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ABSTRACT
Eating habits provide clinical diagnosis evidences of lifestyle
related diseases, such as dysphagia and indigestion. How-
ever, it is costly to obtain eating habit information of com-
mon people in terms of both time and expenses. This paper
presents a pervasive approach for eating habit monitoring
and recognition by a necklace-like device and a smartphone
communicating via bluetooth. The necklace-like device ac-
quires acoustic signals from the throat, and the data are pro-
cessed in the smartphone to recognize important features.
With complex acoustic signals collected from the throat, our
method comprehensively analyzes and recognizes different
events including chewing, swallowing, and breathing in the
smartphone. Experiments show that the proposed approach
can recognize different acoustic events effectively, and the
recognition accuracy with K-Nearest Neighbor (KNN) and
Support Vector Machine (SVM) is 86.82% and 98.35%, re-
spectively. Finally, a real eating case study is conducted to
validate the proposed approach.
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1. INTRODUCTION
Food selection and food intake patterns are vital elements

to describe an individual’s eating habits, which can be de-
fined as what and how people eat in their daily lives. Eating
habits monitoring is a prerequisite for effective diagnosis,
prevention, and intervention [5]. In recent years, as people’s
concerns of health increase rapidly, eating habit monitoring
becomes a hot research topic of doctors, nutritionist and re-
searchers in many other fields. In addition to what type of
food we can sense and manage, how people eat, including
the way of chewing and swallowing during eating, is even
more important for health evaluation and management [18,
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10]. Eating habits provide important clinical evidences for
diseases like dysphagia [12], indigestion [5].
Traditionally, eating habits monitoring is conducted in

clinical environments, which is inefficient in both time and
expenses. In this paper, we use a wearable acoustic sen-
sor system to continuously acquire real continuously acquire
real-time eating habit information of common people in an
economical, convenient and non-interfering way. Existing
wearable acoustic sensor systems focus on the detection of
one particular sound [18, 10, 13, 9, 16], which is inadequate
for precise eating habit monitoring and recognition.
In this paper, we propose a pervasive solution to detect

and analyze complex acoustic signals during eating. The
acoustic signals during eating are collected by a necklace-like
device directly from the throat. We propose a comprehen-
sive solution to detect different acoustic events, and extract
features in the time and frequency domain for each event.
We sort the feature with Relief-F to create different feature
subsets. Finally, we use both KNN and SVM to recognized
acoustical events with respect to different feature subsets.

1.1 Related Work
Individual sensing provides important information of eat-

ing habits [2]. In particular, measuring vibrations during
food chewing, swallowing, breathing and speaking is vital
sensing for automatic health monitoring systems. A work
recording with acoustic sensors during chewing crisp and
hard foods were performed by Drake [8]. Subsequent stud-
ies focused on relating chewing sounds to sensory perception
of foods and to food assessments [22]. Attempts to classify
foods using pattern recognition techniques were performed
by De Belie et al. [7]. Their work showed that a small num-
ber of foods can be classified in a laboratory setting using
foam-based ear sensors. In addition, they found that chew-
ing sound patterns changed during the breakdown process of
several chewing cycles. This observation was later confirmed
using an automatic unsupervised sequence searching tech-
nique to group chewing strokes [3]. Lopez-Meyer et al. used
microphones to record chewing and swallowing sounds and
detect periods of food intake by evaluation of the instanta-
neous swallowing frequency [17]. Lee et al. [15] investigated
the chewing sounds recorded outside the closed mouth of the
participant, who is chewing potato chips and tortilla chips.
They discovered that the energy of the spectrum of a chew-
ing event decreases in the progress of food crushing. In [1],
researchers established the viability of a reduced occlusion



(a) System prototype (b) Device

Figure 1: Illustration of the Hardware System

sensor prototype to detect chewing sounds.
However, the proceeding concept was based on chewing

and swallowing sounds recording and counting, and no vir-
tually data processing algorithm has been proposed. More-
over, during chewing and swallowing, other sounds such as
breathing and speaking can also be recorded at the same
time. In fact, most of time, the record is the mixture of
all these sounds, so the identification and classification is
essential for a more accurate monitoring algorithm.

2. HARDWARE SYSTEM
The eating habit monitoring system consists of a necklace-

like device and a smarthpone, which communicate with each
other via bluetooth, as shown in Figure 1-(a). The necklace-
like device samples acoustic signals from the user’s throat,
and upload data to the smartphone. An APP on the smart-
phone executes the recognition algorithms. The necklace-
like device consists of five main parts: a pair of acoustic sen-
sors, a pre-processing module, an AD converter, an ultralow-
power MCU and a communication module, as shown in Fig-
ure 1-(b). The acoustic sensors are placed near the user’s
throat, to precisely collect the swallowing, breathing and
chewing signals. The pre-processing module amplifies and
filters input acoustic signals. The first-stage amplified cir-
cuit is connected to the sensor directly and its gain is 5.
The second stage normal-phase amplifier uses LM358, which
has the advantage of high common-mode rejection ratio, low
noise and high gain. In addition, the total gain of the am-
plifier is 250 and the cutoff frequency of the low-pass filter
is 3000 Hz. The AD converter TLV2541 digitizes the analog
signals with a sampling rate of 220HZ. The ultralow-power
MCUMSP430F5438, widely used in energy-constrained con-
sumer electronics products and portable medical equipments,
is responsible for the control and data transmission via the
bluetooth communication module.

3. RECOGNITION
This section introduces the recognition framework, which

consists of acoustic events detection, acoustic events recog-
nition and eating-habit index value computation.

3.1 Detection
Swallowing, chewing and breathing samples are detected

from received sequential data. We assume that all informa-
tion of each event can be extracted from each single window
with a fixed length of 100. After normalizing the sequen-
tial data, once a value of the normalized data exceeds the

pre-defined threshold value, an acoustic event will appear
in the following sequential data, so from this point to the
following 99 points, they are combined to an acoustic event.
In this way, we extracted each sample contains 100 points,
and every sample only contains one unabridged event.

3.2 Recognition
Based on the detected events in the received sequential

data, the features of each sample are extracted. In this pa-
per, we mainly focus on statistical features in the time and
frequency domain. The following shows the list of our statis-
tical features in time domain, and most of them have been
intensively investigated in the previous studies and proved
to be useful in the recognition problems [4, 19, 14]: (1) Max:
Maximum value of a sample; (2) Min: Minimum value of a
sample; (3) Mean: Average value of a sample; (4) Variance:
The square of Std variance; (5) Std variance: Measure of
the spreadness of the sample over the window; (6) Sample
entropy: Measure of the complexity of the sample; (7) Skew-
ness: The degree of asymmetry of the sample distribution;
(8) Kurtosis: The degree of peakedness of the sample distri-
bution; (9) Interquartile: Measure of the statistical disper-
sion, range being equal to the difference between the 75th
and the 25th percentiles of the sample over the window; (10)
Zero crossing: The total number of times the sample rate
changes from positive to negative or the other way around,
normalized by the window length.
In the frequency domain, Fast Fourier transform (FFT) is

first used to extract the signal features, and they are esti-
mated from Power Spectral Density (PSD) based on Welch’
s method with a Hamming window. The length of the
Hamming window is 40 and the overlap adjacent windows
is 25% [23]. The maximum power (Pmax), average power
(Pmean) of the sample, power in 0-15Hz, 15-30Hz, 30-45Hz,
45-100Hz, 100-200Hz, 200-300Hz, 300-400Hz and 400-512Hz
are calculated with respect to PSD of the sample.
The next step in recognition is to sort the features and se-

lect the most important features for different acoustic events
discrimination. Because the scale factors and units of the
proceeding features are different, we normalize all the fea-
tures to zero mean and unit variance using:

fnormalized =
fraw − μ

σ
(1)

where μ and σ are the empirical mean and the standard
deviation of a particular feature across all activity classes.
Then, Relief-F is used for our feature selection due to its

high popularity and usefulness in many pattern recognition
and machine learning problems. Relief-F is a popular filter
method that estimates the relevance of features according
to how well their values distinguish between the data points
of the same and different classes that are near each other
[24]. Specifically, it computes a weight for each feature to
quantify its merit. This weight is updated for each of the
data points presented, according to the evaluation function:

wi =

N∑
j=1

(
xj
i − nearmiss(xj)i

)2 −
(
xj
i − nearhit(xj)i

)2
(2)

where wi is the weight of the ith feature, xj
i is the value of

the feature for data point xj , N is the total number of the
data points, nearmiss(xj) and nearmiss(xj) are the nearest
points to xj from the same and different class, respectively.
The higher is the weight, the more important is the fea-

ture. In order to recognize these events including swallow-
ing, breathing and chewing, K-Nearest Neighbor (KNN) and
Support Vector Machine (SVM) are used in this paper, both
of which are widely used in recognition problems.



KNN [6] is one of the oldest and simplest methods for
pattern recognition. The basic principle of KNN is that
samples residing closer in the instance space have the same
class values, and the k-nearest neighbor classification takes
k nearest samples of the testing sample to make a decision.

When a new sample x arrives, KNN finds the k neigh-
bors nearest to the unlabeled sample from the training space
based on certain distance measurements. In this work, the
Euclidean distance is used. First, we use Nk(x) to denote
the k labeled samples nearest to x and c(z) the class label
of z. Then the subset of the nearest neighbors within class
j ∈ {1, 2, · · · , l} (l is the number of classes) is

N j
k = {y ∈ Nk(x) : c(y) = j} (3)

Finally, the classification result j ∈ {1, 2, · · · , l} is defined
as a majority vote:

j∗ = argmaxj=1,2,··· ,l|N j
k(x)| (4)

Nowadays, SVM [20], as the best separating (maximal
margin) hyperplane between the two classes of training sam-
ples in the feature space, has become one of the most suc-
cessful approaches in pattern recognition. In this work, we
choose SVM with a linear kernel f(x) =< w, x > +c as a
learning machine, which corresponds to a hyperplane. For a
given pattern mapped in the feature space to x, the value of
f(x) is a positive number, then the pattern belongs to the
class labeled by the numeric value +1; otherwise, it belongs
to the class with value -1. In order to recognize multi-class
samples, we choose one-versus-one (OVO) [11], which de-
signs SVM between any two types of samples, and K types
of samples requires k(k−1)/2 SVM. When an unknown sam-
ple is to be recognized, the final classification of this sample
is the votes of these SVM.

3.3 Indexing
After recognize the acoustic events, we need to calculate

the eating-habit index value to quantitatively evaluate the
eating habits. In this paper, the total number of swallowing,
the average number of swallowing per unit time, the average
time of chewing before a swallowing and the average number
of chewing before a swallowing are used as index values.

4. EXPERIMENTS

4.1 Data Collection
In the recognition experiment, swallowing, chewing and

breathing signals are recorded from a healthy male sub-
ject, seated in a relatively quiet laboratory. The subject
is required to swallowing water, chewing potato chips and
breathing as he usually does. No-event samples are recorded
when the throat microphone is hung in the air. After it is
worn by the subject, we collect 30 breathing, 30 chewing, 30
swallowing and 30 No-event samples. In the indexing and
habit discovery experiment, the subject seats in a quiet lab-
oratory, and eats potato chips in single pieces. Then he is
asked to chew and swallow without speaking. The actual
number of chewing and swallowing when he eats is counted.

4.2 Event Recognition
After collecting 30 breathing, 30 chewing, 30 swallowing

samples and 30 No-event events, features in the time and
frequency domain are extracted for each event. Then, 20
features are sorted with Relief-F, where different feature
subsets are created with the first k ordered feature, and

(a) Precision (b) Recall

(c) F-score (d) Accuracy

Figure 2: Results of recognition by KNN for differ-
ent feature subsets from each feature group

k changes from 1 to the total number of extracted features
with a step-size of 1. Subsequently, KNN and SVM are used
to classify these three activities based on the sorted feature
subsets, receptively, the results of which are shown in Fig-
ure 2 and Figure 3. Since the samples are limited, these 90
samples are used as the training set and testing set. The
recognition performance is evaluated with:

Precision = TP/(TP + TN)

Recall = TP/(TP + FN)

Accuracy = (TP + FN)/(TP + TN + FP + FN)

F -score = 2× Precision×Recall/(Precision+Recall)

where TP, TN, FP and FN represents the number of true
positive, true negative, false positive and false negative clas-
sified samples, respectively [21]. Figure 2 shows the classi-
fication performance by KNN when K is 11. Each line in
(a), (b) and (c) represents different acoustic events. With
respect to the precision, recall, F-score and accuracy results
of different feature subsets, it can be seen that using feature
subsets with 11 features gives the optimum number of fea-
tures for breathing, chewing, swallowing and no-event recog-
nition. The recognition accuracy is 86.82%. Furthermore,
the recognition precision of breathing and no-event is much
higher than that of chewing and swallowing, and some of
chewing samples is recognized as breathing samples falsely.
If we pick more features beyond the top 11, the recognition
performance only varies slightly.
Figure 3 shows the classification performance of SVM. It

can be seen that using feature subsets with 17-19 features
gives the optimum number of features for breathing, chew-
ing, swallowing and No-event recognition, with a total ac-
curacy of 98.35%. Furthermore, when the number of fea-
tures increases from 1 to 11, the recognition performance
improves rapidly. If we pick more features beyond the top
10, the recognition accuracy is more than 95%.
From above results, we can see that in order to recognize

breathing, chewing, swallowing and No-event samples more
precisely, classifier SVM has better recognition performance
than classifier KNN. So in the following, we use SVM with
20 feature subsets to recognize acoustic events.



(a) Precision (b) Recall

(c) F-score (d) Accuracy

Figure 3: Results of recognition by SVM for differ-
ent feature subsets from each feature group

Table 1: Eating habit index of the case study

Index Index Value

Ratio between chewing and 5.13

swallowing

Average number of swallowing 2.53

in one minute

Average time of chewing 0.26 (second)

The longest time of chewing 0.41 (second)

The shortest time of chewing 0.12 (second)

Average number of chewing 5.21

before a swallowing

The largest number of chewing 34

before a swallowing

The least number of chewing 0

before a swallowing

4.3 Indexing and Habit Discovery Case Study
We continuously collect the sampling data of eating potato

chips for about 15 minutes, and detect 398 acoustic events
in the collected data. Then we extract features in the time
and frequency domain for each event and the classifier SVM
is used to recognize these events. In the 398 acoustic events,
we recognize 195 chewing events and 38 swallowing events,
and the chewing time is calculated according to the feature
of zero crossing rate. The eating habit indexing value of
this real case study is shown in Table 4.3, from which we
can quantitatively evaluate the eating habit of the subject.

5. CONCLUSION
Eating habits related diseases are growing problems of the

world’s population, and pervasive eating habit monitoring
provides important benefit to recognize these diseases in ad-
vance. In this paper, a comprehensive approach using a
necklace-like device is presented. First, in order to system-
atically assess the usefulness and identify the most impor-
tant features, Relief-F is used to select the needed features.
Then in the recognition process, KNN and SVM are both
introduced to recognize the acoustic events, and the recog-

nition accuracy of the acoustic events is 86.82%, 98.35%,
respectively. Finally, a real eating case is monitored and
recognized to validate our scheme. Our approach not only
can recognize the acoustic events, but also calculate eat-
ing habit index values to quantitatively evaluate his eating
habits. In the future work, we will adopt filter algorithms
to improve the precision of our monitoring algorithm.
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