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ABSTRACT
This paper presents a quantitative assessment solution for an
upper extremities rehabilitative gaming application [1]. This
assessment solution consists of a set of stand-alone hardware,
including SmartGlove and Kinect, a depth capturing sensor
made by Microsoft. SmartGlove is a specially designed mo-
tion and finger angle extraction device which is packaged in
an easy-to-wear and adjustable manner for a patient with an
upper extremity impairment. Sensor data extraction, align-
ment, and visualization algorithms were designed for inte-
grating hand-mounted sensors data streams into skeleton
coordinates captured by the Kinect. This enhanced skele-
ton information can be summarized and replayed as upper
extremity joint coordinate animations which can be used
for physical therapists to quantify rehabilitation progress.
In addition, to serve as an assessment tool, enhanced skele-
ton information can be used to extend the capability of the
Kinect vision system, such as providing motion capture of
the upper extremities, even when the testing subject is out
of camera scope or one’s upper extremities are occluded by
the body.
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1. INTRODUCTION
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According to U.S heart disease and stroke statistics 2012
report, the direct and indirect health care cost of stroke is
approximately $34.3 billion in 2008. Around 795, 000 people
suffer from a new stroke or recurrent stroke every year. On
average, $7657 is spent per person for stroke care in U.S [2].
This information reflects that strokes are one of the major
health care expense sources and stroke can be considered a
severe burden on both the U.S government and individual
families affected by stroke. In addition to medicine-oriented
fees, people with stroke often need physical therapy services
to improve stroke symptoms or retain functionality and inde-
pendence with daily activities. The loss of function, particu-
larly in the upper extremities, can be recovered via effective
limb rehabilitation [3]. However, the stroke rehabilitation
process is usually time-consuming and tedious. With a lack
of suitable and immediate motivation, some patients even
quit their rehabilitation in a short period of time.

Figure 1: New SmartGlove Design

One potential reason for a rise in health care costs is be-
cause people often do not follow their rehabilitation pro-
grams through to the end. In addition, to correctly identi-
fy rehabilitation progress, there usually needs to be a pro-
fessional physical therapist involved. However, the limited
number of qualified physical therapists decreases the avail-
ability of the service and increases the treatment expenses.
On the other hand, examining rehabilitation progress with
only limited quantitative and subjective tools reduces the
possibility of comparing the progress similarities and dif-
ferences between individual people with stroke. Therefore,



several researchers have started to introduce commercially
available electronics with task-specific visual feedback into
rehabilitative treatments. Flynn et al. reports an individ-
ual post-stroke rehabilitation case with a popular gaming
platform, Sony PlayStation2 [3]. Lange et al. adopts Mi-
crosoft Kinect for upper limbs reaching tests with special
designed virtual characters [4]. Their research transforms
rehabilitation processes into interactive games with low-cost
and commercial available hardware which facilitates the ef-
fort of deployment in the hospitals. Also, this setting is
suitable for in-home deployment. With carefully designed
data collection criterion, such as following Fugl-Meyer as-
sessment requirements [5], and enabling remote data access,
tele-rehabilitation could be a new option to effectively de-
crease therapy expenses and eliminate inconvenient travels
to clinics for disabled patients.

2. BACKGROUND
Tele-rehabilitation research has concentrated on camera-based
data collection and analysis for a long time, because video
cameras really enable doctors to see their patients and can
record every detail of the patients’ movements with continu-
ous video monitoring. However, one negative aspect of this
method is that data volume is usually too large to be an-
alyzed and too much unrelated information interferes with
patient activity research, such as environmental background.
The invention of Microsoft Kinect provides a straightforward
manner to analyze patient activities by extracting human
joints/skeleton information from video streams. This infor-
mation is considerably valuable in analyzing stoke patien-
t’s motion and extremities activities. However, the official
Kinect development tools did not provide enough resolution
for fingers’ tracking [6], which are important for the hand
grasping task of the Fugl-Meyer Motor assessment [5]. There
are several solutions proposed to enable fine-grained finger
tracking with Kinect. Z. Ren et al proposes a robust hand
contour detection method to detect and track both hand
and finger motions [7], but the proposed method seems un-
suitable for time-critical applications, such as interactive re-
habilitation games. Another way to track hands efficiently
is via using extra hardware, such as a color glove. Through
tracking the glove color, hand positions and gestures can be
identified with image processing tools and algorithms [8].
Except for hand and finger position tracking, gloves can
serve more versatile functionality. For example, Vutinun-
takasame et al. designed a wireless data glove which equips
five bending sensors to detect finger curling angles and cap-
ture detailed finger activities for American sign language
applications [9]. Similar to the motion capture controller-
s in Wii, inertial motion unit (IMU) can be used to track
hand motion as well. These added external sensors take ad-
vantage of direct measurements of hand motions and finger
curling angles to eliminate the necessary image processing
and feature extraction time for hand parameters tracking,
though extra hardware is necessary. Another advantage of
the wireless data gloves is that they are not limited by Kinec-
t/camera view field and do not prevent normal human move-
ments. Nevertheless, some issues still exist. Wireless sig-
nal transmission tends to be absorbed by the human body;
therefore, although wireless gloves will not have occlusion
issues occurred in a camera-based system, the transmitted
data packets may be delayed or disappear during the trans-
mission [10]. The consequence of the loss of the packets is

that glove-glove and glove-camera synchronization will break
occasionally after data loss or delay. In this paper, we de-
scribe detailed SmartGlove hardware design considerations
and data re-synchronizing algorithms to integrate camera
and glove’s data streams together. Detailed finger curling
and hand position information are integrated with Kinec-
t skeleton coordinates using IMU-enhanced iterative closest
point algorithm [11]. Personal dead reckoning (PDR) al-
gorithm [12] is applied when the hands of the test subject
are out of camera view field or occluded by the body. The
remainder of the paper is constructed as follows: Section 3
introduces the SmartGlove package design, system and an-
imation replay setup. Section 4 explains the algorithms in
sensor data synchronization and integration. Section 5 dis-
cusses an empirical evaluation of our system and approach.
Section 6 summarizes and suggests future research direction-
s.

3. SYSTEM ARCHITECTURE
3.1 SmartGlove Package Design
SmartGlove consists of five finger bending sensors, an IMU,
an Xbee RF wireless communication module, an Arduino
Fio microcontroller [13] and two velcro gloves. Fig.1 shows
the gloves’ appearance and their integrated sensor modules.
We specially designed the glove architecture with FLEXI-
FIT manual wheelchair gloves [14]. Our previous studies
with a female stroke patient demonstrated that even though
a regular glove design [1] works well for a normal user, it may
not be suitable for a stroke patient who could not separate
her fingers well when she wore the gloves. In that study, the
fitting process, putting on a pair of gloves, took more than
10 minutes and needed at least one person to help her to get
through. The same problem happened when she took off the
gloves. In addition, this female patient had long fingernails,
so that she could not stretch her fingers fully to the end of
the glove. Due to the fact that a bending sensor’s reading
is sensitive to the contact region of the user’s finger, the
changes of length of her fingernails slightly affected the sen-
sor readings. Therefore, repeated calibration for every week
use is required. We also received feedback for adopting a
more flexible glove structure which allows a user to adjust
the tightness of the glove at the wrist region and adjust the
location of the bending sensors for different finger length.
Our new design attempts to satisfy all these requirements.
With velcro straps attached around the wrist, the tightness
of the gloves can be adjusted. When a SmartGlove is put
on a table and the velcro straps are unwrapped, a user can
easily put his/her hand into the glove and stretch his/her
fingers step by step until all fingers slide into the correct fin-
ger positions. We designed a flexible fabric ring with velcro
on each bending sensor to make the bending sensor position
adjustable. This fabric ring design avoids the long finger-
nails issue and makes the new SmartGloves adjustable for
the different length of the fingers. We utilize XBee RF trans-
mitters and receivers to communicate data from the gloves
with a laptop, but the communication media is not limit-
ed to RF only, the communication media can be replaced
with Bluetooth or WiFi by changing the current transmit-
ters and receivers with the corresponding communication
modules. We tested different communication media, but in
our experiment, we choose XBee because it can easily mea-
sure and configure its transmission power strength, which is
required for our data synchronization algorithm design and



it can avoid unwanted human interference, such as bluetooth
connectivity problems and router configuration mistakes.

3.2 Kinect Skeleton Descriptions
Microsoft provides official software development kit (SDK),
which supports human skeleton coordinates based on the
captured 640 by 480 32-bit RGB images and the correspond-
ing 320x240 16-bit depth map. Kinect SDK provides up
to 20 joints tracking per person, but limited field of view
and depth sensor ranges restrict the object tracking range
of Kinect. These joints include the head, body, and extrem-
ities. There are several software packages existing which
exploit sophisticated image processing techniques and join-
t analysis algorithms to extend the number of the tracking
joints. Our goal is to add one subject finger bending infor-
mation on top of the existing skeleton structure provided
by Kinect SDK. Although Kinect can support multiple user
tracking, our current implementation did not include this
feature for simplicity.

3.3 Animation Replay
After having all the skeleton coordinates provided by Kinect
API and computed bent finger coordinates, we designed a
sequence of coordinates trajectories replay in Maya [15] and
visualized the joints as a virtual character animation. An-
imation replay helps physical therapists to reexamine the
rehabilitation process and check details in the targeted up-
per extremities movements. Instead of displaying IMU and
bending sensor data in the waveform format, skeleton-based
animation replay facilitates therapists’ work to identify the
problems of the patients in the rehabilitation process. More-
over, patients can easily understand their current progress
and problems via watching their skeleton animation replay.
Visualized information can assist both therapists and pa-
tients to figure out their progress intuitively. Fig. 2 shows
three snapshots to describe how the animation replay work-
s. In fact, the size of the joint skeleton information is far
smaller than the corresponding video streams. Therefore,
animation replay is considerably time and memory efficient
even with a remote skeleton information accessing.

Figure 2: Animation

4. ALGORITHM FOR USER IDENTIFICA-
TION

Algorithm framework is shown in Fig. 3. First of all, a lap-
top connected with Kinect via Kinect specific power supply
cable collects all Kinect skeleton data for each frame. An

XBee receiver connected to the laptop collects IMU data
and all five bending sensors data. IMU data consists of x,
y, z axis acceleration, pitch, roll, and yaw orientation da-
ta. Low pass filtering are applied to the IMU sensor data
to remove noise. Initial calibration is performed to com-
pute IMU static offsets and build an angle conversion table
for each finger. Although bending sensor datasheet provides
their calibration circuit and conversion formula, we still com-
puted the table empirically in the initial calibration step to
make sure that the transduce finger angles are reliable and
accurate. The same game application, virtual gem grasping
game (JewelMine), [1, 4] is adopted in this paper. We ob-
served that every subject tends to reach and then statically
grasps the targeted gems before he/she moves to the virtual
basket in the game. Therefore, at each statically grasping
moment, where the bending sensor values are close to 90 de-
gree and the Euclidean distance of the 3-axis accelerometer
readings approximately equals to the gravity, we adopt Bas
des Bouvrie [11] proposed method to align IMU coordinates
with Kinect coordinates.
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Figure 3: Algorithm Flowchart

If the IMU orientation data is far from the hand skeleton ori-
entation of Kinect after alignment. XBee Received Signal
Strength Indication (RSSI) is measured and the transmis-
sion module is required to increase its transmission power to
decrease data loss which causes IMU orientation data to be
inconsistent with Kinect hands joint orientation. If both S-
martGlove and Kinect orientations match within our empir-
ically designed threshold, we treat the whole upper extrem-
ities tracking system as synchronized. If not, the current
Kinect frames, IMU, and bending sensor data are marked
as unsynchronized as offline records. If the whole system is
synchronized, we add finger coordinates onto Kinect hand
coordinates and the full skeleton coordinates are stored and
served for offline animation replay.

5. EVALUATION



A preliminary study recruited three subjects to go through
this game-guided rehabilitation. One subject is a male who
had no disability in his upper extremities. The other t-
wo subjects, one male and one female, have slight upper
extremity impairment, but still can move their hands and
reach the virtual gems in the game. This evaluation set-
up was designed to test if the finger angle information can
help in reaching and grasping rehabilitation. Due to the
limitation of Kinect view field, we required the test subject-
s to stand or sit 1 meter away from Kinect. Each subject
was asked to finish two rounds of the reaching and grasping
game. Each round consisted of eight gems. The gem loca-
tions and the grasping orders are adjustable and followed the
suggestion of physical therapists. While the subjects follow
the visual hints in the game, their hand parameters, skele-
ton, and time stamp information are recorded. After the
session was completed, the stored information was replayed
to visualize the rehabilitation process. Three observations
of the experiments were made. First of all, PDR algorithm
only worked for a short period of time. The tracking coordi-
nates started to deviate apparently after five seconds out of
camera range. Nevertheless, the Glove orientation data were
still in the consistent orientation even though the Smart-
Gloves is not in the Kinect view field. This is because the
IMU module purchased from Sparkfun can correct its sen-
sor reading deviation with attitude and heading reference
system (AHRS) coding constantly. Its accelerometer and
digital compass modules utilize gravity and earth’s magnet-
ic field as references to calculate pitch, roll, and yaw angles
to correct sensor values. Last, we found out that the cur-
rent glove design can capture finger movements, however, it
still has difficulties in measuring the space between a pair
of adjacent fingers. However, this feature is not required in
this gem reaching and grasping gaming application.

6. CONCLUSION AND FUTURE WORK
The proposed upper extremities rehabilitation assessment
system provides quantified and visualized information to e-
valuate upper extremities rehabilitation progress. Detailed
finger bending angle information is integrated seamlessly
with Kinect captured joint information. A large volume of
video streams are summarized by ∼ 30 joint coordinates.

The next step of this research will focus on large scale clin-
ical trials to obtain more general and pervasive feedback.
Furthermore, to reduce repeated work in device calibration,
on-line automatic calibration should be implemented in the
gaming design, such as a creating finger angle table dynam-
ically in the game. Integrating game scenes with calibration
steps should effectively reduce the demand of the initial cal-
ibration and postpone the calibration step until the game
starts.
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