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Abstract—How to defend against presentation attacks via
artificial fake fingers is a core challenge in fingerprint biometrics.
The trade-off among security, usability, and production cost has
driven researchers to reach a common standpoint, i.e., integrate
the commercial fingerprint technology with anti-spoofing detec-
tion (e.g., ridge traits). These anti-spoofing solutions are perceived
as sufficiently resilient under the assumption that a fake finger
can never closely relate to a live finger due to either composition
of spoofing materials or non-automated manufacturing errors. In
this paper, we first identify the vulnerability of in-practice anti-
spoofing solutions in commercial fingerprint products. Instead
of using expensive 3D fake fingers [1] (above USD $1000), we
mimic a more realistic scenario where an attacker fabricates
high-precision fake fingerprints using low-cost polyvinylacetate
materials [2] (less than USD $50). Building on this, we introduce
a practical and secure countermeasure, namely FakeGuard, to
overcome the exposed vulnerability. We examine the nature of
3D haptic response effect that arises when a fingertip epidermis
interacts with a tactile surface and reflects the disparate anatomy
of live and fake fingers. Unlike the previous mitigation strategies,
FakeGuard offers both hardware and software compatibility with
existing fingerprint scanners. As the first exploration of haptic-
based anti-spoofing solution, we demonstrate the capability of
FakeGuard to prevent known and unknown fake finger attacks
with an average detection error of 1.4%. We also examine
and prove FakeGuard resilience against seven different physical
attacks, e.g., brute-force through pressure variations or partial
fingerprints, haptic response alteration via advanced spoofing ma-
terials or side-channel interference, and denial-of-service attacks
by manipulating the moisture, lighting, and temperature of the
ambient environment.

I. INTRODUCTION

Automated fingerprint recognition systems (AFRS) are
designed to protect against unauthorized access by linking
the user’s unique fingerprint to safeguarded information [9].
As AFRS continues to grow in critical applications from
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Fig. 1. FakeGuard offers a multi-dimensional representation of biological
network within a human fingertip and exploits the fundamental anatomical
difference between live fingertip and fake fingers made from diverse spoofing
materials for anti-spoofing.

gate access, law enforcement, identity management to mobile
authentication, adversaries discover innovative ways to bypass
fingerprint-based security [10], [11], [12]. The vulnerability
of AFRS was not considered a major threat until it was
shown possible to hack the 2D images of German minister’s
fingerprint as well as bypass Apple’s TouchID sensors [13].
Since then, different attacks have surfaced, e.g., using 3D
artificial fake fingers to bypass Samsung S10 smartphone [14]
or fingerprint cloning via glue gun to hack 500 bank accounts
[15]. Realizing the threat, researchers have proposed promising
mitigation strategies [16], [17], [18], [19] using customized
hardware or software-based solutions. These anti-spoofing so-
lutions are actively integrated into commercial AFRS products
to trace the millimeter-scale artifacts [20], [21] on fake fingers.
Given the maturity of fingerprint domain, existing AFRS
are perceived as sufficiently resilient against non-automated,
error-induced fake fingers; however, their effectiveness against
emerging attacks [22], [23] remains undetermined.

Are the latest AFRS resilient against fake fingers? To
answer this, we perform an exploratory investigation on the
anti-spoofing mechanism in commercial AFRS through high-
precision fake finger attacks. In contrast to recent studies
utilizing expensive 3D printers in their attack model [24], we
leverage low-cost and highly accessible materials to fabricate
high-resolution fake fingers with an error margin of a sub-
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TABLE I. COMPARISON BETWEEN TRADITIONAL HARDWARE-BASED ANTI-SPOOFING SOLUTIONS VS PROPOSED FakeGuard.

Reference Technology Hardware Target Spoofing
Material

Performance
(ACE)

Cost

Goicoecha-Telleria
et al. [3]

Optical Lighting Microscopes 2D Fingerprint,
color, edges

PlayDoh, Latex, Gelatin,
White Glue, Nail polish

1.51% >$1000

Sousedik
et al. [4]

Optical Optical Coherence
Tomography (OCT)

3D Fingerprint Gelatin, Silicone, Latex,
Paint, Wood Glue

7.42% >$1000

Baldisserra
et al. [5]

Electrical Electronic Nose Odor Latex, Silicone, Gelatin 6% <$25

Kolberg
et al. [6]

Electrical Thin Film
Transistor

Impedance Glue, Gelatin, PlayDoh,
Wax, Latex, Paint

and others

2.89% <50

Parthasaradhi
et al. [7]

Capacitive
Electro-optical

Precise Biometrics,
Ethenticator USB 2500

Perspiration PlayDoh, Putty 4.8% $100 - $200

Galbally
et al. [8]

Thermal Yubee Atmel’s
Fingerchip

2D Fingerprint Silicone 8.09% <$50

Proposed
FakeGuard

Optical PDMS-based
Haptic Sensor

Haptic Response
Silicone (Dragonskin),
Latex, Clay, Gelatin,

PlayDoh, Glue and others
1.4% <$35

micrometer scale in fingerprint textures and overall finger
geometry. The fake finger attack reveals insufficient device
security and can breach different types of off-the-shelf AFRS
(with anti-spoofing functions) at a success spoof rate of over
93%. Observing that the AFRS market is expected to grow up
to 7.1 billion in 2024 [25], an immediate countermeasure is
required to overcome the similarity on textural and impedance
levels among live and fake fingers.

It is a known fact that the human fingertip does not
only comprise of unique fingerprint texture but also a com-
plex multi-layer anatomy containing blood vessels, skin (e.g.,
epidermis, dermis), finger bone, and tissues. The dynamic
interconnectivity among these biological elements contributes
to distinct physical measures including fingertip hardness and
elasticity during touch interaction. To capture the intrinsic
representation of these physical measures in addition to the
fingerprint minutiae, we propose a cost-effective and hardware-
friendly tactile interface that can be seamlessly integrated
with off-the-shelf AFRS. A specialized polydimethylsiloxane
(PDMS) layer facilitates a haptic response upon interaction
with the user’s fingertip and the response’s magnitude depends
on the constitution of interacting surface. Given the difference
in anatomy between the human fingertips and spoofing mate-
rials, we hypothesize that the haptic response of a live finger
and fake finger should be distinguishable through a dedicated
recognition model. If our hypothesis holds, the haptic response
can become a new dimension of anti-spoofing mechanism
against high-precision fake fingers. This new defense offers
three distinct advantages:

• Unprecedented Anti-Spoofing Security: The proposed
technology is the first fingerprint anti-spoofing solution via
haptic response in human fingers, and it can defend against
sub-micrometer fake finger attacks regardless of spoofing
materials.

• Low-Cost Haptic Technology: Typically, AFRS supporting
multi-dimensional sensing of fingertip’s topology costs above

$500 [26]. The high sensitivity of the tactile interface makes it
possible to measure precise haptic response through low-cost
off-the-shelf hardware components (less than $35).

• Resilience to Alien Fingerprints: Existing anti-spoofing
solutions require prior training with known fake fingers [27]
leading to an arms race between attacker (who continuously
exploits new materials) and defense mechanism (which needs
to retrain with diverse samples). In contrast, the haptic response
generated from a live finger is fundamentally different from
its fake counterpart, therefore requiring no extensive learning
process (further described in Section IX-B).

To this end, we develop a haptic-based anti-spoofing so-
lution, namely FakeGuard, for non-invasive and accurate fake
finger detection. The foundation of FakeGuard rests on bio-
logical and behavioral combined traits, called, haptic response
effect caused by a fingertip pressing on a PDMS gel surface.
During press action, a series of low-cost point LEDs and a
circular LED ring uniformly illuminates the gel surface while
the haptic response is captured within a sequence of fingerprint
samples (less than one second period) by an off-the-shelf
camera. The photometric stereo algorithm reconstructs the 3D
haptic response from 2D fingerprint samples while ensuring
minimum distortion to inherent information about the finger-
tip’s anatomy. Afterward, we utilize grey-level co-occurrences
of rotation-invariant local binary patterns for haptic response
analysis and build a fingerprint retrieval model to acquire the
underlying fingerprint minutiae features. These haptic features
are fed to fine-tuned supervised and unsupervised classification
models for resilient anti-spoofing in real-world scenarios. Our
extensive experiments involve eight types of fake fingers and
12000 spoofing attacks on the haptic response while achieving
up to 1.4% average error for fake finger detection. FakeGuard
is resilient against seven different physical attacks (e.g., brute-
force through pressure variations or partial fingerprints, haptic
response alteration, and denial-of-service) and maintains a high
true positive on live fingers.
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Summary: Our contributions in this work are threefold:

• We systematically demonstrate the necessity for improv-
ing biometric security by exposing the vulnerability of
anti-spoofing functions in latest smart devices against
high-precision fake fingers. These fake fingers possess
near-identical textural and impedance information as the
live fingers of legitimate users.

• We propose a novel anti-spoofing framework that builds
upon the multi-dimensional haptic response obtained from
fingertip to gel interaction. We develop a haptic-based
system, FakeGuard that offers high potential for com-
patibility with traditional optical AFRS on hardware and
software levels.

• We conduct a comprehensive study by examining and
proving the resilience of FakeGuard against fake finger
attacks under supervised and unsupervised scenarios. We
also explore uncommon physical attacks (e.g., imperson-
ation/alteration, denial of service) to examine its anti-
spoofing capability in real-world applications.

II. RELATED WORK

Fingerprint Presentation Attacks: To date, researchers have
examined the vulnerability of AFRS through various spoof
attacks. For instance, universal 3D fingerprint targets are
capable of breaching three different certified optical fingerprint
readers [28]. Another study employed high-end 3D printers
to fabricate fake fingerprints for spoofing capacitive, contact-
optical and contactless-optical fingerprint technologies [29].
Moreover, accessible spoofing materials (e.g., gummy [10],
gelatin [30], silicone [31], glue [32], [33], latex [34], clay
[17], playdoh [35]) have demonstrated significant threat during
presentation attacks. Yet, several of these studies either utilize
expensive 3D printers for creating the fake targets or create a
surface-level impression (2D) of fake fingerprint rather than the
entire 3D finger. In our work, we expose the vulnerability of
state-of-the-art AFRS (enabled with anti-spoofing) via high-
precision fake fingers under a cost-effective and low-effort
attack model.

Fake Fingerprint Mitigation: Countermeasures against
spoofing attacks involve combined efforts from hardware and
software methods. Perspiration and morphological features
can be acquired using high-resolution sensors to assist in
prevention [36]. Furthermore, physical properties of the fake
fingers, e.g., coarseness [17], can be integrated with fingerprint
features for anti-spoofing. Table I compares the traditional
hardware methods based on their overall economical cost, anti-
spoofing performance and sensing mechanism, and shows that
proposed FakeGuard technology is low-cost, high-resolution
and provides higher level of security against presentation
attacks. There is a growing trend of utilizing machine learn-
ing algorithms such as convolutional neural networks [37],
[38], [39], VGG-19 [40], GoogleNet [41], generative adver-
sarial networks [42] and other ensemble approaches [42] as
countermeasures; however, these methods are computationally
intensive and requires large amount of training samples which
is impossible to collect due to the unpredictability of fake
fingers. Researchers [43] explore one-class support vector
machine (SVM) classifiers to detect spoof targets generated
from previously unseen materials, yet the performance is not

ideal for real-world deployment. We propose the first haptic-
based anti-spoofing to capture the multi-dimensional fingertip
anatomy for defeating high-precision fake fingers.

III. CASE STUDY ON SECURITY OF AFRS: ATTACK
MODEL AND PRELIMINARIES

Before describing the spoofing attack, we first introduce
the attack target and basic assumptions in our threat model.

A. Adversary Model

We consider a scenario where a victim, hereafter Bob, uti-
lizes common electronic devices with fingerprint anti-spoofing
ability (e.g., computer, mobile, smart locks) in daily life. The
attacker, namely Alice, aims to compromise the security of
target device and acquire the protected sensitive information.
Alice uses her innovative skills to manufacture a high-precision
fingerprint template of Bob to breach all the security checks
across devices and underlying applications. In the past, 2D fin-
gerprint images [44] and low-resolution synthetic fingerprints
[45] were deemed sufficient for spoofing, yet the current AFRS
(with anti-spoofing) can detect any manufacturing defects on
fake fingers. By acknowledging the findings in recent studies
[46], [47], Alice carefully controls her manufacturing process
to create high-resolution and cost-effective fake fingers. The
non-cancelability and high permanence of fingerprint ensure
that the attack will be successful irrespective of device or
timeline. The high-precision fake finger attack considers three
primary assumptions:

A1 Non-invasiveness: Due to Bob’s vigilance, Alice cannot
directly or wirelessly access the AFRS’s firmware modules. In
smart devices, multiple security checks are integrated during
the development process on both hardware and software levels
for malicious intrusion detection via tamper-proof packaging
[48], [49] or mounting AFRS on encryption circuits [50].

A2 High-Precision Biometric Traits: Alice is capable of re-
trieving the precise details of the target’s fingerprint patterns.
She can steal Bob’s fingerprint from sensitive images on
social media, leftover residues or optical cameras [51] and
produce the fake fingers via reconstruction techniques [52].
Alice can also create spoof targets from latent fingerprints of
non-cooperative subjects by using molds and etching process
for printed circuit boards (PCB) [53], [54]. Acquisition and
fabrication of 3D fake fingers is an actively explored area
[55], [56]. In this paper, we investigate the scenario where
fake fingers contain high-precision biometric traits, as well as
the proposed countermeasure.

A3 Manufacturing Ability: Alice does not have to access
expensive manufacturing machines. Although Alice is capable
of creating fake fingers from diverse spoofing materials, she is
inept in producing biological replicas of the victim’s live finger
via bionic 3D printers [57] as these machines are economically
infeasible in ordinary attack practice.

B. Materials for Advanced Spoofing Attacks

To examine the vulnerability of AFRS unbiased, we need
to select a proper spoofing material that can allow the fab-
rication of high-precision fake fingers. Considering state-of-
the-art AFRS rely on texture and impedance information, fake
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Fig. 2. The chemical structure to constitute high-resolution fake fingers,
which are identical to live fingers.

fingers should also possess identical fingerprint patterns and
impedance as human skin. Based on the above requirements,
we find that polyvinyl acetate (PVAc) glue [58], [33], [45] is
the most suitable spoof material for our attack model. The main
ingredient of PVAc glue is polyvinyl acetate [2], an aliphatic
rubbery synthetic polymer with the formula (C4H6O2)n. Fig-
ure 2 shows its chemical structure within fake fingers.

Chemical attributes: PVAc glue does not possess any strong
odor, is non-toxic, and safe to handle by bare hands [59].
It dries quickly at room temperature (20-25◦C) with very
high bond strength [60]. The pH value is neutral and as an
emulsion in water [61], PVAc glue is only soluble in aromatic
hydrocarbons, ketons, alcohols, esters, and trichloromethane.

Physical attributes: As a type of macromolecular substance,
PVAc glue’s particle size belongs in the range from 100nm
to 1um [62]. Its density is 1.191 g/mL at 25◦C and dielectric
constant is 1.15 [63]. PVAc glue is flexible and texture-stable
under normal environments.

Attack Benefits: Due to PVAc glue’s particle size from 100nm
to 1um, it can support a sub-micrometer scale precision in the
fingerprint textures on corresponding fake fingers. Beyond that,
we test the impedance from live fingers and PVAc glue fingers.
The impedance is measured by ProsKit MT-1280 multimeter
(60 MΩ) [64] by placing positive and negative nodes to oppo-
site ends of the fake finger. Our empirical analysis shows the
PVAc glue to possess the same order of magnitude impedance
(nearly 20 MΩ) with human skin (nearly 10 MΩ). PVAc
has a low price of $0.015 per gram, allowing even resource-
deficient attackers to obtain the material effortlessly. Given
the advantages of PVAc glue, we consider it as a promising
material for producing high-precision fake fingers to spoof the
commercial AFRS with anti-spoofing functions.

C. High-precision Fake Fingerprint

Attack Requirements: Before introducing the manufacturing
process of fake fingers, we need to consider the target require-
ments as summarized below:

R1 Target Presentation: Alice will attempt to trick AFRS to
perceive the presented input belongs to a legitimate user. By
having a close similarity between Bob’s live finger and fake
finger and maintaining a continuous vigilance over the victim,
Alice will input the fake finger with the same dynamics (i.e.,
pressure, speed) as Bob during an access attempt.

R2 Concealment: After the security breach, no traces should
remain on smart devices leading to the attacker. The threat of

Fig. 3. An array of high-precision fake fingers modeled from index, middle
and thumb fingers from 20 subjects.

fake fingers arises from the unpredictability of spoof materials
from being recognized by AFRS. However, greasy or viscous
materials may leave traces on the device which can be easily
identified in forensic analysis.

R3 Model Precision: Alice will prevent any defects on the
input fake finger which can be easily recognized by AFRS.

Fake Finger Fabrication: The process of generating fake
fingers while satisfying Requirement R3 and Assumption A2-
A3 is described as follows: (i) Alice selects a small cubical
structure of dimensions 3 cm x 3 cm x 3 cm to store the
molding material. (ii) Due to its accessibility and rheological
properties, wax is selected as the base material and poured
into the cubical model. (iii) A subject is asked to place his live
finger into the wax material (40◦C-45◦C). The finger is kept
stable to ensure no crease marks on the contact surface. (iv)
Once the material solidifies, the subject’s finger is removed to
acquire a hollowed mold with the shape of fingertip outlined
by fingerprint. (v) Besides PVAc glue, Alice can also select
other advanced spoofing materials and pour them inside the
finger-shaped mold. After five hours, the outer wax mold
is discarded to acquire a detailed fake finger of the target
subject (see Figure 3). Acquisition of 3D fake fingerprints is
an explored area [55], [56]; to exploit the highest potential
of this attack and extensively evaluate our countermeasures,
we choose this method to fabricate the fake finger. After
the fabrication of high-precision fake fingers, their spoofing
potential is extensively evaluated on the commercial AFRS.

D. A Study on Challenging Anti-Spoofing Functions of Com-
mercial AFRS

Anti-Spoofing Mechanism: To verify the fingerprint liveness,
a standard AFRS is coupled with additional hardware or soft-
ware modules. For hardware-based protection, static features
(e.g., capacitance, thermal) are often leveraged to represent
the fingerprint. Traditional optical sensing, being prone to 2D
presentation attacks, is integrated with software-only methods
for anti-spoofing. On the software level, fingerprint liveness
is supported by multiresolution [65] or wavelet-based tex-
ture analysis [17], convolutional neural networks [19], band-
selective Fourier transforms [66] and local phase quantizations
[67]. While the AFRS on the consumer market provides a clear
distinction of inherent technology, their internal software is
often not revealed to the public to prevent threats.

Selected Products in Experiments: For our vulnerability
analysis, we select four widely-used smart devices, i.e., ZK-

4



Fig. 4. PVAc high-precision fake fingers can compromise anti-spoofing
functions in commercial AFRS. Even partial fake fingerprints offer high
spoofing potential considering the textural and impedance similarity between
live and fake fingers.

Teco 20R gate access system, ZKTeco TL100 smart door
lock, HUAWEI P10 smartphone, and HP envy13 laptop using
optical, capacitive, and 3D capacitive AFRS respectively. It is
worth mentioning that each of the mentioned AFRS is also
enabled with anti-spoofing functions as described in Table II.

TABLE II. DETAILS ABOUT AFRS IN POPULAR SMART DEVICES
EMBEDDED WITH POTENTIAL ANTI-SPOOFING FUNCTIONS.

Devices Sensing
Region

Anti-spoofing
Mechanism

Application
Significance

ZKTeco 20R Full Multi-resolution
Texture Analysis

Access
control

ZKTeco TL100 Full Local Phase
Quantization Smart lock

HUAWEI P10
Smartphone Partial Electrical

Conductivity
On-the-go

device security

HP Envy13
Laptop Partial 3D Surface

Matching

Intellectual
property

protection

Attack on Anti-Spoofing Functions: In accordance with
assumptions A1-A3, we examine the spoofing potential of
high-precision fake fingers. On each device, we first register
the target subject as a legitimate user using his live finger.
Afterward, we attempt to breach the device’s security by
presenting the subject’s fake finger. The fake fingers, composed
of PVAc glue, are pressed 30 times individually while the
average result of access attempts is recorded in Figure 4. It is
revealed that the state-of-the-art AFRS have limited security
against high-precision fake fingers and there is still sufficient
room for improvement. By having the assistance of victim
during the manufacturing process, the superior ridge clarity
and strength of fingerprint textures on fake fingers help breach
the anti-spoofing functions in optical scanners. The impedance
similarity between PVAc glue and human skin allows the fake
finger to stimulate a capacitance distribution as a live finger. As
a result, even partial fake fingerprints can spoof the capacitive
AFRS in smartphone and laptop devices. The 3D surface
or texture matching algorithms primarily exploits the ridge
strength and clarity information and thus cannot differentiate
between our partial fake fingerprints and partial live fingers.

Summary and insights: Our study proves the inefficacy of
existing anti-spoofing functions in commercial AFRS to defend
against high-precision fake fingers. We propose a cost-effective
and practical mitigation solution based on the anatomy char-
acteristics of human fingertip and evaluate its security against
eight spoofing materials in Sections VIII-X.

IV. FUNDAMENTALS OF LIVENESS DETECTION

Unlike AFRS that focuses on only the exterior of a human
fingertip (i.e., fingerprint), we explore new biologic features
offered by the entire fingertip with anti-spoofing capabilities.
We describe the background of haptic response effect caused
when a human fingertip interacts with tactile interfaces.

A. The Principle of Haptic Response

Anti-Spoofing Capability of Fingertip: The human fingertip
is a multi-layered structure of different components that in-
teract with each other to allow perception (in form of touch,
pressure, vibration and cutaneous tension [68]) of the physical
world. Its liveness depends on underlying skeletal elements
(e.g., distal phalanx, tendons, and ligamentous structures),
fibrous connective tissue networks, vascular network, and skin
layers [69]. A fingertip possesses unique physical measures
(e.g., hardness, elasticity) whose magnitude depends on the
inherent biological network. However, the rigid surface of
traditional fingerprint scanners cannot sense these physical
measures and restricts to fingertip’s outer layer (e.g., sweat,
ridges) for anti-spoofing. Although bioimpedance [70] can pro-
vide an approximate representation of fingertip composition, it
is affected by the skin temperature and body mass while losing
the information about the fingerprint.

Tactile Interfaces: Polymers exhibiting viscoelasticity and
weak intermolecular forces are increasingly employed in tactile
sensors to measure physical characteristics of the interacting
medium [71]. In particular, polydimethylsiloxane (PDMS) is a
widely-used silicon-based organic polymer possessing multiple
features [72] such as nontoxicity, biocompatibility, elasticity,
transparency, and durability. When a human fingertip is pressed
against the elastomer surface (e.g., PDMS), a deformation
occurs in the polymer structure. This deformation is governed
by elastostatics partial differential equation (PDE) system [73]:

∇ · σ + F = 0,

ε = 1
2

[
∇u+ (∇u)T

]
,

σ = C : ε,

(1)

where σ is the Cauchy stress tensor of the multi-layered
structure of human fingertip, F is the fingertip body force, ε
is the strain tensor related to the PDMS deformation tensor u,
and C is the stiffness tensor of a fingertip. The parameters σ,

Fig. 5. Haptic response arises when a fingertip is pressed on an elastomer
surface and correlates with the anatomy of interacting medium. The high
complexity of biological network within a human fingertip makes haptic
response challenging to impersonate by attackers.
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Fig. 6. The overview of FakeGuard, a haptic-based fingerprint anti-spoofing with four main processing steps: (1) reconstruction; (2) representation; (3)
distribution; (4) detection.

F, ε, and C of a multi-layer fingertip are different from those of
single-layered fake fingers, thereby forming a distinctive defor-
mation u. This deformation is visible as haptic response effect
whose magnitude correlates to the anatomy of overall fingertip.
Specifically, the multi-layered composition of fingertip leads
to a non-linear haptic response; single-layered objects (i.e.,
fake fingers) cause a uniformly distributed haptic response over
the contact area. The cross-link networks in polymer structure
allow the elastomer to recover its shape within less than one
second after the fingertip is removed.

Hypothesis: When a fingertip is pressed against an elastomer
surface, the resulting haptic response depends on the finger’s
anatomy outlined by the fingerprint. Considering the difference
between the anatomy of live fingers and spoofing materials in
Figure 5, the haptic responses from live and fake fingers should
be distinct. In addition, the haptic response cannot be replicated
or altered without knowing the intricate anatomy of user’s
fingertip. The 3D haptic response with inherent fingerprint
minutiae textures can be utilized for anti-spoofing.

B. Design Aims

Our resilient anti-spoofing platform, namely FakeGuard,
should possess the necessary properties as follows:

• Intrinsic liveness: An essential requirement for fingerprint
anti-spoofing is to detect whether the contact object is a live
finger. FakeGuard only allows access to legitimate users when
the input haptic response is not generated by fake fingers.

• Privacy-oriented: It is vital for haptic response to not retain
on the tactile surface after the finger is removed. FakeGuard
utilizes a specially designed PDMS gel that regains its original
shape within one second after press action.

• Cost-effective and ease-of-use: Although traditional bio-
metrics offer reliable features, the sensing mechanism is often
expensive and requires user to follow special instructions.
FakeGuard employs a low-cost off-the-shelf smartphone cam-
era to capture the haptic response when a fingertip is naturally
pressed on a tactile interface.

• Robust: FakeGuard employs a specially designed PDMS
gel and reflective acrylic membrane to support lambertian
surface while shielding the system from change in surrounding
environment.

C. Integration with Commerical AFRS

As an anti-spoofing solution, FakeGuard can offer protec-
tion against high-precision fake fingers. By design, FakeGuard
should also have a high potential for integration with existing
AFRS and facilitate a smooth transition in access-critical sce-
narios (e.g., smart locks, home security). We ensure minimum
hardware overhead by leveraging ordinal components (e.g.,
camera, LED) typically present in the optical AFRS technolo-
gies, while supporting the acquisition of detailed biometric
traits. We also demonstrate software compatibility by utilizing
prominent fingerprint techniques to obtain the ridge patterns
and textures from the haptic response in Section VII-A.

V. FAKEGUARD SYSTEM OVERVIEW

We propose FakeGuard, which utilizes the anatomy-
induced haptic response for fingerprint anti-spoofing. The sys-
tem, see Figure 6, involves combine efforts from the hardware
and software modules. (1) The hardware module: a fingertip
is pressed on the PDMS gel which is subjected to optical
illumination from different directions. The haptic response
is recorded within a sequence of images by a smartphone
camera. An acrylic reflective membrane is strategically placed
to block the ambient light. (2) The software module: the
measured sequence of images are inputted to the photometric
stereo algorithm for 3D reconstruction of haptic response. We
employ rotation-invariant local binary patterns (Rot-LBP) and
grey-level-co-occurrence matrix (GLCM) to represent the 3D
response while utilizing the fingerprint retrieval model for
capturing inherent orientation and ridge frequency information.
The selected features are fed to a classification model for fake
finger detection.

VI. HAPTIC RESPONSE ACQUISITION HARDWARE

In this section, we describe our optimized sensor hardware
that fulfills the design goals mentioned in Section IV-B.

A. Context-aware PDMS Fabrication

The sensitivity of haptic response depends on the physical
characteristics of elastomer surface. To this end, we specially
design a PDMS gel with sufficient responsiveness to capture
biological features of the contact medium. During material
fabrication, we notice that a higher density of PDMS gel
restricts the haptic response from fingertip’s ridge to a small
area, where the singular directional force causes loss in 3D
information. Under softer PDMS composition, the fingertip is
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subjected to force from multiple directions to make a profound
impact on the material. Although the fingerprint textures are
precisely captured in the deformation of gel surface, the soft
composition of PDMS provides an inferior resilience to drastic
variations in ambient temperature and lighting conditions. To
satisfy the requirements of sensitivity and robustness, we allow
the following design considerations: (1) we integrate dual-
layered PDMS gel to act as an interacting medium. The
transparent layer is composed of a grade 184 PDMS with
polymer to cross-linker mixing ratio of 35:1. A grade 527
PDMS using 1:1 ratio forms the ideal colored layer with
sufficient elasticity to capture fingerprint ridges and patterns.
The colored composition prevents the ambient light to reach
the camera lens. (2) To prevent the effect of specular reflection
on the gel surface, we position an acrylic reflective membrane
between the PDMS gel and the camera lens. Figure 7 shows
the difference between the haptic response of live and fake
fingers observed from our specially designed PDMS gel. The
proposed sensing layout is resilient to denial-of-service attacks
as examined in Section X.

Sensitivity of PDMS to skin color and fingerprint quality:
During the development phase, we observed that a transparent
PDMS gel surface can retain the fingerprint textures during
the press action; however, it is sensitive to the skin tone of
users, where a darker tone can reduce the amount of fingerprint
information in sensed images. This is a common problem in
the biometrics domain [74]. To overcome this, we position a
colored and opaque PDMS layer between the user’s fingertip
and camera lens such that it neutralizes the skin color of the
fingertip. In other words, only the deformation of PDMS gel
as well as fingerprint reflection on the gel surface (opposite to
the side where user presses their fingertip) will be captured in
the images. An example is shown in Figure 7, where the color
in the sensed images relates to color of PDMS gel and not of
the user’s skin tone or fake fingers. In the rare scenario when
the incoming fingerprint quality is not sufficient, our specially
designed dual-layered gel also allows detailed acquisition of
haptic response for anti-spoofing or user authentication.

B. Optical Illumination and Response Enhancement

FakeGuard relies on the optical perception of haptic re-
sponse with inherent anatomy and fingerprint information for
anti-spoofing. Figure 8 shows the exterior and interior of
FakeGuard whose hardware module comprises of:

• Low-cost LEDs: Three point LEDs are positioned on the
inner shell of sensor to illuminate the PDMS gel from different
lighting directions. We employ green point LEDs since the
high intensity of red light makes it ineffective for response
acquisition. The power consumption of each LED is 0.024W.
A white LED circular ring ensures a lambertian surface. It is
a surface that appears uniformly bright from all directions of
view and reflects the entire incident light.

• Smartphone Camera: We consider a low-cost and portable
smartphone camera (96 dpi, 3 frames per second) for capturing
the haptic response within a sequence of images. The camera
is placed at 10cm focal length from the gel surface for detailed
response acquisition.

• Raspberry Pi: The intensity of LEDs and camera parameters
are controlled by a Raspberry Pi 4 microcontroller with ARM

v8 64-bit SoC.

• 3D Printed Shell: As the first exploratory study, FakeGuard
is modeled in a cylindrical structure of height 12cm and
diameter of 8cm. A 3D printer is used to manufacture the
shell composed of photosensitive resin.

Cost-effectiveness: AFRS with sophisticated anti-spoofing
ability costs more than $200 [75]. In contrast, FakeGuard com-
prises low-cost hardware with an overall value of $31.08. The
cost breakdown is LEDs (3 x $0.03), lighting circle ($0.34),
shell ($9.75), acrylic film ($0.12), PDMS gel ($1.46), off-the-
shelf camera ($8.95) and Raspberry Pi module ($10.37). Our
hardware design demonstrates that FakeGuard is practical for
real-world deployment in physical access systems.

C. Optometric Stereo Reconstruction

During sensing, the legitimate user presses his fingertip on
PDMS gel over 1 second period; every point LED is turned
on and off (one at a time) while the images of gel surface
are recorded by the camera. Photometric stereo algorithm
[76], [77] is a 3D reconstruction solution to estimate the
depth and surface orientation from 2D images of the same
object under different lighting conditions. It relies on three
assumptions: (1) the light sources are far from the object;
(2) there are no specular or dark regions on the target object;
(3) light is reflected by a surface equally in every direction.
We employ photometric stereo to reconstruct the 3D haptic
response from a sequence of captured images while ensuring
intrinsic information of anatomy and fingerprint patterns. The
process of 3D response reconstruction involves determining
light direction, surface normal and depth information.

Lighting direction calibration: With appropriate distance
between LEDs and gel surface, each of them can be regarded
as a point source. We represent every light ray as a vector

Fig. 7. The PDMS gel offers high sensitivity to capture the intricate haptic
response difference between live and fake finger. n is the sequences of captured
images.
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Fig. 8. FakeGuard hardware prototype comprising three primary components:
(1) optical illuminators (i.e., LEDs, lighting circle); (2) low-cost camera; (3)
Raspberry Pi module. Based on optical sensing, the proposed sensing protocol
can be inconspicuously integrated into conventional fingerprint scanning
without a significant increase in overall cost.

with lighting direction as l⃗m=(xm, ym, zm), m∈ {1,2,3}. To
ensure an ideal sensing platform, the distance between the LED
and gel surface is maintained at height h = 10cm and radius
r = 3.7cm. The pixel-to-centimetre ratio is 102:1 deriving an
image size of M×N (738×432). After expressing the lighting
directions in 3D coordinate system, the position of each LED
(Lxm,Lym,Lzm), m∈ {1,2,3} is derived by:

xm = x0 − (M/2)− Lxm, (2)

ym = y0 − (N/2)− Lym, (3)

zm = Lzm ≡ h, (4)

where (x0, y0) is the center of FakeGuard cylindrical shell.

Surface normal: After computing the lighting directions, we
can recover the surface normals at each pixel. The lighting
directions are represented as a matrix, L = {l⃗1, l⃗2, ..., l⃗3}, and
the observed pixel intensities I⃗ , from each 2D image can be
derived by:

I⃗ = ρ× L× n⃗, (5)

where ρ represents the albedo. Albedo is the fraction of
incident radiation that is reflected by a surface. n⃗ is the unit
surface normal vector. The n⃗ is pseudo-inverse of L via:

n⃗ =
(LTL)−1LTI⃗

ρ
, (6)

n⃗ = {nx ny nz} = −nz {p q −1} , (7)

where p and q are derivatives of original image.

Local depth: Finally, the 3D haptic response is acquired using
the algorithm proposed by Frankot and Chellappa [78], which
minimizes the least squared error EF as:

E(ZF ) =

∫∫ (
(p− pafter)

2 + (q − qafter)
2
)
dxdy, (8)

where the pafter and qafter are the gradient of target surface
after reconstruction and ZF is the result of Fourier transform
of 2D image. Figure 9(a) demonstrates the capability of
FakeGuard in reconstructing high-resolution 3D information
from the target finger.

VII. HAPTIC RESPONSE ANALYSIS

When a fingertip is pressed on PDMS gel, the resulting
haptic response correlates to the fingertip’s anatomy and
spreads across three dimensions. We demonstrate the software
compatibility of FakeGuard with AFRS by extracting multi-
level minutiae features from haptic response. Afterwards, we
extract the spatial features within the haptic response that
relates to the deformation of PDMS gel caused by the user’s
fingertip.

A. Software Compatibility via Fingerprint Minutiae Retrieval

Fingerprint consists of interleaved ridges and valley pat-
terns which can bifurcate, terminate or run parallel to each
other. We introduce a fingerprint retrieval method that in-
tegrates level-1 (i.e., local orientation and ridge frequency
map) and level-2 (i.e., minutiae position and angle) features
as follows:

1) The reconstructed image from photometric stereo algo-
rithm is enhanced via adaptive thresholding, histogram
equalization and normalization methods. A gaussian blur
(kernel = 5) is applied prior to enhancement for reducing
noise.

2) We find the contours in an enhanced fingerprint image
to build edges of a graph structure. This aids in creating
a convex hull mask for segmenting the background from
target object.

3) Gradient-based method [79] estimates the local orien-
tations across a 16x16 pixels averaging window. Given
Gx(i, j) and Gy(i, j) are gradient magnitude in horizontal
and vertical axes, the dominant direction in a window is:

θd =
1

2
tan−1(

∑16
i=1

∑16
j=1 2Gx(i, j)Gy(i, j)∑16

i=1

∑16
j=1(Gx(i, j)2 −Gy(i, j)2)

),

(9)
where the orientation direction is 0◦ or 90◦ if Gx or Gy =
0. The strength is represented by the length of the segment
for every orientation (see Figure 9(c)).

4) After computing the orientation map, the frequencies of
ridge and valley patterns are derived for same locations.
For each block of size 32x32, ridge frequency is a value
f ∈ R, the inverse of average ridge-line period in neigh-
bourhood [80]. Figure 9(d) shows the ridge frequency
map where a lighter block denotes a higher frequency.

5) We employ the NBIS’s MINDTCT function from NIST
[81] in our work due to its superior performance in
minutiae extraction. The MINDTCT involves four pri-
mary steps including the generation of image maps, image
binarization, detection of initial minutiae set and removal
of spurious minutiae to provide a feature set in form of
[x, y, θ]. The (x,y) is minutiae location while θ is the
angle whose example is shown in Figure 9(e).

Finally, the level-1 (orientation and ridge frequency) and
level-2 (minutiae location and angle) features are selected for
fingerprint classification. Figure 9 proves the feasibility of
fingerprint texture extraction from haptic response; FakeGuard
offers low-effort integration with traditional AFRS.

B. Haptic Spatial Distribution

The haptic response contains fingerprint information and
the spatial distribution of PDMS gel correlated with the
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Fig. 9. The fundamental components of fingerprint can be extracted from
haptic response: (a) reconstructed; (b) enhanced; (c) orientation; (d) ridge
frequency; (e) minutiae.

anatomy of user’s fingertip. The response is three-dimensional,
i.e., it has a specific depth at a given horizontal and vertical
location. Based on our observations, the depth information
reflects in a grey-level image through pixel intensity, while
the response can be contained in the overall spatial texture
distribution.

Rotation-invariant Local Binary Patterns (Rot-LBP): Con-
sidering the fingerprint sensing is vulnerable to skin distortion
and quality, Rot-LBP is chosen in our work given its robustness
to the monotonic transformation of grayscale and rotation
invariant through fixed set patterns [82]. Rot-LBP is computed
from pixel x and its symmetric neighbor set of P pixels placed
on a circle radius of R = 8. The difference between the gray
value of pixel x from the neighborhood is used for binary
patterns of dimension 3.

Grey-Level Co-occurence Matrix (GLCM): To address the
large dimensionality of Rot-LBP patterns, we leverage them as
an input for GLCM, which quantifies imperceptible changes
of gel surface and has demonstrated superior performance in
previous anti-spoofing studies [83]. The co-occurrence proba-
bility of each grey level pair(i,j) appearing in Rot-LBP patterns
can be defined as:

p(i, j) =
C(i, j)∑N−1

i=0

∑N−1
j=0 C(i, j)

, (10)

where C(i,j) is the number of occurrences of grey levels i and j
within the window N = 32. The horizontal and vertical means
of the matrix are as follows:

ux =

N−1∑
i=0

N−1∑
j=0

i · p(i, j), uy =

N−1∑
i=0

N−1∑
j=0

j · p(i, j). (11)

After computing the GLCM in feature angles (0◦, 45◦, 90◦

and 135◦), we extract 11(x4) haptic-based features from each
model. These features, i.e., correlation, contrast, cluster shade,

cluster prominence, energy, homogeneity, sum average, sum
entropy, sum of squares, sum variance, and information mea-
sure of correlation can be grouped into first-order (individual
pixel properties) and second-order (relative pixels properties)
statistics. The 44 spatial distribution features along with 132
fingerprint features are chosen for fake fingers detection.

C. Anti-Spoof Learning Scheme

As the first exploratory study of haptic response analysis
for anti-spoofing, we evaluate the performance of FakeGuard
via four universal classifiers. Previously, these classifiers have
shown promising capability for not only biometrics [84], [85]
but also presentation attack detection [86], [87].

• Weighted K-Nearest Neighbor (KNN): Given the tradeoff
in outlier detection and false positives caused by hyperpa-
rameter k in traditional KNN, we employ a weighted KNN
(k = 10). It relies on a Euclidean distance function with
squared inverse distance weight to assign higher values to
closest neighbors.

• Support Vector Machine (SVM): The goal of SVM is
to find an optimal hyperplane in a high-dimensional space
with the largest minimum distance to the training samples.
We choose a quadratic kernel in our work.

• Linear Discriminant Analysis (LDA): LDA aids in trans-
forming the feature vectors in a new subspace to maximize the
distance between the classes. A singular value decomposition
solver is used.

• Logistic Regression (LR): It employs a logistic sigmoid
function to generate a probability score for testing samples
that is compared against a cutoff to determine the class labels.

• eXtreme Gradient Boosting (XGBoost): XGBoost [88]
integrates classification and regression trees (CARTs) to search
the model of minimum loss against deep-limited level-wise
splitting strategy.

• Light Gradient Boosting Machine (LightGBM): Light-
GBM [89] also intrgrates CARTs to determine the class labels.
The different is that it use a lightweight splitting strategy i.e.,
selecting the node that has the maximum gain to split.

• Convolutional Neural Network (CNN): It extracts abstracts
by convolution kernels. These abstracts are projected into a
feature space and the classifier determined labels against such
features.

In the following, we identify the suitable classifier for
supervised fake finger detection and further examine its per-
formance under unsupervised real-world scenario.

VIII. EVALUATION SETUP

A. Experimental Preparation

We conduct a pilot study to examine the effectiveness of
FakeGuard for fake finger detection. FakeGuard employs a
low-cost smartphone camera to model the haptic response of
user’s fingertip as it is pressed on the gel surface. Although
the ambient environment will comprise of different lighting
conditions, the employment of a colored PDMS gel layer and
acrylic reflective membrane minimizes the amount of unde-
sirable light rays to reach the camera lens. The experimental
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Fig. 10. Experimental setup with a subject performing press actions on a
PDMS gel using their live and fake fingers.

setup is shown in Figure 10. The study is performed in a lab
environment with room temperature (24◦C), moderate ambient
light, and no moisture present on the gel surface or the fake
finger. FakeGuard resilience to template alteration, brute-force,
and denial-of-service attacks is discussed in Sections IX-X.
To satisfy Requirement R1 in Section III-C, we interact fake
fingers with FakeGuard in a similar fashion as subjects with
their live fingers. During the sensing process, PDMS gel is
optically illuminated by three point LEDs and a white circular
LED ring while the Raspberry Pi 4 module is leveraged to
trigger the activation of LEDs. We employ HUAWEI Mate
20 Pro smartphone with a 96 dpi camera to record the haptic
response when a fingertip is pressed on the gel surface. The
recorded images are sent to FakeGuard for further processing.

B. Experimental Procedure

As the first exploratory study on haptic-based fingerprint
anti-spoofing, we recruit 20 subjects (16 males and 4 females)
within the age group of 20-40 years. None of the subjects
have damage to their fingerprint or suffer from skin-related
disorders. During this study, we ensure that all the samples
collected from the subjects are de-identified. The subjects are
given full disclosure on the nature of our study after which
the next steps are conducted based on their willingness to
continue. A multi-layer password protection is employed for
storing fingerprint data while the physical fake fingers are
placed under locked protection. Only the primary researcher
is allowed to retrieve the passwords (updated every three
weeks) and physical locks. We also hold an active International
Review Boards (IRB) approval for collecting physiological
data from adult human participants for biometric research. All
the evaluations tightly follow the rule of IRB regulation.

Fake Finger Selection: Firstly, we ask every subject to
participate in the fabrication process of producing multiple

high-precision fake fingers. To date, researchers have analyzed
the vulnerability of their proposed system against fake fingers;
yet, they do not verify the credibility of generated fake fingers
by first testing them against traditional AFRS. If a defective
fake finger, being very predictable, is introduced as a testing
sample, it might have a significant negative influence on the
overall score. Considering that FakeGuard does not rely on
capacitive-based biometric, we notice that Dragon Skin [90],
[24] material possess the most similar haptic response to
human fingertip, thereby being an ideal choice for the attacker
to spoof FakeGuard. In our pilot study, we use Dragon Skin to
create a total of six fake fingers (i.e., thumb, index and middle
finger of left and right hand) for each subject, making a total
of 120 detailed fake fingers. We examine the effectiveness of
every fake finger on commercial AFRS (mentioned in Section
III-D) and select only those with high spoofing potential. Each
subject has at least one ideal fake finger (with a total of 23) to
potentially breach the FakeGuard security. To prevent any bias,
we also evaluate the cross-material performance from different
spoofing materials in Section IX-C.

We ask every subject to perform 15 trials. In each trial, the
participant first presses their live finger, corresponding to the
selected fake finger, on the PDMS gel. This process is repeated
20 times within a single trial. A 10-minutes break separates
each trial to ensure that the subject’s press action is more
natural and similar to a real-world scenario (i.e., non-uniform
pressure). For each press action, a one second recording is
obtained via smartphone camera. A single recording reveals
one 3D image that contains a subject-specific haptic response.
Therefore, a total of 6000 3D images (20 subjects * 300 press
actions) and 18000 2D images (20 subjects * 300 press action *
3 samples/action) are recorded for live fingers. This experiment
is repeated for selected fake fingers (able to spoof the AFRS
introduced in Section III) in an identical fashion to generate
an overall of 12000 3D images.

Evaluation Metrics: We employ the below metrics which are
widely adopted for fingerprint vulnerability analysis [91], [92].

• SpoofRate: percentage of false acceptance of fake finger;

• DenialRate: percentage of false rejection of live finger;

• Average Classification Error (ACE) is defined as:

ACE =
SpoofRate+DenialRate

2
. (12)

IX. ANTI-SPOOFING PERFORMANCE ANALYSIS

For FakeGuard to serve as a security mechanism in high-
impact applications, it is vital to examine the performance
and reliability under real-world conditions. We consider two
scenarios: (1) Supervised Detection (Section IX-A): classifica-
tion of live and fake fingers given training samples of both
classes; (2) Unsupervised Presentation Attacks (Section IX-B):
rejecting unknown fake fingers when the model is trained on
only samples of live fingers. We also examine advanced attacks
on impersonating the haptic response in Section IX-C.

A. Supervised Fake Finger Detection

In the supervised scenario, the classifier is trained on multi-
ple users and used to identify a specific target. This is common
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Fig. 11. Evaluation under supervised scenario where FakeGuard is trained
with samples from both live and fake fingers among different classifiers, i.e.,
SVM, KNN, LDA, LR, XGBoost, LightGBM and CNN.

in biometric scanners deployed in public environments (e.g.,
ATM, gate access systems). We perform 10-fold cross valida-
tion on 12000 samples (6000 live and 6000 fake) and describe
the ACE observed from four universal classifiers in Figure 11.
The SVM, KNN, LDA, LR, XGBoost, LightGBM and CNN
achieves 3.925%, 8.2%, 1.725%, 2.175%, 2.009%, 1.777% and
1.815% average error respectively while detecting live and
fake fingers. The LDA, LR, XGBoost, LightGBM and CNN
show promising performance in differentiating the fake and
live fingerprint samples due to strength of our haptic response
features and 3D reconstructed fingerprint images. To further
inspect the trend across subjects, we illustrate the DenialRate
and SpoofRate scores in Figure 12. The average DenialRate
and SpoofRate are 2.05% and 1.4% respectively. The lower
performance of subjects 15 and 16 is due to insufficient haptic
response from fingertip sliding, rather than pressing, on the gel
surface during the experiments. Our results show the potential
of FakeGuard over existing anti-spoofing solutions (evaluated
in Section III-D) for fake finger detection. In the remainder of
paper, we employ a fine-tuned LDA model for classification
unless specified.

B. Unsupervised Presentation Attack

During real-world application, a biometric system learns
to distinguish between live fingerprints of users but has no
knowledge about fake fingers that the adversary might utilize

Fig. 12. Detection rate among 20 subjects for supervised fake and live finger
detection.

Fig. 13. FakeGuard can reject unknown fake fingers when underlying
classifier is only trained on live fingers (ideal performance depicted by red
line). Despite training with only haptic response features, live fingers from
unknown/unauthorized users can still be rejected.

during presentation attacks. An ideal AFRS should be capable
of rejecting fake fingers without prior training. However, the
existing studies [27] require prior training of their anti-spoofing
model on known fake finger samples.

Rejecting Unknown Fake Fingers: We evaluate the per-
formance of FakeGuard in rejecting 6,000 unknown fake
finger samples when the classifier is only trained on 6,000
live samples with a threshold of liveness. The classifier will
accept the input fingerprint as a live subject if and only if the
probability of liveness is higher than the threshold. To examine
the effectiveness of rejecting fake fingers, the threshold is
varied between 0.7 and 0.95 and the percentage of accepted
fake fingers is recorded in Figure 13. The average SpoofRate
varies from 4.67% to 2.43% depending on the threshold.

Feature Importance: FakeGuard utilizes both traditional
fingerprint-based features and haptic response; we determine
the relevance of both feature subsets to performance under
previously considered unsupervised scenario. The classifier is
trained and tested on either fingerprint-based features or haptic
response and the SpoofRate is described in Figure 14. Even
under no extensive learning process, our observations prove
that haptic response is a promising anti-spoofing feature that
varies significantly between the live finger and fake finger.

Fig. 14. FakeGuard capability to reject unknown fake fingers when trained
on fingerprint vs haptic response features.
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Fig. 15. Fingerprint spoof attacks realized by materials easily accessible in
daily life. These materials have been proven to have high spoofing rate against
traditional AFRS.

Rejecting Unknown Live Fingers: We examine a real-
world scenario where FakeGuard is trained on the biometric
templates of only legitimate users and needs to reject the
untrained live fingers of unknown users. To this end, we train
the classifier on 3000 live samples of 10 random subjects and
observe the probability of rejecting 3000 samples of another
10 subjects. The results are shown in Figure 13; the average
SpoofRate varies from 7.48% to 4.14% depending on the
threshold. It is a known fact that fingerprint is unique to
every individual, therefore we only utilize the haptic response
features to train the classifier in this experiment.

C. An Advanced Attack Study on Impersonating Haptic Re-
sponse

Upon realizing the relation between haptic response and
fingertip’s anatomy, the attacker can either overlap his live
finger with fake films of different properties or directly manip-
ulate the haptic response generated during the access attempt.

1) Multi-layered Fake Fingerprint: We examine
FakeGuard potential in rejecting diverse fake films of
varying physical and chemical properties (see Figure 15)
when they are overlapped on a live finger to resemble the
anatomy of victim’s fingertip. Fake films (0.6mm width) of
20 subjects, made from seven different spoofing materials,
are interacted with FakeGuard 50 times individually. Figure

Fig. 16. A two-dimensional representation by LDA of haptic response
features to demonstrate the identifiability between live and fake fingertips
across various spoof materials. Feature 1 and 2 represent the two dimensions
after dimensionality reduction.

Fig. 17. Number of successful spoofing attempts (out of 45 total attempts)
across seven different spoofing materials that the classifier is previously trained
on. The performance is consistently low and independent of the spoofing
material used to create the fake fingers.

16 illustrates their variations against linear discriminant
analysis. Each response yields a point on the graph and the
points by real and fake fingers exhibit a clear boundary. The
complexity of live fingertips makes them easy to distinguish.
The overlap of fake fingerprints is due to their similar
structures i.e., overlapping on a live finger. In addition, we
test the performance on such fake fingerprints. We consider
two scenarios: (1) With-training: all spoofing materials are
included in both training and testing. (2) Without-training:
FakeGuard is trained on selected spoofing materials but tested
against fake films made from a different material.

With-training: The haptic response from five press actions
(both live and fake finger) of 20 subjects are used for training.
Afterward, 45 responses (from fake finger) of each subject
are considered for testing. The observed number of successful
spoofing attempts in Figure 17 proves that our system is
resilient to different types of multi-layered fake fingerprints
due to their inherent physiological variations. Although gelatin,
Playdoh, PVAc glue are promising materials for spoofing

Fig. 18. SpoofRate (%) across seven different spoofing materials that the
classifier is not trained on. In contrast to traditional AFRS, FakeGuard does
not require extensive learning as the haptic response is distinctively different
between a live and fake finger.
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attacks on state-of-the-art fingerprint anti-spoofing [19], they
can still be rejected.

Without-training: Out of seven spoofing materials, the clas-
sifier is trained on the haptic response from six materials (50
samples each * 20 subjects) as well as the live fingers (300
samples * 20 subjects), while it is tested against a different
spoofing material (50 samples * 20 subjects). This process is
repeated such that every spoofing material is included as a
part of testing set once. Figure 18 demonstrates a SpoofRate
from 1.6-3.4% with an average of 2.7%. A key advantage of
FakeGuard is that it can be generalized to combat different
spoofing materials without prior knowledge.

2) Haptic Response Alteration: Realizing the failure of a
high-precision fake finger attack on FakeGuard, the attacker
aims to alter the haptic response caused by fake fingers to
align with legitimate user. However, the haptic response is
an intricate feature and difficult to impersonate manually.
Therefore, we assume a scenario where the attacker leverages
a vibration motor (RB-02S087) to induce dynamic shifts on
PDMS gel during the sensing process. These vibration shifts
integrate with the haptic response during press action. We ex-
amine the SpoofRate under three types of vibration magnitude
(light, medium and heavy) for fake fingers of 20 subjects. Our
analysis shows that FakeGuard is resilient to vibration shifts
with SpoofRate as 3%, 3.4% and 4% for light, medium and
heavy magnitude respectively. While we utilized the fake finger
made with Dragon Skin for this experiment, other spoofing
materials would result in similar performance. This is because
the vibration introduced by motor causes discrepancies in the
Level-2 fingerprint features, allowing FakeGuard to reject the
input fake fingers.

X. INVESTIGATION ON ATTACKING SURFACES

For comprehensiveness of the study, we identify and in-
vestigate several attacks affecting the PDMS surface during
the sensing process, including brute-force attacks (Section
X-A) and denial-of-service attacks (Section X-B). To ensure
robustness, we deploy a 10-fold cross-validation scheme to
compute the evaluation metrics in the following experiments.

A. Brute-Force Attacks

1) Impact of Partial Fingerprint: Fingerprint sensing has
evolved from full fingertip scan to partial regions with the goal
of reducing computational costs while providing free-form

Fig. 19. Evaluation of FakeGuard under different regions of partial finger-
prints.

sensing. However, a small sampling area limits the biometric
information and allows the attacker to input different regions
of fake fingers to compromise the system. To examine the per-
formance of FakeGuard in verifying the partial regions of live
and fake fingers, we employ five subjects in our experiment.
For each subject, we select four regions (i.e., bottom, left, right
and top) of their fake finger and perform an overall of 200 press
actions. We also collect live partial fingerprint samples from
the same regions. The ACE performance is illustrated in Figure
20. Distinct regions of the fingertip exhibit different haptic
responses. For instance, the top region provides a confined
response with no significant contribution from fingertip’s outer
area. In comparison, the bottom region acts similarly to the full
fingerprint and promotes a more spatial haptic response. The
inability to perform precise press actions using left region of
right index finger leads to higher ACE against the right partial
fingerprint.

2) Impact of Pressure Variations: During the access at-
tempt, a naive attacker might try to alter the pressure of fake
finger to manually align the haptic response of the fake finger
as close to a live finger. To examine the resilience against
pressure variations, we ask each of the five participants to
complete two trials using their live and fake fingers. During
each trial, the subject performs 150 press actions under soft,
moderate and hard pressure. The results are shown in Figure
20. The current system achieves a satisfactory performance
under soft and moderate pressure. Excessive pressure causes
a live finger to undergo an instantaneous change in surface.
This change is similar to its fake counterpart since the gradual
transition in haptic response cannot be captured. Moreover, a
typical user is less likely to utilize excessive pressure during
access attempt, decreasing the probability of observing high
DenialRate. During the experiment, we also observed that a
prolonged hard pressure increases the risk of damage to the
fake fingers (particularly the fingerprint textures) rendering
them unusable after the initial spoof attempt. Thus, this form of
trial-and-error attack is less reliable and likely to leave traces
(e.g., smudge, scratch) on the PDMS gel which is against the
attack requirements (R2 in Section III-C). The detection rate
can be improved by adopting a camera with higher sampling
rate or extending the sensing period.

B. Denial-of-Service Attacks

Realizing the inefficacy of physical attacks on FakeGuard,
the attacker aims to manipulate the victim’s trust towards our

Fig. 20. Evaluation of FakeGuard under dynamic pressure during the press
action.
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system by limiting its capability of fingerprint detection (see
DenialRate metric in Section IX-A and X-A). It is a known fact
that AFRS have limited robustness to drastic changes in the
user’s fingertip (i.e., moisture) and ambient environment. By
controlling the temperature, lighting or moisture conditions,
an attacker can exploit these limitations during the sensing
process. For the following experiments, we recruit five subjects
to perform 150 press actions under different conditions.

• Moisture Effect: In the first trial, the subject’s fingertip
is in a dry state. During the second trial, the attacker places
a humidifier in the immediate vicinity of victim’s fingertip
to increase its moistness. During the third trial, we ask the
subjects to place their finger in water before interacting with
FakeGuard. The DenialRate is presented in Table III. The
results demonstrate a consistent performance regardless of the
moisture level on the fingerprint surface.

• Temperature Effect: We manipulate the temperature to
create three settings, i.e., cold environment (<0◦C), room
temperature (23◦C) and warm ambience (>40◦C) by using
a conventional heater/cooler. Table III shows the DenialRate
on detecting live fingers of five subjects. The rheological
properties of our novel PDMS gel are not influenced by cold or
room temperature. However, increasing the temperature above
40◦C initiates a structural distortion of PDMS while reducing
its capability to regain shape immediately after the press action.
DenialRate can be improved by allowing sufficient time (5-10
seconds) in-between trials under warm temperatures.

• Lightning Effect: The subjects perform press actions in
an ambient environment with three brightness levels, i.e., low
optical illumination (<200 Lux), moderate lighting (800 Lux)
and very bright light (>1500 Lux) (see Table III). Excessive
light rays can cause specular reflection on PDMS and limit
photometric stereo reconstruction in deriving haptic response.
The effect of ambient light can be effortlessly reduced by
optimizing the ocular properties of PDMS and supporting
structure in hardware setup as discussed in the next section.

TABLE III. FakeGuard RESILIENCE TO NON-IDEAL CHANGES IN THE
AMBIENT ENVIRONMENT.

Moisture Dry State Moist Wet
DenialRate 4.2% 3.2% 4.0%

Temperature Cold (0◦C) Normal (23◦C) Warm (40◦C)
DenialRate 4.0% 4.0% 11.4%
Brightness Low 200Lux Normal 800Lux High 1500Lux
DenialRate 4.4% 4.0% 9.6%

XI. DISCUSSION

Aging Effect: In the physical and polymer domain, aging is a
conventional process from which the objects can be protected
via preservation techniques [93], [94]. To evaluate the effect
of aging on PDMS, we re-sample the press actions of three
subjects on the FakeGuard after six months. The original
template of subject’s live finger is leveraged for training the
model. The performance of new testing samples for live and
fake finger detection remains consistent. Our designed PDMS
can withstand a temperature up to 65◦C before losing the
ability to regain its shape after deformation. Under normal
usage, the gel is expected to last 3-4 years. PDMS aging is
an open problem with room for improvements (PDMS with
temperature resilience up to 350◦C [95]).

Design Improvements: FakeGuard can be improved by ad-
dressing three factors: (1) Pressure Variation: FakeGuard is
primarily aimed to capture the haptic response. Considering
pressure variation can also be an important feature for fake
finger detection, a continuous 3D model can be employed by
leveraging an RGB light source that is simultaneously bright
instead of a monochromatic light source that is intermittently
bright. Under this condition, the continuous 3D fingerprints
will be captured comprising information about pressure vari-
ations. (2) Ambient Light: our hardware’s supporting struc-
ture does not facilitate an opaque property, thereby allowing
ambient light rays to interfere with the sensing process. In
the future, we aim to employ 3D printing to manufacture
an opaque supporting structure made from low-cost PLA
material. (3) Energy Consumption: the white LED ring is
utilized to ensure ideal optical illuminance on the gel surface
when recording the haptic response. However, its energy
consumption of 24W limits the portability of FakeGuard to
physical-access mechanisms such as smartlocks. A series of
low-power point LEDs can replace the white LED ring for
sufficient illumination.

Application Scenarios: AFRS has been employed across IoT
and physical domain for securing sensitive information or the
commodity of users. Considering our work is the first explo-
ration of haptic-based anti-spoofing, FakeGuard can ensure
complete security in high-impact scenarios, e.g., international-
border verification, ATM monetary transactions, smart homes
and smart city environments. However, our system’s size
needs to be reduced for potential deployment in smartphones.
Since the photometric stereo will restrict the minimum size of
FakeGuard, we can leverage other 3D reconstruction methods
such as 3D ultrasonic fingerprint [96]. This would allow a
drastic reduction in the size of chip to 4.6mm × 3.2mm which
is small enough for smartphones. We consider this as a venue
of exploration for our future work.

XII. CONCLUSION

The plethora of literature on fingerprint anti-spoofing and
development of AFRS provide a false sense of security
regarding their capability of fake finger detection. In this
paper, we first demonstrate that the current state-of-the-art
AFRS can be compromised by high-precision fake fingers.
As a mission to identify the fundamental difference between
live and fake finger, we consider the biological property of
anatomy that is distinct between the human fingertip and the
spoofing materials. We develop FakeGuard that utilizes the
haptic response caused by fingertip to gel surface interaction
for fingerprint anti-spoofing. FakeGuard is resilient and user-
friendly with superior performance against state-of-the-art anti-
spoofing. We also show the resilience of FakeGuard against
template alteration, brute force and denial-of-service attacks.
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