room with low ambient noise. The participants

Figure 7: The evaluation setup with subject performing
1Hand and 2Hand swipe on the smartphone surface with
right index finger.

are asked to perform 1Hand-7cm-aluminum swipes in a straight-
downward direction on the back of the smartphone. Afterward,
they are required to complete 2Hand-1cm-glass swipes at the front
of the smartphone. To ensure that the obtained insights are applica-
ble in real-world scenarios, physical attributes (i.e., speed, pressure or
roughness) of the finger are not controlled during the swipe action,
throughout the remainder of this paper.We employ the Google Pixel
2 smartphone with a 0-22KHz range microphone to record the FiSe
caused by the swipe action. It is 14.4𝑐𝑚(5.7𝑖𝑛𝑐ℎ) x 6.8𝑐𝑚(2.7𝑖𝑛𝑐ℎ) x
1.5𝑐𝑚(0.6𝑖𝑛𝑐ℎ) in size and weighs only 161.5𝑔, which is lightweight
for easy use in daily life. It works on a Qualcomm Snapdragon
835 with an Octa-Core processor. The recorded signal is fed to
SonicPrint for further analysis.

7.2 FiSe Collection and Partition
As the first exploration of utilizing FiSe for user identification, we
recruit 31 subjects (25 males and 6 females) within the age-group
of 18-50 years in our study. None of the subjects have any damage
to their fingerprint. For both the experiments involving 1Hand and
2Hand swipes, every subject performs six trials each. In each trial,
the subject swipes at the specific position 30 times continuously.
A 15𝑚𝑖𝑛 break separates every two consecutive trials to ensure
non-uniform speed and pressure during swipes. Furthermore, the
six trials for each experiment are spread across three weeks. A
trial consists of 1𝑚𝑖𝑛 recording for each person. In total, every sub-
ject performs 180 1Hand-7cm-aluminum and 180 2Hand-1cm-glass
swipe actions. The generated FiSe is recorded by the inbuilt micro-
phone (sampling rate of 44.1KHz) and later fed to SonicPrint. After
denoising and segmentation, a total of 4099 1Hand swipes (∼130 per
participant) and 4405 2Hand swipes (∼140 per participant) are se-
lected for training and testing. A 10-fold stratified cross-validation
approach is applied to normalized features during user identifica-
tion. The reason behind choosing stratified approach relates to the
bias in classification models. During prediction, every instance is
weighted equally, implying that a few over-represented classes can
dominate the evaluation metrics. Thus, a stratified model ensures
that each fold in cross-validation is representative of the whole
dataset, thereby optimizing the bias and variance [37]. We employ
other cross-validation and direct matching algorithms, in Section 9,
to evaluate the inclusiveness of SonicPrint in real-world scenarios.
Evaluation Metrics: We introduce balanced accuracy (BAC), F-
score, equal error rate (EER) and receiver operating characteristics
(ROC) curve asmetrics in our evaluationmodel. They are insensitive
to class distribution which is critical for identification schemes.

7.3 SonicPrint Usability & Social Acceptance
SonicPrint requires the users to naturally swipe on their smartphone
cover to acquire the unique FiSe. To assess the practicality and
acceptance of SonicPrint in the real-world, we surveyed the 31
participants recruited in our pilot study. Of all the 31 participants,
80% are male and 20% are female. After completing the experiments,
we ask the participants a few questions regarding their experience
with our system. 71% of them preferred to perform 2Hand swipes
on the front surface of the smartphone, while 29% preferred 1Hand
swipes on the back cover. On a scale of 1 to 10, all the participants
are requested to rate the comfortability while performing multiple
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Figure 8: The performance between (a) Action1, Action2; (b) Action3; (c) Action3 (unsupervised).

swipe actions. We record an average score of 9.35, validating the
ease-of-use of SonicPrint. Furthermore, we employ a 4-point Likert
scale (ranging from Strongly Disagree to Strong Agree) [38]. This
scale determines the participant’s willingness to adopt SonicPrint
in daily life for unlocking a smartphone or accessing protected
information. 80% of the participants answered with a score of 4
points, while the rest gave a score of 3 points. These results show
high acceptance of SonicPrint among subjects, especially when
made aware of the threats in traditional fingerprint scanners.

8 ACCURACY & RELIABILITY STUDY
As a potential breakthrough technology, it is critical to evaluate the
performance and reliability of SonicPrint. Our smartphone-based
pilot study comprises user identification using FiSe obtained from
two actions: (1) Action1: 1Hand-7cm-aluminum swipes; (2) Action2:
2Hand-1cm-glass swipes. For each action, we make a comparison of
evaluation metrics by increasing the number of swipes per sample
performed by the user.

i) Action1 performance: After performing 10-fold stratified cross-
validation on 4099 samples, the observed BAC and F-score are
shown in Figure 8(a). The number of inputs, i.e., swipes per sample
is increased from one to three and the variation in performance is
recorded. The BAC for 1, 2 and 3 inputs is 82.3%, 87.3% and 88.2%
while the F-score is 84.8%, 89.1% and 90.2% respectively. From ROC
curve, the area-under-curve (AUC) is observed to be 85.3%, 89% and
88.6% as swipes per sample increases.
ii) Action2 performance: We report the BAC and F-score for 10-
fold stratified cross-validation on 4405 samples in Figure 8(a). The
BAC for 1, 2 and 3 inputs is 84.15%, 88.9% and 89.2%while the F-score
is observed as 86.1%, 90.6% and 90.9% respectively. We compute
AUC as 85.8%, 88.2% and 88.7% for increasing inputs. For Action1
andAction2, the performance improves by augmenting more swipes
per access attempt.
Performance Reliability: To ensure that the observed perfor-
mance is not dependent on the size of training and testing dataset,
we vary the number the splits in K-fold (from 3 to 10) and note
the results. For both Action1 and Action2, the BAC and F-score re-
main stable, within a margin of ±2%, exhibiting the reliability of
SonicPrint even under less amount of training samples.
Insights:While the previous results demonstrate the uniqueness
of FiSe as a biometric trait, they also provide vital clues to improve
SonicPrint. One reason for the lower performance of 1Hand (Action1)
to 2Hand (Action2) swipes is due to its sensing distance from the

microphone. A close proximity of swipe action with microphone
ensures high SNR and allows for more precise capture of the FiSe.
The 2Hand swipes provide a superior control to the users to ensure
that their fingerprint properly interacts with the opposing surface.
A rich textural material facilitates strong coupling between the
fingerprint and surface to produce a more distinct FiSe. Since the
glass material in Action2 is a smooth surface, the performance can
be further enhanced by selecting a more suitable material to interact
with the fingerprint.
iii) Action3 performance: Based on these insights, we conduct
another experiment, Action3, to analyze the SonicPrint performance
under ideal conditions. We place the smartphone in a common
protective case made from synthetic leather and ask the 31 subjects
to perform 2Hand-1cm-leather swipes. We collect 4572 FiSe during
swipe events and perform 10-fold stratified cross-validation. The
BAC and F-score for one swipe per sample is 98.3% and 98.4%,
respectively. Figure 8(b) shows the ROC curve where the observed
EER and AUC are 0.03 and 97.5%. We examine the performance
reliability by changing the splits in K-fold from 3 to 10, with results
showing a ±1% variation in scores.
Alien Fingerprint: To examine the vulnerability of SonicPrint
against alien fingerprints (i.e., samples not trained in advance),
we randomly choose 16 subjects and train the model using their
2Hand-1cm-leather swipes. The remaining 15 subjects are used for
testing in Figure 8(c). Our system can successfully reject the alien
fingerprints using the threshold value of classification score. The re-
sults prove our insights and confirm that the users can be precisely
recognized by SonicPrint.
Identification vs Authentication: A conventional fingerprint
scanner in smart devices grant access to a user by matching his
input to a pre-trained template. This task is similar to binary clas-
sification in authentication problems [39]. Our previous results
show the capability of SonicPrint to perform a more challenging
task of user identification (in other words, multi-class classification)
which is desirable in the IoT environment (e.g., smarthome). Nev-
ertheless, we also evaluated Action1 and Action2 performance for
user authentication (i.e., each subject is compared against others,
in a one-against-one fashion) to observe comparable evaluation
metrics (+2%). Furthermore, we vary the number of randomly se-
lected subjects from 2 to 30 and note the BAC score in Figure 9. As
the number of subjects increase, the performance decreases. An
interesting observation is that after 15 subjects, our model learns
to effectively determine features that can accurately differentiate
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Figure 9: The trend of balanced accuracy with increasing
number of subjects.

Figure 10: Evaluation among diverse surfaces.

the subject-specific FiSe. A comprehensive evaluation of relative
entropy in FiSe can be a lucrative venue for future work.

9 INCLUSIVENESS STUDY
In this section, we consider several factors that could affect the
ability of SonicPrint to identify the users. The existing biometric
technologies are inapplicable under many of these conditions, e.g.,
smartwatch or smart assistant cannot support faceID while traditional
fingerprint does not work under moisture. For the following evalua-
tions, we highlight the base performance by using one swipe per
sample. While our results are applicable across all fingers, we ask
subjects to use their right index finger during experiments.

9.1 Surface Exploration
Impact of Surface Texture: The uniqueness of FiSe relies on the
user’s fingerprint and the contact surface. Although fingerprint
possesses a fixed composition, the opposing surface may vary from
a smooth to a coarse texture. To analyze the effect of surface texture,
we recruit 10 subjects and ask each of them to perform 100 1Hand-
7cm swipes on four common smartphone covers, i.e., aluminum,
synthetic leather, gel (silicone) and plastic. The BAC and F-score
are shown in Figure 10.
Insights: The results confirm that current implementation of Son-
icPrint is more suitable for rough surfaces (e.g., synthetic leather)
than smooth surfaces (e.g., gel). Although plastic has a rigid but
smooth surface, its superior performance is due to the engravings
in material on which the swipe action is performed. The material

Figure 11: The EER for curved smart devices.

texture influences the SPL of FiSe; a high sensitive microphone is
required to increase accessibility of our system across smooth sur-
faces. SonicPrint can drive a new form of user identification using
surfaces with satisfactory texture.
Impact of Surface Geometry: SonicPrint would be highly valuable
if it can be deployed across all smart devices, regardless of their
geometric structure. We investigate the FiSe on four popular smart
devices with an increasing level of curvature: Bose Headphones,
Google Echo, Apple Watch Series 4 (leather strap) and Logitech
mouse. The Logitech mouse comprises an inward surface while
the rest are outward. As a first exploratory study, we position the
microphone in Google Pixel 2 near the surfaces of considered smart
devices and record the FiSe during swipe action. From 5 subjects,
an overall of 1981 FiSe are collected. For each device, the K-Fold
splits during the cross-validation is varied from 4 to 10 and the EER
is illustrated in Figure 11.
Insights: The performance of SonicPrint depends on the curvature
of smart devices, with lower EER for smaller diameter. The higher
EER of a mouse is due to its larger curvature since it is challenging
to maintain the entire fingerprint in contact with the surface during
the swipe action. The influence of curved geometry can be reduced
by controlling the swiping speed to generate a stronger coupling
between the fingerprint and devices.

9.2 Fingerprint Sensitivity
Impact of Partial Fingerprint: In practical scenarios, a higher
degree of freedom during swipe action would result in different
portions of a fingertip to interact with the contact surface. To exam-
ine the system performance with prominent partial fingerprints, we
ask 10 subjects to individually perform 400 2Hand-1cm-glass swipes
on the smartphone. For every 100 swipes, the subject interacts with
different regions (i.e., full, right, tip and left) of their fingertip.
Insights: Figure 12 shows that the accuracy of identifying users
depend on the coverage area of their fingertip. Due to the challenge
in executing a consistent tip or left swipe with the right index finger,
subjects unconsciously face more area of their fingerprints towards
the contact surface. Furthermore, subjects reveal that their finger-
nails collide with the surface during the tip swipes, thereby causing
distortions in the FiSe. These signals are typically disregarded by
our system, thus requiring the users to perform multiple attempts
in case the tip is utilized. Nevertheless, SonicPrint is sensitive to
partial fingerprints and its performance can be further improved
by ensuring suitable contact surfaces.
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Figure 12: Evaluation of partial fingerprint.

Impact of Moisture: It is a known fact that the presence of mois-
ture on fingertip adversely affects the sensing capability of tra-
ditional fingerprint scanners. Considering FiSe relies on the fin-
gerprint, it is necessary to evaluate its sensitivity to moisture. We
experiment with 5 subjects where each of them performs 300 2Hand-
1cm-aluminum swipes on the smartphone. For first 100 swipes, the
fingertip of subjects is in dry state. In next 100 swipes, the finger is
placed inside a glass of water and then the moist fingertip is used to
swipe. Finally, excessive lotion is rubbed on the subject’s fingertip.
Insights: Table 1 demonstrates that excessive moisture lowers the
performance of SonicPrint. However, we achieve satisfactory results
if the moisture level is equivalent to the water. The reason is that
a few consecutive swipes allow the water to be removed from the
fingertip surface, thereby having minimal difference against a dry
fingertip. In comparison, an expensive and high resolution sensor
(e.g., Cross Match Technologies PartolID) demonstrates a 39∼56%
false matching rate due to moisture [40]. SonicPrint shows a better
tolerance to moisture compared to existing fingerprint scanners.

9.3 Swipe Dynamics
Impact of Swipe Pattern:Although our system employs the unique-
ness of FiSe for user identification, it would be ideal if one can inte-
grate a secondary dimension of soft characteristics, i.e., the swipe
pattern (similar to pattern password) to the biometric trait. We
investigate the performance under diverse swipe patterns in Figure
13. For this experiment, each of 10 subjects is asked to complete 400
2Hand-7cm-aluminum swipes on the smartphone. For every 100
swipes, four widely used motion patterns are performed, including
line, zig-zag, circle and star, with increasing level of complexity.
Insights: In contrast to the expected scenario, the performance
of SonicPrint is proportional to the complexity of swipe pattern.
Raising the complexity also increases the length of recorded FiSe,
ensuring that sufficient user-specific information is present in each
sample. Among other variables, the system performance can be
easily improved by reducing the distance between the swipe action
and the microphone.

Table 1: SonicPrint resilience to moisture.

Dry Water Lotion
BAC 92.7% 90% 60.1%

F-score 93.8% 87% 68%

Figure 13: Evaluation among swipe patterns.

Impact of Sensing Location: As the size and dimensionality of
smart device increases, the distance of swipe action might vary with
the inbuilt microphone. Besides, different users would prefer dif-
ferent locations based on the structure of their palm while holding
the smartphone. Therefore, we investigate the performance of Son-
icPrint at three locations, i.e., high, middle and low at a distance of
11𝑐𝑚, 7𝑐𝑚 and 1𝑐𝑚 from the inbuilt microphone, respectively. The
smartphone (Google Pixel 2) is placed inside the synthetic leather
cover to ensure consistency of material across locations. Each of 5
subjects performs 100 1Hand swipes at every location.
Insights: In Figure 14, we observe the identifiability of users de-
pends on the location of swipe action with respect to the inbuilt
microphone. It is worth mentioning that if the training dataset
comprises of swipes from high or low locations, it is still possible to
identify users with newer swipes at the middle location. The lower
cross-performance is due to the distinct surface texture of synthetic
leather at a specific location.

9.4 Acoustic Noise Resilience
The low sound pressure level (SPL) of FiSe brings a trade-off be-
tween high security and precise sensing. In an environment with
dynamic noises, a high-order cutoff filter can reduce the background
clutter, but also leads to information loss. To determine the capabil-
ity of SonicPrint in various acoustic noises, we inform 5 subjects to
do 150 2Hand-1cm-glass swipes on the smartphone at three noise
levels: (1) Stationary noise (23.6dB): inside a running car; (2)
Human motion noise (29.4dB): subject walking around with a
phone, within 3𝑚 distance; (3) Voice, music and environment
noise (40.9dB): windy outdoors with environmental temperature

Figure 14: The BAC for sensing location.
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Figure 15: Evaluation under acoustic noises.

at 23◦C, humans talking and music playing in the background. Al-
though 2.2KHz high-pass cutoff is suitable for indoor ambience, it is
not sufficient to eliminate loud noises. From empirical observations,
we fix the cutoff to 4.4KHz for stationary engine noise and human
motion noise and 11KHz for loud noise primarily from winds. We
repeat the experiment on synthetic leather cover and illustrate the
outcomes for with/without noise training in Figure 15.
Insights:We observe that the surface texture plays a vital role dur-
ing sensing in presence of acoustic noises. Yet, accuracy is adversely
affected when the model is only trained in control environment.
SonicPrint can precisely identify users with diverse training samples.
We discuss the possible enhancements in Section 11.

10 VULNERABILITY STUDY
10.1 Fingerprint Phantom Attack
We assume that Alice has access to the fingerprint and other geo-
metrical characteristics (e.g., width, thickness) of left index finger of
a legitimate user. Using this information, she aims to build a replica
of the target’s finger and breach the biometric security. Among
accessible spoofing materials [41], Alice utilizes gelatin which can
most closely relate the texture of live finger [6] and can even spoof
capacitive fingerprint scanners [8]. To explore this, we recruit 5
subjects having fingers of various sizes and execute these steps:
• We ensure that the entire finger of each subject is covered by
multiple layers (5 to 8) of latex material.
• Between each successive layer, we wait for 10 minutes to lose
the moisture; the finger is kept still so that no pressure marks or
creases occur on the coating.
• Once the latex coating becomes firm, we gently enclose it with
baking powder as we remove the latex.
•We prepare a mixture of one part gelatin, glycerin and water and
use a conventional microwave to heat the mixture. Finally, we pour
the mixture inside the recovered latex coating and leave it to dry for
24 hours. The latex coating is then discarded to obtain the gelatin
fake-finger, as illustrated in Figure 16.

We ask each subject to use their live left index finger and perform
100 2Hand-7cm-aluminum and 100 2Hand-1cm-glass swipes on the
smartphone. Afterward, we repeat the process by informing sub-
jects to utilize their fake-fingers to complete swipe actions. We train
the SonicPrint on recordings from live fingers and test fake-fingers
during identification. For the fake-finger recordings, we observe
that our pre-processing module discards 300 (out of 500) aluminum

Figure 16: (a) Gelatin fake fingers with multi-level finger-
print textures; (b) vibration injections via audio transducer.

and 450 (out of 500) glass FiSe. Out of the remaining, only 32 (6.4%)
aluminum and 21 (4.2%) glass FiSe are misclassified as live fingers.
10.2 Replay and Side-Channel Attack
We assume that Alice knows the underlying mechanism of Son-
icPrint to sense the sonic waves for user identification. Through a
high-resolution camera, Alice can acquire the victim’s fingerprint
from a distance of 2𝑚 [42]; however, no FiSe can be obtained from
a similar distance due to its low SPL. Therefore, we envision an un-
realistic scenario where she leverages a high-sensitive microphone
(i.e., Fifine-K670) and positions it at very close proximity of 20𝑐𝑚
and 30𝑐𝑚 facing the target smart device. The microphone captures
the FiSe during an access attempt by a legitimate user.
Attack via Microphone: the recording is replayed to the inbuilt
microphone of target smartphone by direct FiSe replay. Overall, 4
subjects conduct 500 2Hand-7cm-aluminum swipes on Google Pixel
2 and the inbuilt and secondary microphone concurrently records
the FiSe. For attack through a direct transfer, merely 4.8% and 3.2%
of replayed FiSe match with the original recording, even at a close
distance of 20𝑐𝑚 and 30𝑐𝑚 respectively.
Attack via Vibration Channel: we consider a scenario where Al-
ice attempts to forge the swipe action of legitimate user as vibration
signals for identification. The pre-recorded audio signal is passed
through the coil of transducer and a dynamic electromagnetic field
is generated which makes the actuator vibrate the smartphone (see
Figure 16). Although these vibrations are propagated from a very
close distance (i.e., top of smartphone), all are rejected by SonicPrint,
making side-channels attacks via hidden transmitters ineffective.

10.3 Potential Vulnerabilities
Section 10 examines the anti-spoofing capability of SonicPrint against
intricate presentation attacks. We discuss other physical attacks
and conditions that may affect the biometric capability below:
Denial-of-service: Observing the low SPL of FiSe, Alice can lever-
age additional speakers to project white noise towards the target
microphone while Bob is performing the swipe action. Unlike addi-
tive noise, a multiplicative signal can be utilized which raises the
challenge for SonicPrint pre-processing module. However, any au-
dible noise would be noticeable to Bob, decreasing the stealthiness

131



MobiSys ’20, June 15–19, 2020, Toronto, ON, Canada Aditya Singh Rathore1 , Weijin Zhu1 , Afee Daiyan1 , Chenhan Xu1 , Kun Wang2 , Feng Lin3 , Kui Ren3 , Wenyao Xu1

of attack. To this end, Alice could employ inaudible ultrasound sig-
nals [43] which exploits the loophole in hardware non-linearity; the
traces left after the attack are challenging to remove in the recorded
FiSe signal. We consider this as a potential scope for future research.
Surface Texture: In this paper, we have tested seven widely used
materials (i.e., aluminum, synthetic leather, glass, silicone, plastic,
fiber (Google echo) and rubber (Mouse)) on smart devices. Learned
from the rationale, every material should have a unique coupling
with the user’s fingerprint. Although SonicPrint can be applied to
other materials including paper, wood and textiles, the trade-off
between usability and security needs to be explicitly considered
(for instance, a high audible FiSe is more usable but less secure).

11 DISCUSSION
Aging Effects: For every biometric trait, a different degree of vari-
ation occurs over time. We ask 5 subjects to each complete 100
2Hand-1cm-glass swipes on the smartphone. These trials are per-
formed every week for two months. We train the SonicPrint on
the recordings from the first week and test the remaining dataset.
We observe a sharp drop in the performance (by 38%) after three
weeks, which continues to reduce over time. The reason is due to
employing the same smartphone in all performance studies, caus-
ing accelerated aging. In real practice, every user has their own
personalized devices. Moreover, specialized materials that are more
resistant to aging can be used for superior longevity.
Microphone Sensitivity: SonicPrint leverages the low-cost micro-
phone of smartphone for FiSe acquisition. Although our system
shows a satisfactory performance under ideal conditions, the over-
all results can be significantly improved by adopting high sensitive
microphones. These microphones can precisely detect FiSe from
even swipe actions on smooth surfaces in a noisy environment.
Users would not be required to perform the swipe as close to the
microphone, increasing the level of freedom and user acceptance.
Accuracy and Improvements: SonicPrint achieves 84% and 98%
identification rates with a single trial on standard and high-texture
smartphone surface, respectively. This is comparable to recent low-
cost solutions using vibrations [44, 45], gait patterns [46] and pas-
sive sensing [47] for authentication. Yet, the most significant con-
tribution of SonicPrint is its adoptability across smart devices (refer
to Section 9.1) which is not supported by existing solutions. Our
proposed approach can also be used as secondary biometrics; im-
provements in microphone frequency response and deep learning
approaches can be considered for our future exploration.
SystemConsiderations:As a starting point, SonicPrint is a promis-
ing biometric with high adoptability and anti-spoofing capabilities.
However, a practical deployment in the real-world requires reflec-
tion on following criteria: (1) Privacy: The audible nature of FiSe
makes it prone to theft via a conventional recording device. For a
countermeasure, the user can be asked to perform a specialized ges-
ture (e.g., zig-zag or star pattern in Section 9.3) during the training
process. These gestures are uncommon in normal user behavior,
thereby increasing the difficulty for an attacker to acquire the tar-
get FiSe outside the recognition period. (2) Power consumption: The
current power consumption relies on the microphone (<100mW);
we envision that a touch trigger can be employed to activate FiSe
recording, thereby limiting battery usage in smart devices. (3) Recog-
nition time: By employing computationally inexpensive algorithms,

SonicPrint can identify a user in less than 1 second period, further
facilitating its deployment in smart devices.

12 RELATEDWORK
Touch-based Biometrics: Touch-based implicit authentication
relies on the unconstrained movement patterns of users when they
interact with their smartphone. The location of finger taps could
be inferred from the motion sensors [48, 49]. Based on this insight,
the touch dynamics was explored as a soft biometric trait for user
authentication [50, 51]. Different parameters such as the rhythm,
strength, angle of applied force [52] or the size and axis length of
finger touch area [53] can depict the user’s individuality. Despite
the enhancements in security [54–56], it was shown that mimicry
attacks have a bypass rate of 86%, evenwith partial knowledge of the
underlying features of touch biometric [57]. Recently, researchers
have employed induced body electric potentials (iBEP) or body
guided communications as a new biometric [58, 59]. However, it
requires the user to continuously wear a token device and can
be spoofed through injection attacks. Our method relies on the
uniqueness of fingerprint and cannot be spoofed via mimicry or
side-channel attacks.
Acoustic Sensing: In 2011, researchers proposed that the acoustic
signatures caused by an object impacting with a screen surface
could identify its type (i.e., fingernail, knuckle, tip) [60]. Afterward,
the domain of acoustics-based touch interaction was enhanced by
monitoring continuous sound via structure-borne sound propaga-
tion [61] for inferring the finger tapping and movements of the
user [62]. When a vibration motor excites a surface, the presence
of devices [63] or user-specific gestures [44] can be sensed by the
inertial sensors. However, these approaches have limited accessi-
bility due to the requirement of additional vibration transmitters
and receivers and more importantly, are vulnerable to the Denial-
of-Service (DoS) attacks. A recent study captures the finger sound
caused by thumb rubbing the finger for gesture recognition [64],
yet requires the user to wear a ring during the sensing process. To
the best of our knowledge, we provide the first study on exploring
the intrinsic fingerprint information in friction-excited sonic waves
for secure user identification.

13 CONCLUSION
Existing fingerprint biometric is vulnerable to spoofing attacks (e.g.,
fake-fingers) and cannot be adopted in upcoming smart devices
due to hardware constraints. In this paper, we introduce a new
dimension of fingerprint sensing using the friction-excited sonic
wave caused by a fingerprint to surface interaction. We develop
SonicPrint that utilizes the FiSe from a user swiping his fingertip
on everyday smart devices for identification. The system is adopt-
able, user-friendly and difficult to counterfeit with an identification
accuracy up to 98%. We also show the inclusiveness of SonicPrint
under partial fingerprints, motion patterns and surface geometry.
In the future, we aim to consider users having damaged fingerprints
while exploring high-sensitive microphones with ultrasonic range
to improve the system accuracy.
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