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Abstract—Digital screens, such as liquid crystal displays
(LCDs), are vulnerable to attacks (e.g., “shoulder surfing”) that
can bypass security protection services (e.g., firewall) to steal
confidential information from intended victims. The conventional
practice to mitigate these threats is isolation. An isolated zone,
without accessibility, proximity, and line-of-sight, seems to bring
personal devices to a truly secure place.

In this paper, we revisit this historical topic and re-examine the
security risk of screen attacks in an isolation scenario mentioned
above. Specifically, we identify and validate a new and practical
side-channel attack for screen content via liquid crystal nematic
state estimation using a low-cost radio-frequency sensor. By lever-
aging the relationship between the screen content and the states of
liquid crystal arrays in displays, we develop WaveSpy, an end-
to-end portable through-wall screen attack system. WaveSpy
comprises a low-cost, energy-efficient and light-weight millimeter-
wave (mmWave) probe which can remotely collect the liquid
crystal state response to a set of mmWave stimuli and facilitate
screen content inference, even when the victim’s screen is placed
in an isolated zone. We intensively evaluate the performance
and practicality of WaveSpy in screen attacks, including over
100 different types of content on 30 digital screens of modern
electronic devices. WaveSpy achieves an accuracy of 99% in
screen content type recognition and a success rate of 87.77%
in Top-3 sensitive information retrieval under real-world sce-
narios, respectively. Furthermore, we discuss several potential
defense mechanisms to mitigate screen eavesdropping similar to
WaveSpy.

I. INTRODUCTION

The digital screen is a pivotal output device which delivers

intended information to users in modern devices (e.g., smart-

phones, laptops and access control). Due to the development

of computer and networking cybersecurity services in core

electronic devices, vulnerable computer accessories in physical

worlds become a more effective and critical attack surface in

practice, where digital screens are the most sought venue that

adversaries can favorably leverage to steal information [1],

[2], [3], [4]. Screen attacks can directly gain access to their

organizational or personal resources and then pilfer the secrets

(e.g., SSN, tax return, financial transactions, confidential data,

and private communication), money (e.g., depository safe)

and intellectual property (e.g., scientific research reports and

blueprint). These leakages could lead to a series of catastrophic

results, mainly severely increasing the risk of huge financial

and reputation loss for both enterprises and individual [5], [6].

Mitigating risks of screen attacks has a long and rich

history in the literature and is a core topic in the computer

Address comments to wenyaoxu@buffalo.edu

security community. Shoulder surfing, i.e., looking over the

victim’s shoulder, is one of the most investigated threats to

user’s screens [7]. With an increase in the user vigilance,

however, adversaries have begun to exploit remote surveillance

cameras to either directly or indirectly [8], [1] infer the screen

content without line-of-sight assumptions. For example, it has

been shown that various emanations from electronic displays,

including ultrasound [9], electromagnetism (EM) [2], acoustic

[3] and visible lights [10], can be leveraged to compromise the

screen security. Therefore, one intuitive suggestion to enhance

screen security is that people can place the screen in an

enclosed location, e.g., no adversary-proximity/accessibility,

no line-of-sight and occluded to the outside. However, is this

ideal scenario truly secure against attacks? Our answer is no.

Fig. 1. Examples of different screen contents in the screen attack applications.
The WaveSpy system can infer the screen content and underlying sensitive
information even in an isolated scene in the real world.

In this work, we discuss a new screen attack approach

by exploiting the display mechanism using liquid crystal
(LC) elements. Screen contents on displays (e.g., LCD) are

generated by the states (e.g., shape distributions) of LC arrays

behind the display panel [11]. In other words, there is a

deterministic dependence between liquid crystal states (LCS)

and screen contents. By utilizing this dependent relation, we

discover a new and stealthy LC-based side-channel to remotely

attack screens in real world. Specifically, we hypothesize that

if an adversary can monitor either the state of each liquid

crystal or their distribution in a display, it is possible to retrieve

screen information by exploiting the LC dependent model.

Because this new side-channel attack approach did not assume

any traditional passive emanation (e.g., EM or light [2], [10])

to the outside world, conventional wisdom on screen risk

mitigation will fail, even in an isolated scene. If this hypothesis

holds, there might be a novel screen attack approach which can
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change the conventional wisdom on screen risk mitigation and

compromise screen security under an isolated scene mentioned

above as shown in Figure 1.

There are multiple technical challenges to realize the new

attack system. First, how can we obtain the information of

a liquid crystal state on the targeted display? There are

several recent studies on using radio frequency (RF) signals

to characterize objects (i.e., shape, geometric features and

material types) [12], [13], [14], however, sensing resolution of

a dot pitch (0.2-0.3mm) in an LCD display is still not reached.

Second, to achieve a complete screen attack, the RF sampling

frequency of liquid crystal states needs to be fast enough

given that the modern screen flashes content every 4 to 10

milliseconds [15]. Lastly, it is critical to ensure the stealthiness

of such an attack, without creating noticeable disclosure when

eavesdropping the screen content using LCS remote sensing.

Our Work: In this paper, we present WaveSpy, a new real-

world screen attack system which rests on the concept of a

liquid crystal nematic pattern inside the display panel which

acts as a passive signal modulator and reflects RF signals,

namely LCS response, containing the screen information. We

first investigate the dependent relation between the reflected

RF signal and the content displayed on the digital screens

using a portable mmWave probe. Afterward, we develop a RF

signal processing scheme, including a deep learning model,

to investigate the internal traits in the LCS response signal

through wavelet analysis, followed by the spectrogram feature

augmentation while ensuring minimum time complexity. Sub-

sequently, we conduct an extensive attack evaluation to assess

the performance of our model in real-world applications.

Eventually, we conclude the study by developing WaveSpy, a

remote (5m away, through-wall), low-cost and stealthy screen

inference system that precisely acquires the mmWave-based

LCS response to facilitate two goals: (1) attack screens in a

stealthy and through-wall manner; (2) retrieve the real-time

sensitive information without the prior knowledge of their

screen.

Summary: Our contribution in this work is as follows:

• A new side-channel: We discover a new side-channel

to access the screen information from digital screens by

exploiting the liquid crystal nematic response effect under the

remote mmWave sensing.

• A new attack system: We design and implement an end-to-

end hierarchal system, WaveSpy, to remotely monitor screen

activities and retrieve screen using a mmWave probe and

a novel signal processing scheme. WaveSpy can launch a

remote screen attack without using traditional emanation, such

as EM and light.

• A new threat analysis: We intensively evaluate the per-

formance of WaveSpy with 100 different types of content

on 30 different digital screens of modern electronic devices.

WaveSpy achieves an accuracy of 99% in screen content type

recognition and a success rate of 87.77% in Top-3 sensitive

information retrieval under real-world scenarios.

• A new defense exploration: We discuss the effectiveness

and study a set of passive and active countermeasures to

prevent the leakage of information against this unprecedented

information threat.

II. ATTACK OVERVIEW

A. Attack Scenario

We consider a scenario where a victim, namely Bob, utilizes

common electronic devices (e.g., computer, mobile, smart-

watch) in daily life. To ensure protection against attackers,

Bob enables a password-based mechanism for every online

activity including emailing, texting and monetary transactions

and even facilitates an initial login screen for his devices.

Observing Bob’s vigilance, an innovative attacker, hereafter

Alice, aims to breach the established security and extract

sensitive information without the victim’s knowledge.

Scenario #1 (Privacy Invasion): To infer the type of screen

content and user activity at a certain time, Alice intends to

acquire information about the specific application initiated by

Bob, usage statistics and the underlying content in real-time.

Scenario #2 (Security Attack): To compromise the per-

sonal security, Alice senses the information presented on

the digital screen from a long distance or through-wall and

reconstructs the sensitive information (e.g., PIN, password,

lock pattern, words or sentences) without alerting Bob or his

nearby surroundings, or even Bob in a closed room.

In contrast to prior work, we envision that the following

constraints restrict Alice:

• No Device Proximity: Bob is alert to traditional shoulder-

surfing or channel state information (CSI) attacks in terms that

either Alice cannot get close or there is a blockage (e.g., wall)

between Alice and Bob.

• No Pre-installed Malware: Assuming that Bob’s elec-

tronic device is isolated from the Internet or any other com-

munication channel, Alice is unable to directly compromise the

electronic device from malware such as Trojans or malicious

web scripts.

• No Line-of-sight: Alice cannot directly visualize the

screen content or Bob’s physiological attributes (e.g., hand

motions, eye movement) during the activity phase from any

direction. Considering the alertness of Bob and real-world

environments, there are no surveillance cameras that can

remotely monitor digital screen contents.

Traditional EM-based, acoustic-based, CSI-based and

vision-based screen attacks (e.g., [2], [3], [9], [1]) cannot work

under an application scenario with the constraints mentioned

above. However, screen security in this scene will not be nec-

essarily guaranteed when we consider that Alice can leverage

a tiny and cost-effective mmWave probe to perform real-time

surveillance of screen information from an adjacent room and

steal the information from the target victim, as shown in Figure

2.

B. Attack Application Study

In addition to the content type recognition, login authentica-

tion is one of the most fundamental types of security protection

enabled by users in their personal devices. Moreover, this

mechanism is increasingly deployed in other cyber-physical

218

Authorized licensed use limited to: IEEE Xplore. Downloaded on July 09,2021 at 18:48:07 UTC from IEEE Xplore.  Restrictions apply. 



(a) Remote (b) Through-wall (c) Various angles

Fig. 2. Three typical attack scenarios in daily life: (a) Alice infers the screen from a remote location; (b) Alice leverages the penetration properties of mmWave
for through-wall inference; (c) Alice has the freedom to choose various sensing distance and angle to maximize the inference accuracy.

technologies such as Internet-of-Things (IoT), electronic de-

pository safe, and smart homes. Figure 3 shows three attack

applications in this study, including login using the virtual

button, physical button and picture password. Based on the

user acceptability and device operation, there are three primary

categories of login methods:
1) Login Using Virtual Buttons: Presently, the most popular

form of human-computer interaction is through the touch-

screen via the virtual buttons. For different passwords, in-

cluding PIN, character password and pattern lock, the user

pauses for a brief moment in between subsequent inputs to

recognize the user interface (UI) correspondence in the form

of color change in the pressed buttons. The typical radius of

each button on the screen can be small to 6mm (e.g., iPhone

7 Plus).
2) Login Using Physical Button: The non-touch based

electronic devices (e.g., desktop monitor, laptop, cell phones

and smart locks) require a user to input the password by

pressing a physical button on the keyboard. This type of

login has two categories. First, the password can appear as an

asterisk character on the screen, similar to personal computer

login. The second one can be found on some security devices

where the password is visible on the screen as typed. The

radius of each asterisk on the screen can be as small as 1mm
(e.g., MacBook Pro). The typical size of each character on the

screen can be 10mm by 6mm (e.g., security intercom system).
3) Login Using Picture Password: In contrast to the pre-

vious login methods, picture password offers the merit of

unpredictability and superior usability. Rather than pressing

the button on a virtual or physical keyboard, it allows a user

to create three different gestures in a sequence on the specific

position of the selected image and use those gestures as the

password. The gesture can be any combination of circles,

straight lines, and taps with predefined tolerances during the

login process. The typical radius of each tap UI corresponding

on the screen can be small to 6mm (e.g., Dell U2415).

Fig. 3. Six representative attack applications: (a) password length; (b) numeric
password; (c) PIN; (d) pattern lock; (e) password; (f) picture password. The
attack on each application is extensively evaluated in Section VI-B.

In the remainder of this paper, we present how WaveSpy
performs the screen attack on aforementioned login-based

authentications. The WaveSpy system also demonstrates the

significant promise in reconstructing critical information (e.g.,

words, sentences) in the digital screen as shown in Section

VIII.

III. LIQUID CRYSTAL STATE IN DISPLAYS: A CLOSER

LOOK

A. Background and Hypothesis

Presently, the liquid-crystal display (LCD) and organic light

emitting diode (OLED) are the mainstream screen technolo-

gies adopted in the majority of electronic devices [16]. Our

attack approach is applicable to both types of displays because

they have the same LCS-based working principles. In the

following part, we will review the display architecture and

have a closer look at the LCS effects in modern displays.

Fig. 4. The content displayed on the digital screen is determined by the
arrangement of liquid crystal nematic patterns.

Working Principles of Displays: The LCD panel comprises

a thin layer of glass substrate embedded with liquid crystals,

while a white fluorescent backlight is positioned behind the

screen to produce the images in color or monochrome. Each

liquid crystal is aligned between two polarizing filters (parallel

and perpendicular) as illustrated in Figure 4. Without the

mentioned placement, light passing through the first filter

would be blocked by the second (crossed) polarizer. The liquid

crystal nematic pattern responds and changes its arrangement

based on the voltage applied across the liquid crystal layer in

each pixel, thereby altering the polarization of light. Besides,

the variations in the liquid crystal nematic patterns lead to

varying amounts of light to pass through, constituting different

contents on the screen [11]. Note that the liquid crystal nematic

pattern remains significantly stable under the probing of RF

signals [17].

Fig. 5. The liquid crystal nematic patterns on the digital screen incites a
LCS response under the radio-frequency (RF) beam. Different liquid crystal
nematic patterns cause different LCS responses.
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Liquid Crystal Nonlinear Effects: When a continuous wave

with transmitting frequency f0 from the mmWave probe is

projected towards the target, the RF response is modulated

with a set of sub-carrier frequencies due to the properties

of the target (e.g., liquid crystal pattern, material reflection

efficiency). Similarly, given that the screen enters the RF beam

field as shown in Figure 5, the liquid crystal nematic patterns

are perceived as an array of antennas in the resolution of the

mmWave [18], [19]. These antennas act as a passive processor

and manipulate the transmit mmWave signals to generate a

distortion formulated as:{
Z(t) = φ(ϕ(t),�n, κ, γ, Vc)⊗ hf (t),
�n =

√
ε‖ −√

ε⊥,
(1)

where ϕ(t) represents a collection of mmWave subcarriers

for the response signals, φ(ϕ(t), ·) is the modulation function

of the liquid crystal (LC) patterns, �n is the LC rotational

viscosity, κ is LC the elastic constant, γ is the LC rotational

viscosity, Vc is the LC threshold voltage, ⊗ stands for convo-

lution computing, hf (t) is the ideal bandpass filter function

for the carrier bandwidth, ε‖ is the dielectric constant when

the electrical field is parallel to the director of the liquid

crystal molecules and ε⊥ is the dielectric constant when the

electrical field is perpendicular to the director [20], [21]. After

the modulated signal radiates from the screen, it is captured by

the probe receive (Rx) antenna. Therefore, LCS response of the

digital screen incorporates profound information of the liquid

crystal nematic patterns and holds the potential for monitoring

the displayed content type or sensitive information.

Fig. 6. The LCS response illustration for PIN login mechanism with input
‘1234’. Every numeric input has a distinct LCS response, thereby enabling
sensitive information retrieval.

Sensing Frequency Estimation: In order to obtain the RF

response with exceptional quality and promote the attack

performance, it is critical to utilize a proper sensing frequency.

Under the most common circumstances, the length of a typical

icon along a screen is larger than l = 3mm, and the effective

dielectric constant of the LC array is close to ε = 3.66 [22].

According to [23], the sensing frequency f0 can be reckoned

as

f0 =
c

2l
√
ε
=

3 · 108m/s

2 · 0.003m · √3.66
≈ 24GHz, (2)

where c is the propagation speed of a radar wave in air [20].

Therefore, we deploy the 24GHz sensing frequency, which can

be approximately recognized as mmWave, in our study.

Hypothesis: Owing to the facts that the liquid crystal nematic

pattern has a deterministic mapping to each displayed content

and mmWave can remotely sense LC patterns, there exists a
unique and measurable connection between the displayed con-
tent and associated LCS response obtained under the mmWave
beam reflectance of the liquid crystal layers. Therefore, as

shown in Figure 6, it is feasible to develop a portable mmWave

probe with advanced signal processing techniques to capture

this connection. The attacker can leverage the information

for screen content type recognition and sensitive information

retrieval, whose problem formulations are further discussed in

Sections IV-D & IV-E.

B. A Preliminary Study of LCS Response: A Side-channel on
LCD Display

Proof-of-concept: To validate the above hypothesis, we con-

duct a preliminary experiment using three different mainstream

off-the-shelf displays from representative device categories

(i.e., Dell U2415 monitor, Samsung Galaxy S9, and Apple

Watch Series 3) with different user activities. The spectro-

grams of LCS responses with associated content are shown

in Figure 7. These devices are stimulated with the mmWave

probe with a distance from the devices. The reflected signal

profile is explored in the spectral domain. The x-axis rep-

resents the modulated frequency; y-axis describes the ampli-

tude in the received signal. Given the vast contrast between

the amplitude and the frequency of received LCS response
marked in the blue circle, the liquid crystal nematic pattern

variations have sufficient space to enable content recognition.

Furthermore, we observe that the response distributions among

different devices are entirely distinct owing to the different

device hardware structures and the screen designs.

A Study on Wall Effects: In a real-world scenario, it is not

uncommon for Bob to access his device in another room with

the wall acting as an obstacle between the digital screen and

attacker Alice. Therefore, it is crucial to investigate whether

the material of the wall will block or interfere with the LCS
response [24]. We conduct the experiment by positioning

a 15cm thick wall between the mmWave probe and the

digital screen of MacBook Pro. The sensing distance is 80cm.

Figure 8 demonstrates that in the overall signal spectrum,

there is minute variation in the amplitude of low-frequency

components from the wall and nearby objects. Upon closely

analyzing the area within the LCS response (marked in the blue

circle), there are observable variations in the high-frequency

components among the different content displayed on the

screen. However, this model is insufficient to precisely identify

the liquid crystal nematic pattern as the differences between

the LCS responses are not significant. Thus, we further develop

the WaveSpy system for screen monitoring.

IV. SYSTEM FRAMEWORK

A. WaveSpy: A Through-wall Screen Attack System

We propose a portable, unobtrusive and robust system to

facilitate screen activity type recognition and sensitive infor-

mation reconstruction as shown in Figure 9.

LCS Response Stimulation and Modeling: We introduce the

RF hardware in WaveSpy to stimulate and acquire the LCS
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(a) LCS responses on Dell U2415 display with different content types.

(b) LCS responses on Samsung Galaxy S9 with different content types.

(c) The LCS responses on Apple Watch Series 3 with different content types.

Fig. 7. Different screen content present different LCS responses (the spectrum in the red circles are distinct in frequency and amplitude) when forced by the
same mmWave probe. The screen content on each screen is displayed on the left.

(a) Content Type: Microsoft
Word

(b) Content Type: Facebook

(c) Content Type: System Login (d) Content Type: Online Bank

Fig. 8. The non-linear response of the wall or surrounding objects is distinct in
frequency and amplitude from the LCS response of digital screen in MacBook
Pro, indicating the feasibility of indirect screen monitoring.

response from electronics. Pulse-Doppler radar that emits a

set of periodic powerful pulse signals has been largely used

in airborne applications [25], such as the target range and

shape detection. However, when a short-time pulse stimulus,

which has an infinite frequency band, is applied to illuminate

the electronics, the corresponding spectrum response will

be overlapped with the stimulus signal and difficult to rec-

ognize. Therefore, WaveSpy selects a frequency-modulated

continuous-wave (FMCW) radar with a narrow passband filter

[26]. The FMCW radar continuously emits periodic narrow-

band chirp signals whose frequency varies over time. The non-

linear interrelation to these narrow-band stimuli will generate

distinct frequency response, and the received signals will carry

distinguishable LCS responses when the stimuli signals hit the

target display. After the manipulated signal is radiated from

the display, LCS responses will be captured by the RF probe

receiver antenna (Rx).

Screen Monitoring: Once the data format obtained from the

mmWave probe is demodulated to filter the interference and

noise while guaranteeing the preservation of information. A

wavelet-based response analysis is employed to extract a set

of comprehensive features and formulate a sequence of multi-

class deep neural networks based classification algorithm to

obtain the content type and the sensitive information displayed

on the digital screen.

B. Screen Localization

Searching and localizing the display of interest is the

first step in screen attack. In this section, we introduce the

screen searching protocol to localize the screen position under

the angular coordinates. First, WaveSpy steers the mmWave

beams to sweep through all directions in the target areas.

Second, considering the display will generate LCS which

is significantly different from the background (e.g., LCS

response), we utilize LCS-based features (see TABLE I with

a threshold) to detect existence of display and estimate the

orientation of the target screen. This process is efficient and

can be finished within several milliseconds. Adaptive beam
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Fig. 9. The system overview for WaveSpy to non-invasively recognize the screen content type and retrieve the security information on the screen. It comprises
of a mmWave sensing module in the front-end and a screen monitoring module in the back-end.

TABLE I
LIST OF FEATURES EXTRACTED FROM THE LCS RESPONSE.

Category Feature Names
Temporal
Features

Mean Value, Standard Deviation, Skewness
[28], Kurtosis [29], Lowest and Highest Value

Spectral
Features

Mean Value, Standard Deviation, Kurtosis,
Crest Factor [30], Flatness [31]

Others MFCC (12) [32]

training protocols can be adopted to improve the accuracy

in screen localization further [27]. Therefore, WaveSpy can

pinpoint the screen and prepare for the LCS response analysis.

Note that we evaluate the WaveSpy performance sensitivity

to the probing orientation in Section VII (see Figure 14 in

details).

C. The Wavelet Analysis on LCS Response

After removing the direct current (DC) component, mod-

ulated LCS signal s(t) becomes a signal with zero-mean

and some variance and satisfies the following condition:∫∞
−∞ s(t)dt = 0, which indicates s(t) is a waveform. P()

uses ψa,b and φa,b, where φa,b = 1√
a
φ( t−ba ) and ψa,b =

1√
a
ψ( t−ba ), as the mother wavelet function that satisfies the

condition of dynamic scaling and shifting, where a and b are

the scale and translation parameters accordingly [33]. In order

to get signal properties at high frequency, the wavelet-based

analysis is achieved as Eq. (3):

s(t) = P0 + P1 + P2 + P3, (3)

where s(t) is the LCS response, P0 =
1
Cφ

∫∞
−∞ FW (a0, b)φa0,b

db√
a0

is the approximation part,

P1 = 1
Cψ

∫∞
−∞ FW (a1, b)ψa1,b

da
a21

db√
a1

is the Level 1 detail

part, P2 = 1
Cψ

∫∞
−∞ FW (a2, b)ψa2,b

da
a22

db√
a2

is the Level 1

detail part, P3 = 1
Cψ

∫∞
−∞ FW (a3, b)ψa3,b

da
a23

db√
a3

is the Level

3 detail part, FW (a0, b), FW (a1, b), FW (a2, b) and FW (a3, b)
are the coefficients.

For the inverse transform to exist, we require that the

analyzing wavelet satisfies the admissibility condition, given

in the following: Cφ = 2π
∫∞
−∞

|φ̂(ω)|2
ω dω < ∞ and Cψ =

2π
∫∞
−∞

|ψ̂(ω)|2
ω dω <∞, where φ̂(ω) and ψ̂(ω) are the Fourier

transform of φ(t) and ψ(t) respectively. Also, Cφ and Cψ are

constants for corresponding wavelets. Afterwards, the detail

parts of the LCS response can help us to further achieve screen

content type recognition and sensitive information retrieval.

D. Screen Content Type Recognition

Content type recognition can be formulated as a multi-class

classification problem. We begin by defining the key terms

and then formulate the content type recognition problem.

Definition 1 (The LCS Response Set on the Liquid

Crystal Nematic Pattern by mmWave) : For a mmWave sensing

process, let s denote a mmWave response of the liquid crystal

nematic pattern that is attained by a certain sample method.

S is defined as the response set, which contains every liquid

crystal nematic pattern response. Specifically, we define s0 as

a complete sensing signal that has the entire information about

characteristics of the source content on the screen. Therefore,

∀s ∈ S, ∅ ⊂ s ⊆ s0. (4)

Given the LCS response signals, it is hard to classify them

using similarity and distance-based approaches directly. The

reason is that LCS responses have a large variation in magni-

tudes as well as frequencies, which leads to irregularity and

asymmetry. Therefore, we present the wavelet-based analysis

which is resilient to the scale and magnitude variation.

Definition 2 (Feature Extraction from Wavelet-based

Analysis) : The response analysis function can be any func-

tion that demodulates the response, reflects the liquid crystal

nematic characteristics, obtains the integration of content fea-

tures, and outputs a feature vector. We use P() to represent the

LCS response analysis function.

In this paper, we use wavelet transform (WT) as P(),
which is an effective multi-resolution analysis tool for signal

decomposition [34], [35]. The P() approach can overcome

the shortcoming of Fourier analysis, which only works in the

frequency domain, not in the time domain [36]. s(t) matches

the waveform and can be decomposed into many groups of

coefficients in different scales with P() through differently

scaled versions, as shown in Section IV-C.

Subsequently, we obtain the approximation and Level 1, 2

and 3 detail parts in Eq. (3) (in Section IV-C). As the above

mentioned in Section III, the unique characteristic information

is hidden in the high-frequency range (i.e., the detail parts).

Intuitively, the signal with more features in the high-frequency

signal will contain more distinguishable characteristics of

the screen content and thereby achieve a better recognition
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Fig. 10. The flow chart of the screen monitor module, including two parts: (a) LCS response analysis & feature extraction, and (b) screen content type
recognition & sensitive information retrieval model.

accuracy. However, it also increases the computation overhead.

To balance this trade-off, we empirically choose the level 3

detail part (we will investigate the system performance with

different level setups in Section VI-A). As a result, we exploit

the internal traits in the LCS response signal by extracting a

40-dimension feature vector in spectrum domains.

Definition 3 (Screen Content Type Classification) : C()
is the classification function that utilizes several response

features to predict the screen content type. The specific im-

plementation of C() responds to the real-world scenarios and

the applied database mentioned in Section IV-D.

Formulation 1 (User Activity Monitoring) : The purpose

of screen content type recognition is to identify the specific

application and user online activity initiated by the mmWave

response s. We first extract its feature vector using P(), and

then recognize the application type with the screen content

type classification function C(). β is used to denote the result

of the predicted specific application on the screen as follows:

β = C(P(s)). (5)

In the WaveSpy system, we employ universal and easy-

to-deploy classifiers, i.e., Support Vector Machine (SVM) and

K-Nearest Neighbor (KNN) as the screen content type/user

activity classification method C(), to identify content type

based on the extracted features. Previously, SVM and KNN

have been successfully applied in wireless sensing recogni-

tion [13] and physical cybersecurity [37], respectively. SVM

locates an optimal hyperplane in high-dimensional space to

perform the classification. The Gaussian radial basis function

is selected as the kernel function to map the original data to a

higher dimensional space. However, KNN stores all available

cases and classifies new cases based on a similarity measure.

We opt to use SVM as the classifier after we compare their

performances in Section VI-A.

WaveSpy uses a supervised approach to classify content

types, beginning with a training phase followed by testing.

During the training of the Classifier, n traces of LCS response
signals from each content type are collected. For m content

types in the database (namely, m pre-registered classes), n×m
feature vectors are used to train the classifier altogether. During

the testing phase, WaveSpy collects a trace, extracts a feature

vector, and inputs to the classifier model. The classifier model

generates the probability set of classifying this test trace into

each pre-trained class. We output three candidates with the top

three possibilities.

E. Sensitive Information Retrieval

1) Sensitive Information Retrieval Method: When the user

presses a button on the screen, the pixel-level configuration

of this button changes, showing the correspondence UI illu-

mination and allowing the user to confirm the correctness of

the input, which causes different LCS responses as shown in

Figure 6. From a high-level point of view, WaveSpy infers

password or sensitive information of the user by collecting

and analyzing the LCS response sequence received on the

mmWave probe. The sequence length is equal to the user’s

typing duration. When the screen content type is detected as

the login interface, this sensitive information retrieval model

is then activated to detect PIN passwords.

A traditional approach to address this problem is first to

segment the input signals into N pieces, where N is the length

of the PIN passwords, and then to classify each segmented

piece as a digit. However, it is difficult for us to segment

those signals manually. The other possible solution is to extract

features for the whole signals first, and then to train a classifier

for each PIN digit. However, we observe that the differences

among those signals on different screen contents are signif-

icantly miniature. In other words, the extracted features of

different signals are nearly the same, which leads to the failure

of both SVM and KNN.

To tackle this challenge, we employ deep neural networks

(DNN) [38] in the WaveSpy System. The advantage of adopt-

ing DNN is that it is able to learn better feature representations

automatically and further makes the signals distinguishable.

Moreover, the DNN-based security inference framework can

be easily applied to new scenarios without domain knowledge

about the functioned sensors. Thus, we propose a novel end-to-

end deep learning based approach, which takes the raw sensing

data as the input and computes the most likely sensitive

information that the users have entered.

First, sensitive information retrieval can be formulated as

a sequence multi-class classification problem. However, the

original sequence signal is too large to be considered the input

of DNN. For example, the recording for PIN typing usually

produces a four-second long audio containing about 176,400

samples in total. Thus, we utilize the technique of Joint Time-
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Frequency Analysis [39] to convert the sequence signal into a

spectrogram.

Definition 4 (Feature Augmentation using Spectro-

gram) : Let W() be the function to generate the spectrogram

from the input signal, which is defined in Eq. (6) as follows:{
X(m,ω) =

∑∞
n=−∞ x[n]w[n−m] exp(−jωn),

W{x(t)}(m,ω) ≡ |X(m,ω)|2. (6)

Note that in our implementation, instead of using the original

signal, we use the level 3 detail part from wavelet decom-

position as the input of W() as shown in Figure 10, which

reflects the internal trait in the LCS response signal (evaluated

in Section VI-A). Finally, the converted spectrograms are the

inputs of DNN.

Definition 5 (Sensitive Information Classification

Function) : V() is defined as the DNN model that utilizes

several response-analysis to predict the sensitive information

shown on the screen.

It is worth noting that for each real-world scenario men-

tioned in Section II-B, we train a customized V(). The details

of the DNN model are further illustrated in Section IV-E2.

Formulation 2 (Sensitive Information Retrieval) : The

final goal of sensitive information retrieval is to reconstruct

the sensitive information from the input signal s using the

response analysis function. Since there are N characters in

the credential, for each reconstructed character, we train a

specified DNN model. Let Tn be the candidate results of the

sensitive information on the screen for the nth character:

Tn = Vn(W(s)). (7)

Formulation 3 (Ranking Sensitive Information Candi-

dates) : To deal with noisy mmWave signal traces and accom-

modate the input number allowed by the system, we need to

rank the candidate credentials according to their possibilities.

R(n) is a function to obtain top k candidates for predicting

the sensitive information shown on the screen:

{
R(n) = f(Tn), n = 1
R(n) = f(R(n− 1) ◦ f(Tn)), n ≥ 2

(8)

where the operation ◦ represents that all the data in one set

are multiplied by all the elements in the other set, and f(◦)
is the function to find the candidates with top k possibilities

among the results. Thus, the algorithm for the screen attack

in WaveSpy is established in Algorithm 1.

2) Sequence-to-Credential Model for General Security In-
formation Inference: Though the original sequential sig-

nal can be transformed to the spectrogram using the time-

frequency analysis technique, the transformed spectrograms

are extremely similar as shown in Figure 7 and hard to be

distinguished by traditional classification algorithms such as

SVM and CNN. To make these spectrograms distinguishable,

we design WaveSpyNet, a Densely Connected Convolutional

Networks (DenseNet) [40]-based classifier for the sensitive in-

formation retrieval, i.e., V(). Besides perfectly guaranteeing the

classification performance, WaveSpyNet also alleviates the

vanishing-gradient problem, strengthens feature propagation,

Algorithm 1: The Screen Attack by WaveSpy
Input: s(m): m LCS response traces from the screen
Output: β: the Screen content type recognition result
R: the sensitive information retrieval result

1 Initialize C,P,R, V,W, β, T ;
2 %Screen content type recognition:
3 for i ∈ {1, . . . ,m} do
4 β(i) = C(P (s(i));
5 if β(i) ==′ Login′ then
6 %Sensitive information retrieval:
7 T (i) = V (W (s(i));
8 return R(T (i));

9 return β(i);

encourages feature reuse, and substantially reduces the number

of parameters, which naturally satisfies the requirements of our

problem. Next, the details of WaveSpyNet are introduced.

The WaveSpyNet consists of an initial layer, four dense

blocks, three transition layers, and a prediction layer as shown

in Figure 10. The initial layer aims to convert the transformed

spectrogram W (s) ∈ R
128×128 into a latent space. The ini-

tial layer includes four consecutive operations: a convolution

(Conv), followed by a batch normalization (BN), a rectified

linear unit (ReLU) and a max pooling. Let x1
0 ∈ R

128×128

represent the output of the initial layer, which is the input of

the first dense block.

Each dense block b ∈ {1, · · · ,B} comprises Lb layers,

and each layer implements a non-linear transformation H�(·),
where � indexes the layer. H�(·) is defined as a composite

function with three consecutive operations: BN-RELU-Conv.

The most greatest advantage of WaveSpyNet is that for the

�-th layer (1 ≤ � ≤ Lb and � ∈ R
+), the input of H�(·)

is the direct concatenation of all the previous layers, i.e.,

[xb0,x
b
1, · · · ,xb�−1]. The output of the �-th layer is represented

by:

xb
� = H�([x

b
0,x

b
1, · · · ,xb

�−1]). (9)

When the size of filters in convolutional layers changes, the

concatenation operation used in Eq. (9) is not viable. Thus, a

transition layer is designed to change the size of filters, which

is between two consecutive dense blocks as shown in Figure

10. The transition layer consists of a batch normalization layer,

a 1×1 convolutional layer followed by a 2×2 average pooling

layer. The output of the transition layer is the first input of the

next dense block.

The above two operations are repeatedly conducted until

arriving at the last dense block. The output of the B-th dense

block is the input of the prediction layer. A simple linear

function is used to produce a latent vector to represent the

original input signal or the transformed spectrogram. Actually,

each signal contains N characters. In the implementation, we

train a separate WaveSpyNet with the cross-entropy loss, and

we choose Adam, a light-weight stochastic function optimizer

[41] to fine-tune the WaveSpyNet parameters.
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V. PERFORMANCE PROTOTYPE AND EVALUATION

A. WaveSpy System Implementation and Integration

WaveSpy utilizes an FMCW mmWave probe equipped with

a pair of 4×4 antenna arrays. The transmission power is

around one Millie Watt. The RF signal is processed using the

novel mechanism of the inverse synthetic aperture radar [13].

Besides, the probe can be mounted on the wall or integrated

with other portable devices like a laptop or smartphone.

Therefore, WaveSpy can launch the attack with a convenient

and user-friendly manner in real-world applications.

Fig. 11. The setup for the evaluation mainly consists of three parts: a mmWave
probe, screen, and wall.

B. Experiment Setup

1) Experiment Preparation and Data Collection: In order

to comprehensively evaluate every possible form of the LCS
response, we employ 30 digital screens and categorize them

in six groups; specifically, nine monitors, five laptops, three

tablets, six smartphones, four wearable devices, and three

other electronic devices. Among these, 21 devices have LCD

displays and 9 have OLED displays. All displays are well func-

tioning with no defects. Their sizes vary between 1.5 inches to

70 inches while the usage time ranges from 1 to 11 years. All

screens are under the default profile that is set to at the factory.

The walls are made of wood and concrete, two mostly used in

modern buildings. We recruit ten anonymous participants. It is

ensured that every participant follows the host institute internal

review board protocol. During the experiment, the mmWave

probe is placed 80cm from the screen and its initial position

is recorded as 0◦ orientation in the level plane. During the

experimental phase, we position the screen behind the wall or

obstacle (see Figure 11).

In general, we conduct two sets of experiments to enable

screen content type recognition and sensitive information

retrieval. We repeat each experiment for ten times for every

participant. For the content type recognition, we prepare and

label 100 screen content types from common user activities,

e.g., typing on Microsoft (MS) Word, and collect 2s of

sensing data for the specific content type on each trial. As

mentioned earlier, each participant is asked to repeat for 10

times. From the overall dataset, we randomly extract 100 traces

for each content type (totaling 100 x 100 = 10,000 traces)

with respect to an individual location. Unless specified, we

randomly choose 7,000 out of 10,000 traces from each device

as the training set and the remaining for testing.

For the sensitive information retrieval, the participants were

asked to input a diverse set of sensitive information, including

a PIN on the numeric keyboard. The official default interfaces

are utilized here (e.g., system login), where only a certain

region (system default size) is changed along with the input

while other areas stay unaltered. For example, in S2A: Pass-
word Length, the font of a character is 10pt; in S2E: Password,

the size of a virtual button is 70×50 pixels. For every piece of

sensitive information listed above on each device, we collect

more than 21,000 traces beforehand to train a DNN model.

Notedly, the other 1,000 traces of data are utilized for the

testing set.

2) Metrics: We employ Top-k (k = 1, 2 and 3) inference

accuracy as the primary performance metric, which implies

the candidates with top k possibilities. Specifically, the system

generates a set of ranked candidates (i.e., PINs, lock patterns,

or letters) for each trial. We claim that a trial succeeds if the

true input appears in the Top-k candidates. Top-k inference

accuracy is defined as the percentage of successful trials.

Furthermore, to evaluate the picture password, we utilize

Distance Estimation Error (mm) to measure the estimation

error of the tapped position on the screen.

VI. EVALUATION I: A CONTROL STUDY

In this section, we perform a control study to validate the

legitimacy of our proposed system design under the ideal

environmental condition.

A. The Performance of Screen Content Type Recognition

The performance of WaveSpy depends on the design of

recognition approaches. To investigate the sensitivity of classi-

fication model and verify the capability our selected features,

we perform a multi-level detail part (mentioned in Section

IV-D) analysis, denoted as L1, L2 and L3, towards two mostly

used classification configurations, i.e., SVM and KNN. The

data are acquired from the database, hereafter Data Collection,

built using our sensing system.

With respect to Top-3 inference, SVM achieves an ac-

curacy of 90.71%, 94.13%, and 99.13% for L1, L2 and

L3 schemes respectively. Correspondingly, KNN achieves

78.19%, 87.89%, and 93.98% for the three schemes as

shown in Figure 12. The satisfactory performance on both

classifiers indicates the effectiveness of our feature vector

(see Definition 2) in reflecting the unique and salient

characteristics of LCS responses, while the performance of

SVM is superior compared to KNN for this application. It

is worth mentioning that during the acquisition of traces, the

content on the screen is not static because of several factors

in the screen corner (e.g., UI animation, advertisements or

updated news), which also increases the difficulty of this task.

Against the original belief that this may severely interfere with

recognition performance, WaveSpy maintains high inference

accuracy, implying that the general layout (or template) of the

application is static and unique.

B. The Performance of Sensitive Information Retrieval

To maximize the efficiency of WaveSpy in retrieving the

sensitive information, the attacker may know the security

mechanism employed by the victim on his electronic device
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Fig. 12. The overall performance for
screen content type recognition (Sce-
nario 1) with three different detail
parts and two common classifiers.

Fig. 13. The overall performance
of the sensitive information retrieval
in six types of login information
(S2A∼F described in Section VI-B).

prior to performing an attack. However, due to the increasing

growth of smart devices supporting multiple login mecha-

nisms, it would be ideal for the attacker if WaveSpy system

can precisely retrieve the victim’s input regardless of its length

or type. While ensuring that all the credentials were only

known by the participants, we investigate the realism of our

attack model for three login methods and illustrate the results

in Figure 13.

1) Overall Performance of Login Attack on Physical But-
ton: This login usually has two aspects sorted by the infor-

mation type.

S2A: Password Length: Each participant was asked to

input the password on the system login of MacBook Pro.

Notably, the resulting text on the screen is only shown as

an asterisk character. Thus, this attack aims to evaluate the

performance of WaveSpy in detecting the password length.

The length of the password is within a typical range of 1 to

16 [9]. Our results demonstrate that WaveSpy can precisely

infer the password length with an average Top-1, Top-2, Top-

3 accuracy up to 98.73%, 99.09%, and 99.56%, respectively,

leading to a drastic reduction in the recognition period for the

key information. Moreover, we also can recover keystroke tim-

ings, that contains substantial information about the password

being typed, by continually recording the change of the typed

password length and the accuracy for the keystroke timing

inference is 99.96%.

S2B: Numeric Password: We instruct the participants to

press the respective key on the numeric keyboard (i.e., 0-

9) of a security intercom system, where the resulting 4-

digit password is shown on the screen. In this attack, every

password was input ten times. As observed in Figure 13, the

average Top-1, Top-2 and Top-3 inference accuracy for the

numeric password reaches up to 81.27%, 86.86%, and 90.03%,

which significantly reduces the numeric password entropy,

further discussed in Section X.

2) Overall Performance of Login Attack on Virtual Button:
The information from virtual button can be represented in three

subtypes as follows.

S2C: PIN: A four-digit PIN was fed by each participant for

ten times to the PIN keyboard of iPhone 7 Plus. The average

inference accuracy of Top-1, Top-2 and Top-3 is up to 80.09%,

84.49%, and 87.77%, respectively. A typical mispredicted

example is the PIN ’1258’ is wrongly considered as ’1268’.

The reason is that the ’6’ button is near to ’5’, causing the

similar LCS response. A similar phenomenon can be observed

in S2D and S2E. Upon careful analysis, we examine that the

performance of this attack is inferior compared to the numeric

password (S2B), due to the smaller display area (see Section

II-B) of the digital screen, which influences the characteristics

of the received LCS response.

S2D: Pattern Lock: Each participant was required to draw

10 lock patterns on the pattern-lock keyboard of Nexus 5. The

length of the lock pattern ranges from 1 to 6 units. For this

attack, the average Top-1, Top-2 and Top-3 inference accuracy

reaches to 77.81%, 81.49%, and 86.93%, respectively. The

inference accuracy is slightly lower compared to previous four-

digit PINs, as the UI correspondence of pattern locks changes

little, increasing the challenge for WaveSpy to retrieve the

sensitive information.

S2E: Password: A password generally comprises 26 letters

and ten single-digit numbers. The participants were required

to type on the alphabetical keyboard of MSI GL62. The length

of the input varies from 1 to 8 characters. WaveSpy can infer

passwords with the average Top-1, Top-2, Top-3 accuracy up

to 70.12%, 75.72%, and 81.19%, respectively. In contrast to

the PIN (S2C) and pattern lock (S2D), the password comprises

numerous combinations of letters and numbers while having a

longer character length, which affects the system performance.

However, the observed accuracy is still within an acceptable

range considering that the attacker can utilize other learning

techniques to guess the misclassified characters.

3) Overall Performance of Login Attack on Picture Pass-
word: For the attack on S2F: picture password, every partic-

ipant clicked the specific locations on the digital screen of Dell

U2415 using a cursor. The Top-1, Top-2 and Top-3 accuracy

is 61.31%, 63.49%, and 68.86%, respectively. For more than

40% retrieval taps, the distance estimation error is less than

5mm (1.9% of the screen side length), which is within the

UI correspondence area. Lower performance is observed due

to the miniature radius of UI correspondence (i.e., 6mm) and

a high tolerance of the password mechanism, which provides

the users more freedom in selecting the specific location on

the screen as an input.

In conclusion, our results demonstrate the effectiveness of

WaveSpy to facilitate screen content type recognition and

sensitive information retrieval under ideal conditions. We fur-

ther explore the system performance against varying sensing

parameters and real-world scenarios in the remaining sections.

VII. EVALUATION II: ROBUSTNESS INVESTIGATION

A. Impact of Sensing Distance and Device Orientation

In practical scenarios, the attacker should be able to keep

a certain distance or an angle to avoid being discovered.

Such a convenient practice, however, will lead to the changing

distance and orientation between the screen and the mmWave

probe. Therefore, it is important to investigate whether these

aspects will affect system performance. Specifically, we mea-

sure the different device orientations (from 0◦ to 40◦) at

different distances (from 20cm to 180cm). Following Section

226

Authorized licensed use limited to: IEEE Xplore. Downloaded on July 09,2021 at 18:48:07 UTC from IEEE Xplore.  Restrictions apply. 



V-B, we recollect the training and testing set. Three partici-

pants select 100 screen content types at a random sequence

shown on the Dell U2415. The results are shown in Figure 14.

The average Top-3 inference accuracy remains high when the

sensing distance varies within 180cm (above 99.5%). As for

the orientation, although the reflected signal slightly changes

due to the different probe angles for each content type, the

inter-type distinguishability among 100 screen content types is

significant such that each device can be correctly recognized.

Thereby, WaveSpy can facilitate portable and convenient

screen attack in real practice.

Fig. 14. The attack accuracy according to sensing distance (from 20cm to
180cm) and device orientation (from 0◦ to 40◦) keeps over 90.25%.

B. Impact of Display Resolution

The display resolution is a crucial consideration in a real

application, which is related to the screen type. Specifically,

we recruit five different screens with four different display

resolutions between 800 × 600 (VGA) to 3840 × 2160 (4K)

pixels. For each resolution setting, we evaluate the screen

content type inference following the preparation in Section

V-B and re-prepare the training and testing sets. Figure 15

manifests that their performance of average Top-3 accuracy

can achieve up to 99.52%. Besides, the identification results

all remain above 99.4%. Hence, WaveSpy can maintain a

high success rate in attacking screens under different display

resolution setups.

C. Impact of Screen Model

Due to the fact that many attacks rely on the screen model,

we simulate a scenario where the attacker lacks this prior

knowledge. In this section, we evaluate the attack performance

under the impact of the screen model to verify the training

data generalization. To address this concern, we employ four

devices for testing, including iPhone 6, iPhone 6s, Pixel 2 and

MacBook Pro. We repeat the experiment of the screen content

type inference (as described in Section V-B). Importantly, we

still use the previous training data from iPhone 6. Notably,

there are two iPhone 6 here, one for training, one for testing.

As shown in Figure 16, the testing results illustrate the infer-

ence accuracy. We observe that the average Top-3 accuracy on

iPhone 6 and iPhone 6s are the highest, 99.18% and 97.03%

respectively, while others are both below 10%. The reason is

that the tested iPhone 6 and iPhone 6s have an equal or similar

hardware structure with the training device, which are entirely

different from others. Moreover, the comparable accuracy on

iPhone 6s testing indicates that our trained classifier does not

have the over-fitting issue and can adapt to various usage

scenarios. To sum up, results indicate that WaveSpy can work

across different screens with the same or similar hardware

structures (see a further discussion in Section X).

Fig. 15. Inference performance
under different display resolutions.

Fig. 16. Inference performance
under different screen models.

D. Impact of Cover Material

We consider the scenario where the user hides the screen in

other materials to evade attacks. Particularly, we collect five

different daily-accessible materials (i.e., brick, glass, plastic,

wood, curtain, cardboard). We place the screen behind each of

them and evaluate the screen content type inference accuracy

for all nine monitors. The performance is reported in Figure

17, where we can see that the overall accuracy for each is

above 98%. Certain materials slightly affect the performance

to some extent. This is because WaveSpy utilizes a high-

frequency signal and therefore has a small wavelength and

limited penetration ability. As a result, it is prone to the

scattering reflection upon some specific materials. Generally,

WaveSpy still provides reliable performance in screen content

type recognition.

Fig. 17. Evaluation to determine the
influence of cover material on the
screen content type recognition.

Fig. 18. The system performance
for screen content type recognition
under the influence of different sur-
rounding objects.

E. Impact of Occluded Objects

In this experiment, we investigate the influence of the

static and moving surrounding objects that affect the mmWave

signals on the inference accuracy of screen content type. For

static objects, we select device case, book, cup, hamburger,

and an extra screen. For moving objects, we perform this

experiment with two participants, i.e., a participant selects

the screen content while another participant is moving with

the same normal walking speed as the surrounding object at

different distances away from the screen.

For static objects, the performance is reported in Figure

18, where we can see that the overall accuracy for each

is above 98%, implying these surrounding objects have a

limited effect on the performance. For moving objects, we

can observe that the surrounding moving objects obviously
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affect the inference accuracy, but, the effect decreases as the

distance increases. When the distance between the object and

the screen exceeds 45cm, the influence of surrounding objects

becomes negligible. This is because the mmWave wave has

a high directionality and controlled sensing angle, decaying

exponentially with respect to distance from the screen to the

surrounding objects. This experimental result demonstrates

that it is not easy to disrupt WaveSpy using surrounding

objects.

F. Impact of Open World Scenarios

In real practice, the attacker may also aim to extract text

from the screen. By referring to a recently publish work

on screen attack [3], we conduct an experiment on Dell

U2415 under the open-world setting to verify whether we

can extract content from the screen. We collect 30 paragraphs

and each paragraph contains at least 60 words. In trace, each

character lasts 0.5s, typed on the virtual keyboard. Following

Section V-B, we recollect the training and testing set. The

results present the average Top-3 accuracy for word inference

is 81.3%. For example, the word ”implicitly“ is incorrectly

recognized as ”inplicitly“. Similar analysis is further discussed

in Section VIII. This performance can further improve by

coordinating with the dictionary [1]. This experimental result

demonstrates that WaveSpy can perform the screen attack

under different open world setups.

VIII. EVALUATION III: REAL-WORLD SCREEN ATTACKS

Fig. 19. The carry on attacks are conducted in three locations, i.e., hall,
office and cafeteria on the Macbook Pro. The probe is hidden in a normal
handbag arousing no suspicion to victim and nearby surrounding.

Experimental Setup: Due to the portability and low cost

of the setup, eavesdroppers can access a target screen used

in public spaces. Therefore, we conduct a real-world screen

attack. The studied sites involve three common locations in

daily life (i.e., offices, hall and cafeteria) as shown in Figure

19. For each site, the participants were instructed to use the

digital screen placed behind the wall or obstacle. The content

type and the sensitive information are displayed on the screen

at a default font (i.e., 9-12pt). It is important to note that these

sites are different from the environments described in Section

III-B where we collected the prior data and characterized the

LCS response.

Evaluation Results: Table II shows case studies for four attack

trials on the screen content type recognition and sensitive

information retrieval, including their corresponding ground

truths. We can see that, in MS Word types, it was wrongly

recognized as MS Visio at the cafeteria location. The reason

is that these two types have a considerably similar layout,

confusing the classifier. The password mistake happens at the

TABLE II
ERROR EXAMPLES OF THE REAL-WORLD ATTACK AT THREE DIFFERENT

LOCATIONS AGAINST THE GROUND TRUTH.

Attack
Scenario

Attack Results on Different Locations Ground
TruthHall Office Cafeteria

#1 MS Word MS Word MS Visio MS Word

#2 a1b2c3 a1b2c3 a1b2v3 a1b2c3

#2

Good
Night

Good
Night

Good
Nitht

Good
Night

Have A
mice Day

Have A
Nict Day

Habe A
Nocw
Day

Have A
Nice Day

cafeteria, where recognizes the ’c’ into ’v’. It is because these

two characters have adjacent locations on the screen, leading to

similar LCS responses. Although in the sentence retrieval, the

results are not as good as a PIN, it still shows a huge potential

for the sensitive sentence or content eavesdropping. Besides,

we also conduct a sustained attack on the screen content type

recognition, in an attempt to acquire the user activities usage

statistics. The usage statistics analysis for three hours at the

office location with Top-1 accuracy is shown in Figure 20.

Note that our WaveSpy can be applied to monitor the user

activities for a long time with high inference accuracy 96.2%.

Though some performances appear lower than those of the

above performance, we can improve them by adjusting the

characteristics of the antenna according to the screen position.

In contrast, if eavesdroppers identify the screen to be attacked

in advance, they can optimize their setup according to profiling

results. Moreover, an optimized antenna makes the maximum

stealing distance much longer. Thus, the result suggests that

our system provides reliable performance in real practice.

Fig. 20. Usage statistic analysis of on-screen content type recognition for 3
hours at an office location. The inner loop indicates the ground truth while
the outer loop demonstrates the usage statistics inferred from WaveSpy.

IX. COUNTERMEASURES

Creating a large isolation zone (e.g., over ten thousands of

square feet) is effective to defend most of the screen attacks,

including WaveSpy. However, it is not practical (e.g., cost

and usability) in real-world scenarios. In this section, we

will discuss two sets of practical countermeasures against

the WaveSpy attack. The first countermeasure set is cost-

effective, altering either hardware or user behavior to mitigate

the security risk. The second countermeasure set is zero-cost,
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a purely software-based solution with no hardware or user

cooperation requirement.

Fig. 21. Examples of countermeasure solutions: (a) conductive hardware
shielding; (b) side-channel inference with a jamming device; (c) corresponding
UI elimination towards button touch; (d) randomized keyboard layout.

Cost-effective Approaches: To counter the attack, we intro-

duce a cost-effective solution set including four protection

strategies in Figure 21. In general, we explore the mmWave

signal transmission drawback, and thus a shielding technique

is proposed to isolate electrical devices from the “outside

world” as shown in Figure 21(a). However, if the shield

covers the full display surface, the usability of the screen

drops significantly. Besides, deploying the shield needs extra

human labor and increases the cost. Another possible way to

avoid the attack from the mmWave is to make use of the

receiving channel limitations. We employ a wireless jamming

device that continuously transmits noise signals to block the

probe receiving channel as shown in Figure 21(b). Yet, in real

practice, such an approach is hard to achieve, since the jam-

ming device needs to know the attack frequency in advance.

In addition, a straightforward countermeasure is to focus on

the LCS response inhibition. We automatically prevent the

usage of the UI reminder when inputting sensitive information,

i.e., making no change on the screen, as shown in Figure

21(c). Also, another sophisticated defense exploits the same

principle, which is to randomize the layouts of the keyboard

grid as shown in Figure 21(d). However, both countermeasures

can dramatically decrease the user experience.

(a) Tax return form (b) Credit card login

Fig. 22. Two examples of the countermeasures with the interleaving screen.

Zero-cost Approach: Defense approaches above require either

additional hardware or user behavior changes. In this part, we

investigate a novel defense approach with zero cost, namely

high-frequency interleaving screen. This approach exploits

the display mechanism and leverages the RF probe sensing

limitation. As indicated in Section VI, the least LCS response
duration for attacking lasts from 40 to 100ms, equal to 10-

25Hz, while at the same time, the refresh rate on modern

display is usual higher than 60Hz. Since screen refresh rate

is higher than probe sensing frame rate, we can scribble

multiple frames (e.g., adding full-screen flicker marks) within

the frame periods to deter attacking, while preserving viewing

experience by taking advantage of human eyes flicker fusion

effects [42], [43]. Two examples of flicker marks are illustrated

in Figure 22. We recollect 20 screen content types with

the flicker makers as the testing data, combined with the

training data in Section V-B. The results with the flicker

mark demonstrate the average Top-3 accuracy of 3.7%, which

confirms the feasibility of this protection.

X. DISCUSSION

System Limitations: WaveEye realizes a new remote screen

monitoring, and there are several system limitations. First, as

discussed in Section VII-C, although we can generalize the

training data among the same screen type, it is hard to build

a general model among different screen types. The reason

is that hardware structures and display designs of different

screens are different, which causes completely distinct LCS
responses (see Figure 7). It is impossible to build the general

model and attack the screen by discovering the collaborative

internal features among these responses. Besides, we notice,

currently, no solution can achieve the real remote image

visualization (see Section XI). Among all of the alternatives,

we believe the solution based on RF technology is the most

promising. We propose to prepare a customized model for each

pixel value on the screen. For example, if the resolution is

800×600, we can prepare 540,000 models totally and predict

the screen image after integrating the simultaneously predicted

value of each pixel. This solution is inevitably limited by the

current hardware probe technology. To conduct such pixel-

level monitoring, a significantly higher resolution is required,

and consequently it is urgent to develop a RF probe utilizing

a higher carrier frequency (e.g., Terahertz technology, larger

than 100 GHz [44]. Nevertheless, this technology continues

to mature at present [45]. Besides, to support this attack, the

amount of sensing data is huge, and thus we need an ultra-

high speed and larger operation bandwidth analog-to-digital

convert (ADC) (e.g., larger than 50 GS/s operation speed),

while such ADC technology is still under the research phase

[46]. As aforementioned, we believe it could be soon achieved

in the coming future.

Sensitive Information Retrieval Analysis: We further an-

alyze our system from two aspects: time complexity and

entropy reduction. The strength of a password is a function

of length, complexity, and unpredictability, which depends on

the resistance to brute-force guessing attacks. Entropy is the

typical measure of password strength. For a password X , its

entropy is defined as H(X) = −∑n
i=1 P (xi) · log2 P (xi),

where xi(i ∈ {1, 2, ..., n}) is one of n possible values of the

password X , and P (xi) represents the probability that X = xi
holds. Considering a keyboard housing t characters, a random

password with length N has tN possible values with O(an)
(a > 1) time complexity and N · log2 t bits of entropy. Com-

pared with brute-force guessing attacks, our unobtrusive sensi-

tive information retrieval attack greatly decreases both the time

complexity and password entropy. As we evaluated in Section

VI-B, the time complexity decreases to O(n) ∼ O(a0.2n),
and the entropy drops to 0.2N · log2 10 ∼ 0.3N · log2 36 bits

according to different applications.
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The Stealthiness of WaveSpy: The stealthiness of WaveSpy
is a critical factor in analyzing the feasibility of the attack

in practice. The designed probe must guarantee to be undis-

covered. To achieve this goal, the designed mmWave probe

uses the invisible mmWave signals to attack, which is 11.8cm
(4.65in) × 4.5cm (1.77in) × 1.5cm (0.59in) with the weight

only 45.4g and can be fueled by a common portable power

bank. The output signal can be connected to the audio interface

of a smartphone or a tablet for signal processing. Notably,

the trace for N -digit password only needs the data storage of

NKB around.

XI. RELATED WORK

Electronic Device Emanations: The electronic device func-

tioning of various state-of-the-art sensors leaks critical infor-

mation that can be acquired to infer application usage and

screen activity. Previously, researchers have explored the threat

of keystroke inference attacks based on observing the motion

[47] or multiple sensor data in the device [48], [49], [50], [51],

[52] and tablet backside motion patterns through vision-based

monitoring [53], [54], [55]. Given the adversary has access to

the target electronic device, the smudges on the screen can

be investigated to construct critical information about recent

user activity [56]. However, these attacking solutions cannot

work in our attack model without line-of-sight. The intensity

of light emitted from the cathode-ray tube (CRT) displays

can be analyzed to reconstruct the text information shown on

the display; however, it is only feasible in dark environments

without the interference from other lighting sources [10].

Furthermore, the digital screens leak electromagnetic (EM)

or other emanations that can be exploited by an adversary

to steal the information displayed on the screen or from a

login [2], [57], [9], [58], [3]. However, this type of attack

highly depends on the power supply of the screen. Along

with the power management development, there is a visible

trend that the low-cost technology will be widely deployed

in most screens, and thus the scaling of these emanations

decrease dramatically making emanation-based attacks fail. In

addition, in EM strategy, the attacker must be extremely close

to the victim screen and acoustic-based solutions require no

occlusion or obstacle, which hardly work under the setting

of this paper. Besides, it is worth mentioning that although

some EM-based attacks have tried to visualize the results by

combining the predicted results with the pre-capture screen

image [2], the feasibility of the remote image visualization

rests on the assumption that the attacker gets the pre-capture

screen image of the victim, which is not the real image

reconstruction. As aforementioned, these attacking strategies

cannot work under the setting in this study.

Compromising Reflections: The sensitive information dis-

played on the digital screens to the user cannot be extracted

from only be device side-channels, but also the screen’s optical

emanations on nearby objects. A novel screen-based attack

was presented which exploits the comprising reflections on

the objects (e.g., eyeglasses, teapots) that are in proximity to

the screen posing a significant threat to the privacy of the

information displayed on the screen [59]. Even the diffused

reflections from a wall or shirt can be employed from the

reconstruction of the projected image using a digital camera

[60]. Another form of compromising reflections can be ob-

tained by tracking the diverging positions of victim’s fingers

during typing while they are reflected from proximity objects

or even obtainable from long-distance view [61], [8], [62], [1].

All the work above is ineffective in our attack model.

Remote mmWave Sensing: In the last decade, mmWave

radars have been extensively employed in both research and

practice to detect the target’s inherent motion (e.g., cardiores-

piratory and gesture sensing [63], [64], [65]) for vital signs

monitoring and user authentication. Studies have demonstrated

the feasibility of remotely detecting the hand motions and

physiological features, such as heart rate and breathing patterns

[66], [67]. However, given that the underlying characteristics

of the mentioned applications rely on Doppler motion, they

cannot be directly applied to sense through the target or

other obstacles (e.g., packages and luggage). While some

researchers [68], [69], [70] explore the propagation of the

mmWave through-wall and through-objects, the systems are

still inapplicable for a target with specific mmWave-absorption

characteristics. To the best of our knowledge, the proposed

WaveSpy is the first non-contact mmWave sensing application

that aims to exploit the LCS response to achieve the screen

attack through the occlusion.

XII. CONCLUSION

In this paper, we first identified and validated a new and yet

practical side-channel to infer contents on digital screen via the

liquid crystal nematic state sensing in isolation scenarios. We

started from basic functioning mechanism and LC nonlinear

effect in digital screens on the personal device and analyzed

the LCS response. Then, we designed a portable, low-cost,

and energy-efficient 24GHz mmWave probe and proposed a

novel end-to-end deep learning-based hierarchal module to

recognize the screen content type and retrieve the sensitive

information on digital screens. Furthermore, extensive exper-

iments indicated that the proposed WaveSpy achieves more

than 99% inference accuracy through-wall within 5m distance

with a centimeter level screen solution. The Top-3 sensitive

information retrieval rate of the proposed WaveSpy is up to

87.77%. Various levels of evaluation proved the robustness,

reliability, and efficiency of our proposed WaveSpy. Finally,

we recommend that privacy-sensitive systems should pay

considerable attention to this new side-channel and increase

the screen security (e.g., flicker mark).
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APPENDIX A

SUPPLEMENTAL MATERIALS

A. Impact of Screen Change Rate

In real practice, the user inputs the password on an elec-

tronic device at a moderate speed to avoid feeding any

incorrect information. However, the preferred speed of an

individual may still vary based on the comfortability with the

password. Therefore, we examine the impact of typing speed

on the inference accuracy of WaveEye. To acquire the data

with different input speeds, we ask three participants to input

the PIN information on an MSI GL62. The speeds can be

categorized in three types, i.e., moving the fingertip moderately

(average 0.9s/digit), quickly (less than 0.6s/digit), or slowly

(more than 1.2s/digit).

TABLE III
THE SYSTEM PERFORMANCE FOR SENSITIVE INFORMATION RETRIEVAL

AT THREE DIFFERENT INPUT SPEEDS: QUICK, MODERATE AND SLOW.

Attack Num. Quick Moderate Slow
Top-1 (%) 74.05 81.31 82.82
Top-2 (%) 79.26 85.09 86.16
Top-3 (%) 85.31 90.03 90.77

Table III demonstrates the inference accuracy under dif-

ferent input speeds with results showing that a quick speed

can adversely influence the system performance. It is because

when the PINs are fed too fast, the associated button UI

correspondences are not completely displayed on the screen

and the mmWave signal is unable to capture the salient

characteristics of the respective button. However, the Top-3

inference accuracy of quick input speed also reaches up to

more than 85%. In addition, the input speed of PIN in practice

will not vary as extremely as considered in our experiments.

Therefore, WaveEye is robust to the changes in input speeds.
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