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ABSTRACT 
The  monitoring  of  human respiratory  rate is  essential  in 
many  clinical applications including  the detection and  mon- 
itoring   of sleep  disorders, the monitoring  of newborns for 
Sudden  Infant Death Syndrome (SIDS),  and  identifying pa- 
tients at high  risk  up  to  24 hours  before  an  adverse  event 
like stroke  and cardiac  arrest [1].  Traditional noninvasive 
respiratory rate measurements in a hospital setting rely on 
clinical staff to visually  track  a patient’s chest movement for 
a period of time to derive the respiratory rate from the num- 
ber  of movements  observed. Failure to perform  continuous 
and quantified measurements of respiratory rate could result 
in an inability to rescue a patient exhibiting respiratory dis- 
tress.  Severe  after  effects hinder  recovery  and  result in loss 
of time,  cost, or even life.  This  paper  proposes  an e-textile 
pressure sensitive  bed sheet to non-invasively and accurately 
measure respiratory  rate  by  analyzing time-stamped  pres- 
sure  distribution sequences.   The  bed sheet provides  a 24/7 
quantified  on-bed  respiratory rate monitoring service.   It is 
made of e-textile and is similar to a regular  bed sheet in com- 
fort. As a result, it can seamlessly  fit in common  clinical  or 
home environments, reducing  the possible  interference with 
a patient’s regular  sleeping habits and  resulting in a type of 
inconspicuous monitoring. 
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1.   INTRODUCTION 
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Figure  1:  E-textile bedsheet (blue  color)  works  as a trans- 
ducer  which  converts pressure between  human body  to the 
bedsheet into voltage.    Via analyzing the voltage  matrix 
(pressure matrix),  human body  locations can  be identified. 
When  a subject sleeps on top of the bedsheet, its chest area 
should  be detected.  Based on analyzing the features (sum of 
pressure, standard deviation,  and  singular  values),  respira- 
tory signals can be extracted. An example  of the respiratory 
signal waveform  is shown in the graph  and the waveform  can 
be visualized  by a graphical user interface with  bpm  rate. 
	
  
	
  
Respiratory rate  is an important indicator of a person’s over- 
all health. It is important for many  clinical uses and is often 
monitored during  clinical evaluations as one of the four s- 
tandard vital  signs along  with  temperature,  heart rate  and 
blood  pressure.  Respiratory  rate  is not only  important for 
detecting sleep disorders such as sleep apnea  or SIDS, but it 
is also a significant predictor of deterioration and  the onset 
of a cardiac  arrest [2]. In fact, many studies have shown that 
an abnormally high respiratory rate  (greater than 24 breath- 
s/min) was observed  in patients who experienced cardiac 
arrests or have  been  admitted  to the  ICU  [3] [4].  Patients 
with even higher  respiratory rates often died in hospital; the 
higher  the  respiratory rate,   the higher  the  mortality  rate. 
This  is due  to the fact  that, in  unstable patients,  relative 
changes  in respiratory  rate are  much  greater  than changes 
in heart rate  or  blood  pressure, making  respiratory  rate a 
better and  more  accurate  means  of discriminating  between 
stable  patients and  patients at risk [5]. 
	
  
In a typical hospital setting, respiratory rates are usually 
measured by  manual observation  by  medical  personnel or 
by attaching sensors  to the patients’ bodies to infer respira- 
tory rate  if continuous monitoring is required. In the former 
case,  the measurement  is often  inaccurate  due  to the dif- 
ferent  ways  of measuring respiratory  rate.  Measuring the 
respiratory rate  of a patient using  a stethoscope, for exam- 



ple, yields different results  than manually tracking the move- 
ment of a patient’s chest.   Discrepancies were also reported 
between  counting breaths for 30 seconds and  then  multiply- 
ing  by  2 and  counting  breaths for 60 seconds  [6].  Also,  if 
the patients are  aware  that their  respiratory rate  is being 
monitored,  they  may  involuntarily control  their  breathing, 
resulting in  false  measurements.   In  the latter case,  extra 
sensor  devices  may  need  to be attached to the patients or 
placed on the bed, which might severely cause skin irritation 
and  dramatically alter  patients’ regular  sleeping  habits. 

	
  
In this paper, an e-textile bed sheet  with a dense  pressure- 
sensitive  sensor  array system  (Fig.  1) is introduced to mea- 
sure  human respiratory  rate  under  any  home/clinical envi- 
ronment. This  system continuously detects a patient’s pres- 
sure distribution on the bed.  Respiratory rate  and sleep po- 
sitions could be extracted via analyzing time-stamped pres- 
sure  map  sequences.   There  was  no special  glue  or attach- 
ment needed  to be worn,  allowing  the test subjects to sleep 
freely and  comfortably. The  e-textile bed sheet  was selected 
to be a natural human-sensor interface because  it is close to 
a regular  fabric-made bed sheet in feel and comfort.  Test 
subjects were  not even  aware  that they  were  under  moni- 
toring while they slept on top of this specially  designed  bed 
sheet.  A comfortable and seamless monitoring system  was 
desirable because  sleep  is a significant  time  for respiratory 
rate monitoring.   According  to the literature review,  most 
emergencies  associated with a high respiratory rate  (cardiac 
arrest and  heart attacks) are likely to occur  during  the last 
phase  of sleep [7]. 

	
  
This design follows the concept of an inconspicuous mon- 
itoring  system,  which is a kind of sensing system  that is 
embedded/integrated in existing  commonly  used daily life 
objects.  This  concept emphasizes the idea that no one’s life 
or  daily  routine  should  be  affected  in  any  way  as  a result 
of using  this  sensing  system.  The  worst  scenario  is where 
the new added  functions are just not used; for example,  bed 
sheet  made  of e-textile is still a fabric  bed sheet  if no power 
is provided.  Therefore, a  system  that strictly follows this 
concept  should  be  deployable to  real  life scenes  seamless- 
ly and  immediately.   To  conclude,  for a monitoring system 
to be  inconspicuous, two  requirements should  be  fulfilled: 
first of all, the improved sensing  system  should  not be com- 
pletely  new to the user.   Users  should  be familiar  with  the 
system  from  thorough  everyday usage.   Secondly,  improved 
functions should  be easily used and  deployed  to its targeted 
application without any extra  setup  or manual intervention. 

	
  
The  remainder of the paper  is organized as follows:  In sec- 
tion  2, previous  research that was done  to measure on-bed 
respiratory rate through various  types of sensors is surveyed 
and discussed.  Section  3 introduces both hardware and soft- 
ware architectures of the proposed  system  as well as the data 
acquisition flow. Section 4 describes  respiratory rate extrac- 
tion  concepts  and  procedures.  Experimental setup  and  re- 
sults are  presented in Section  5 and  discussed  in Section 6. 
We conclude  and  describe  our future work in Section 7. 
	
  
2.   RELATED WORK 
Because  measuring respiration rate  accurately is a challeng- 
ing task,  there are  not many  sensor  products commercially 
available to solve this  problem. Most sensors  are  for use in 

hospitals and are part of a larger  medical  system that aggre- 
gates data from other sensors.  One example  is the Acoustic 
Respiration Rate monitor  (RRa) designed  by  Masimo  [8], 
which uses an adhesive  sensor that is applied  to the patient’s 
neck while he or she is sleeping  in order  to measure his/her 
respiration  rate.  The  sensor  includes  an  integrated acous- 
tic transducer and  interprets the acoustic  signal  to identify 
inhalation and  exhalation signals  that represent a patient’s 
breathing.  Bates,  et  al.  placed  3-axis  MEMS  sensors  com- 
posed of accelerometers [9] and gyroscopes [10] on a patient’s 
torso  to continuously  infer  respiratory rate  from  the accel- 
eration  and  angle  acceleration  information  [11].  Although 
both authors consider  their systems  to be non-invasive, both 
systems  interfere  a patient’s  normal  sleep because  they  re- 
quire sensors to be attached to the body in order  to operate. 
	
  
Therefore, several  research interested in noninvasive moni- 
toring attempted to hide  sensors  from testing subjects.  An 
example  of such  a system is the  BAM Labs  Touch-free  Life 
Care  (TLC) System [12]. This  device consists  of a mat that 
is placed  under  the bed mattress to sense the  user’s breath- 
ing  rate.    The  device  does  not require   any  sensors  to be 
attached to the  user;  therefore, the sleeping  behavior of the 
test subjects should  not be  altered.   However,  the  sensed 
data might contain a great deal  of noise resulting from hu- 
man  body  movements.   The  noise  can  also  be  affected  by 
the shape/type of the  mattress.   Another similar  past  re- 
search  placed  a 40-kHz ultrasound transmitter-and-receiver 
pair  under  a bed  mattress  for respiration  rate monitoring. 
The  transmitted ultrasound signal  was reflected on the un- 
dersurface of the mattress and the amplitude of the received 
ultrasonic wave  was  modulated by  the particular shape  of 
the mattress [13]. These  reflected signals were used to iden- 
tify respiratory activity.  This  research should  be considered 
an improvement because  modeling the shape/type of the 
mattress made  respiratory signals  less relevant to the  envi- 
ronmental conditions.  However, human body movement was 
still  an  unavoidable source  of noise  which  severely  affected 
the respiratory rate accuracy. 
	
  
Other past  research focused  on measuring respiration rate 
by  placing  sensors  on  certain body  locations that  exhibit 
significant variations caused  by breathing movements.  One 
example  is to place  a pressure sensor  under  a user’s pillow. 
Xin et al.  placed  Water-filled vinyl tubes under  a user’s pil- 
low to retrieve pressure signals  from the user’s breaths [14]. 
Signals were collected  when the test subjects slept in supine 
and recumbent positions. The system  used this unique  pres- 
sure sensor [15,16] to accurately measure the respiration rate 
of the users  in these two well-controlled positions. The  pil- 
low must  be placed  under  the head  of the testing  subjects 
and  the  human sleep postures are limited.  To slightly  relax 
the restriction  of human movement,  Townsend, et al.   uti- 
lized an array  of pressure sensors  placed  above  the mattress 
to identify  respiratory  activity  [17].  The  device  was a bed 
occupancy sensor  with  24 pressure sensors.   It was  placed 
just  below the pillow region  to localize the  areas  of respira- 
tion.  The  authors had  users  sleep in prone,  supine  and  side 
positions and asked them to simulate central apnea. The re- 
sults showed  that there  was a correlation between  pressure 
variance and  occurrences of apnea. Using tiny  pressure sen- 
sor arrays slightly relaxes  the restriction of the human body 
movement, but a defined  sleep posture was still required. 



This paper  describes  a system and a series of methods to uti- 
lize a full-size, e-textile-based high density pressure-sensitive 
bed sheet to solve all the issues mentioned above.  8192 pres- 
sure sensors were used to capture full body pressure distribu- 
tion.  With  full body  pressure information,  human sleeping 
postures could  be categorized  and  the corresponding chest 
location could be identified.  Hence, there was no restriction 
on human sleeping  habits.  In addition, this  e-textile-based 
bed sheet could be seamlessly  integrated with  existing  mat- 
tresses  without  any  changes.   We  refer  to  this  type  of sen- 
sor system  design as an ”inconspicuous monitoring system”, 
which requires  the system/algorithm design  to be seamless- 
ly integrated with commonly  used objects  and to have no 
interference or limitations on regular  human behaviors. 
	
  
3.   SYSTEM ARCHITECTURE 
E-textile-based hardware construction, respiratory signal ex- 
traction procedures, software  operation, and the data acqui- 
sition process  are described below. 
	
  
3.1   Hardware Architecture 
E-textiles are fabrics  that have electronics and intercon- 
nections  woven  into  them.  They  are  perfectly  suitable for 
home  monitoring  applications  because   of  their   flexibility, 
light weight and cost-effectiveness.  E-textiles are just as 
comfortable and  soft  as  regular   fabrics  but have  one  im- 
portant difference  that makes  them  suitable for serving  as 
pressure sensors:   the resistance of e-textiles  changes  when 
they are squeezed  (by  forces from their  two sides). 
	
  

 
	
  

Figure  2: The  normal  respiratory rates table shows the res- 
piratory rates  among  different  age ranges.   Four  categories 
are  listed:   newborns, infants,  children, and  adults.  As evi- 
dent by the table, the human respiratory rate  becomes fixed 
after  the 7th year  of life.   This  is because  the lung  func- 
tion and  volume  grow completely after  that age.  Newborns 
have  the smallest lung  volume  and  therefore  also the  high- 
est respiratory rates  in order  to inhale  enough  oxygen for 
sustaining their metabolism. 
	
  

The  designed  prototype bed sheet  is a 2.5m x 1.25m system 
containing 64 X 128 pressure sensors.   64 columns  and  128 
rows  of conductive lines  generate  8192  joint  intersections. 
A piece of the  e-textile  fabric  [18, 19] is located  in between 
the row and  column  lines.  Therefore, each joint intersection 
forms a pressure sensor made of a three-layer sandwiched 
structure.  A sampling  unit  is connected  to all  conductive 
lines and performs  matrix scanning  to measure pressure map 
sequences.   Retrieved pressure map signals from the 8192 
sensors  are quantified to an 8-bit integer matrix whose val- 
ues range from 0 to 255, with 0 representing highest e-textile 
resistance/no pressure detected and  255 representing the 
lowest e-textile resistance/the maximum detectable pressure 
value  [20, 21].  The  sampling rate is adjustable up  to 10Hz, 

but 1.5Hz  was  used  for  the respiratory rate measuremen- 
t. This  allows the system  to achieve  a maximum detectable 
breathing rate of up to 45 breaths per minute (bpm) accord- 
ing to the Nyquist  rule.   This  upper  bound  on respiratory 
rate detection was more  than sufficient for our  application, 
since even newborns, with their small lung capacity and  re- 
sulting frequent breathing, have a respiratory rate that does 
not exceed 44 breaths per minute as shown in Fig.  2. 
	
  
3.2   Software Architecture 
An  Android application  was  created to  acquire  data from 
the bed sheet  to a tablet. Analysis  and  visualization can be 
done locally if no network is available. The  software  flow is 
depicted by a state diagram shown  in Fig 3.  There  are five 
sates related to the software  operations:  NO USER,  INI- 
TIALIZATION, MOTION, RESPIRATION, and  APNEA. 
	
  
	
  

 
	
  

Figure  3: Software  State Table 
	
  
	
  
	
  
3.2.1   NO USER: Initial System State 

The  NO USER  state is the initial  state of the system  which 
indicates that no  user  was  sensed  by  the  bed  sheet.    The 
system  remains  in the NO USER  state as long as the sum of 
pressure values  in the  current frame  is below an empirically 
determined threshold.  From P = F/ A, where F is the weight 
of the subject and  A is the surface  area  covered  by  his or 
her body,  we could observe  that pressure and subject weight 
are  directly  proportional. Therefore, the threshold  for the 
NO USER  state was derived  from the  pressure values  of the 
subject with the lightest weight (102 lbs) among our test 
subjects.  To  account  for an  even  larger  range  of subjects, 
the threshold could  be  determined to  be  one  third of the 
threshold of the  lightest subject. 
	
  
3.2.2 INITIALIZATION: Identifying Users’ Breaths 

Once  the sum  of the pressure values  goes over  the  pre-set 
pressure threshold described above,  the system  state imme- 
diately changes to the INITIALIZATION state. As the label 
of the  state indicates, this state is where  the system initial- 
izes itself  to get  ready  to  detect subjects’  breaths.   During 
initialization,  the system  waits  10 seconds  for  the incom- 
ing signal to settle because  the movements of getting on/off 
the bed  are  not relevant  to the breath identification  pro- 
cess.  After  the signal  settles, the  system  starts the breath 
detection  algorithm.  After  successfully  detecting  3 breath- 
s within  a time  interval of 20 seconds,  corresponding to a 
minimum breathing  rate of 9 bpm,  the system  enters  the 
RESPIRATION state.  This  requirement  ensures  that only 
human beings,  rather than heavy  objects,  could  trigger the 
transition to the RESPIRATION state. 
	
  
3.2.3   RESPIRATION: Detecting Users’ Breaths 



	
  

The  RESPIRATION state is entered  once  a  stable  repre- 
sentation of the subject’s breaths is identified.  This  state 
could  be  entered  either  from  the  INITIALIZATION state 
or from  the MOTION state.  An  example  of a respiratory 
signal  is shown  in  Fig  1.   A single  oscillation represents  a 
single  breath made  by  the  user.   This  is the case  because 
a breath involves  an inhalation period  followed by an exha- 
lation  period  which  corresponds to  increases  and  decreases 
in the pressure exerted on the bed sheet.  Accurate identifi- 
cation  of these oscillations was required to identify breaths. 
Once a single oscillation was determined to represent a single 
breath, the next step was to develop an algorithm to capture 
the occurrence of all  breathing  events  and  event  intervals. 
This  information can be used  to calculate an instantaneous 
respiration rate and  determine if the  user  was experiencing 
an apneic episode.  The current respiratory rate is calculated 
as a moving average  over the last  30 seconds (45 frames). A 
data structure was created to include  occurrences of breaths 
over  the last  45 frames  and  was used  directly  in the respi- 
ratory rate displayed to  the end  user.   It was important to 
calculate the respiratory rate over  a fixed  amount  of time 
so that any deviations in the respiratory rate could be accu- 
rately identified (e.g.  apnea). In fact, when  the  respiratory 
rate falls below the chosen threshold (9 bpm),  the system 
changes  its state from RESPIRATION to APNEA. 
	
  

3.2.4   APNEA: Respiratory Cessation 
There  are two ways to enter  the APNEA state: either the us- 
er’s current respiration rate falls below 9 bpm  or no breaths 
are  detected  over  a period  of 10 seconds.   This  period  was 
chosen because sleep apnea  was clinically defined as the com- 
plete  cessation  of airflow  for at least  10 seconds.   To  leave 
the APNEA state and  transition  back  to the RESPIRA- 
TION  state, the system has to detect at least  3 breaths over 
a period  of 20 seconds.  Again,  this is an approximation of a 
breathing rate of 9 bpm. 
	
  

3.2.5   MOTION: Observing Users’ Movements 
If a large  amplitude  of human movement  occurs  (due  to  a 
change  in sleep posture during  sleep),  the state changes  to 
MOTION. As in the INITIALIZATION state, the system 
waits until the pressure signal settles, but the waiting time is 
not pre-set  in the  MOTION state.  Instead, a sleep posture 
detection  algorithm, which  is part of the breath detection 
algorithm, is executed continuously to identify when  a user 
gets  in a stable sleep posture.  Once  a stable  sleep posture 
is recognized,  the state changes  back  to RESPIRATION. 
	
  
3.3   Data Acquisition 
As mentioned in the previous  section,  this system  is capable 
of recording pressure data acquired from  the  pressure sen- 
sitive bed  sheet  over time into a log file.  When  this record 
function  is  initiated,  a  comma-separated value  (CSV)  file 
with a time-stamped name  is generated. Any new frame (64 
X 128 integer  pressure matrix) read  from  the bed  sheet  is 
stored  to that log file.  Each  new  row  of a frame  starts at 
the beginning  of a new line,  and  the individual values  of a 
single  row  are  separated  by  commas.   An  additional blank 
line is printed between  each data frame.  The result  is a CSV 
file that could  be easily  imported into MATLAB or R as a 
three dimensional matrix (frame  number, row and  column) 
for post-analysis. 

 
	
  

Figure  4: Software  State Machine 
	
  
	
  
Because  the collected  data was utilized  to  identify  features 
that represented  breaths  of a typical  subject,  some type  of 
ground  truth was required to be synchronized with  the cur- 
rent data acquisition framework. An extra  button we added 
to the bed sheet  system  to provide  such information. Every 
time  the subject under  test breathed, he/she would  record 
the ground  truth information by simply pressing  the button. 
In general,  the  proposed bed sheet  system  did not need this 
button to measure respiratory rate.  Overall,  the system  logs 
both sensor  system  events (bed  sheet  and  ground  truth) by 
saving the frame numbers and time of the annotated breaths 
to an additional log. 
	
  
4.   BREATH DETECTION ALGORITHM 
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
Figure  5: Algorithm flowchart for detecting respiration from 
the e-textile bedsheet 
	
  
The breath detection algorithm is partitioned into five stages 
(Fig.  5).  The first stage is to collect and format sensor data. 
Both bed sheet pressure data and the ground  truth informa- 
tion are collected and aligned  with  the time-indexed frames. 
In order  to extract better respiratory signal, the user’s chest 
area needs to be localized.   Geometric feature-based sleep 
posture recognition is applied  to the raw pressure matrix 
sequences.   Sleep posture recognition is a machine  learning 
process described in the paper  proposed by Jason  et.  al [20]. 



The  main  idea is to utilize the geometric information of the 
human body as features, such as the distance between chest 
and buttocks as well as human body symmetry information. 
In  the respiration rate  detection  experiments,  we  directly 
exploit the sparse  classifier parameters to identify sleep pos- 
tures.  If those sparse  classifiers  do not agree  on a sequence 
of sleep postures derived  from incoming  pressure maps,  the 
subject under  test is identified to be in the MOTION state. 
In general,  this  sleep posture  detection algorithm  is robust 
to small  movements and  only  gets  confused  by  undefined 
sleep postures or body  movements. This  is because  most  of 
the body weight in a lying position  is distributed in the torso 
area;  thus, geometric features can easily capture static torso 
information even if the pressure among  extremities varies or 
the subject body  is relocated. 

	
  

 
	
  

Figure  6: E-textile materials inherently suffer from the time 
drifting phenomenon. It is because  e-textile material can be 
viewed as a textile-based leaky capacitor. Charges  provided 
by the data acquisition controller should be stored  and dissi- 
pated in the e-textile material. Therefore, even though there 
is no pressure value changes on the e-textile surface, the pres- 
sure readings collected  from the controller may  change  over 
time.  A simple  first-order derivative method for digital  sig- 
nal  processing  can  compensate the drifting and  project the 
voltage signals  into  a horizonal  plane. 
	
  

Once the sleep posture is identified, chest location  can be de- 
rived from the geometric features constraints.  This geometric- 
based  algorithm can continuously monitor and calculate the 
location  of the  chest  for each  incoming  frame.   Hence,  the 
pressure values  around the chest  area  can  be  extracted  to 
increase  the accuracy of breath detection  and  respiratory 
rate identification.  Before extracting respiration-related fea- 
tures from the  chest area,  the time-drifting phenomenon of 
e-textile  materials  needs  to be  compensated  [22].   Fig.    6 
shows the drifting of the pressure sensor  values  of the  chest 
area  and  the  first-order derivative results.  After  drift  com- 
pensation, four  respiration-related  features  are  analyzed in 
time series:  the maximum pressure sensor value,  the  sum of 
all pressure sensor values,  the standard deviation of all pres- 
sure  sensor  values  and  the  maximum singular  value  of the 
chest  area.   The  respiratory signal  can  be observed  direct- 
ly by searching for peek values of these time-series feature 
curves.  To automate this process,  a peek detection algorith- 
m written in Matlab [23] is adopted to extract peek locations 
under  some noise. 
	
  
5.   EXPERIMENTS EVALUATION 
Experiments  were  designed  to collect  data from  14 differ- 
ent subjects. Mostly  male  subjects, ranging  from  20 to  30 
years of age, were recruited to participate in the study (Fig. 
7).  The  participants  were asked  to  sleep on top  of the bed 

sheet  on  the ground, a  soft  mattress  and  a  hard  mattress 
in three different positions: prone  (face down),  supine  (face 
up)  and  on their side.  A total of at least 6 minutes of data 
was  collected  from  each  user  (2  minutes per  position)  un- 
der  3 different  mattress  conditions.  While  the participants 
were  sleeping,  the system  data acquisition framework was 
utilized  to record  their  pressure data over  time  and  create 
an annotated log of breathing events. 
	
  

 
	
  
Figure  7: The anthropometric information of the 14 subjects 
(12 males and  2 females)  participated in the data collection 
	
  
5.1 Respiratory-related Features Plotting with 

and without Chest Localization 
The  first  experiment attempted to test if chest  localization 
helped  in respiratory identification.  14 subjects were asked 
to statically lie on the bed in supine  position  in relax;  thus, 
tiny body movements might randomly happen during  the 
experiment.  Nevertheless, there were no posture changes  in- 
volved  in this  experiment.  Compared to  past  research, the 
proposed bed sheet sensor  system  could capture full human 
body information through quantifying human body pressure 
distribution.  Therefore, chest  location information could be 
extracted with  the geometric feature-based sleeping posture 
recognition algorithm. In order to prove whether chest local- 
ization helped  in getting clean respiratory signals,  two pres- 
sure value matrices were derived  from the raw pressure value 
matrix sequence.   One was a sub  matrix which  only related 
to each subject’s chest area  and  the other one was the origi- 
nal pressure value  matrix. Four  respiration-related features 
were  utilized  to visualize  waveforms  from  these  two  matri- 
ces.   Fig.   8 shows  the sampled  curves  of all  four  features 
and  Fig.   9 shows  a bar  diagram that summarizes the  res- 
piratory signal  identification results. The  breath signal  can 
be inferred  from the chest  area  even via just manual identi- 
fication  (without any  special  analysis).  This  is because  the 
movements around the chest  area  are  related to the breath 
signal.    Movements  from  other  body  parts simply  disturb 
the respiration-related features. 



 
	
  

Figure  8: This experiment emphasizes the importance of using an array-based bedsheet rather than sparse  sensors on the bed. 
The  respiratory  signals  become  more  prominent  in the chest  area  than the full body.   The  chest  area  can  be identified with 
high density array-based bedsheets. This  information can assist  respiratory signal  detection.  Four  features (max  of pressure, 
sum of pressure, standard deviation of the pressure and singular  value of the pressure) are calculated on both the full bed sheet 
area  and  the chest  area.  The  singular  value feature tends to provide  the most reliable  information for breath rate  calculation. 

	
  
	
  
5.2 Respiratory-related Features versus Sleep- 

ing Postures 
Human sleep  postures are  usually  not  fixed  during   sleep- 
ing.   This  experiment attempted to demonstrate that the 
proposed bed  sheet  system  could  identify a respiratory sig- 
nal  in  the  supine,  prone,  and  side  positions.   In  addition, 
the test  subject  could  sleep on any  corner  of the bed  sheet 
without any  restriction.  Human pressure distribution maps 
can  be aligned  by  the center  of weight  and  eigenvectors  of 
the sleep orientation.  Although the respiratory signals were 
always  captured, different postures indeed  generated  differ- 
ent pressure distributions on the bed sheet when the subject 
breathed.  Respiration-related features could  still  be visual- 
ly compared with  the  ground  truth in the  prone  and  supine 
postures.  However,  since,  in the side postures, the  contact 
area  between the  human body  and  the bed  sheet  is the ar- 
m area  or the side of the body  rather than the chest,  side 
postures tended  to  obscure  the  breath signal.    Therefore, 
even  if breathing made  the chest  area  expand and  shrink, 
the pressure on the  bed  sheet  only changed  slightly.  Fig.  9 
summarizes the experiments and  provides  accuracy analysis 
among  these sleep postures. 

	
  
5.3 E-textile Sensor Drifting and the Corre- 

sponding Compensation 
In the algorithm section,  we described the drifting phenomenon 
of the respiration-related  features.   This  phenomenon was 
not caused by a measurement error,  but rather by the nature 
of the e-textile-based sensor.  E-textiles tend to continuously 
decrease  their resistance if there is a load on top.  Therefore, 
to compensate  for resistance drifting, first  order  derivation 
was exploited to remove  the slope of the  respiration-related 
feature curves.  Fig.  10 shows accuracy improvements after 
first order  derivation compensation. 

	
  
5.4 Breath Event Identification with Peak De- 

tection Algorithm 
Although the respiration-related  features  seemed  to  be vi- 
sually  well-aligned  with  the  ground  truth,  automated res- 

 
	
  
Figure  9:  In order  to provide  continuous respiratory rate 
monitoring,   the  effect   of  different   sleep   postures  (side, 
supine,   and  prone)   on  the proposed system   is  analyzed. 
Supine and prone postures, on average,  are the most ap- 
propriate  postures for measuring respiratory rate, because 
the chest  location  of these two postures is easier to identify. 
We can only estimate the  chest  location  for the  side posture 
through the location of the arm,  but it is usually  harder to 
be seen in the  collected  pressure images. 
	
  
	
  
piratory rate monitoring was  still  required for  continuous 
on-bed monitoring. A peak detection algorithm written in 
MATLAB was  used  to  identify  the  peak  locations in  the 
feature  curves  and  then infer  the  respiratory  activity.  The 
results  are shown in Fig.  9. 
	
  

	
  
6.   DISCUSSION AND FUTURE WORK 
The  series of experiments mentioned above  provides  a clear 
demonstration of the  functionality  of the  current  e-textile 
bed sheet design.  Chest  localization helps to extract a clean- 
er respiratory signal and the full-size bed sheet captures full 
human pressure distribution  information; therefore,  exper- 



 
	
  

Figure  10: This experiment demonstrates that drifting com- 
pensation can effectively facilitate respiratory rate  monitor- 
ing.  Blue arrows  mark  the missed respiratory signals.  After 
compensation, the number of missed  detection drops  signif- 
icantly.  We observe  that the  waveform  quality from the sin- 
gle value feature is remarkable. Even without compensation, 
there is no missed  detection for the single value  feature. 

	
  
	
  

 
	
  

Figure  11: This  figure shows that the singular  value  feature 
is best  feature in the experiments when comparing the iden- 
tified respiratory signals with the manually collected breath- 
ing ground  truth. On the other hand,  max pressure value is 
the most unreliable feature in the experiments. 

	
  
	
  

iments or clinical trials can be performed with very little 
manual intervention.  In addition, human sleep posture can 
be directly  inferred  from  the pressure distribution.   Hence, 
when  a test subject changes  his/her sleep posture, the cor- 
responding frame number should  be marked. Breath signals 
extracted at that stage  should  be marked as invalid  because 
changing  postures generates a huge amount of human pres- 
sure  variation  and  this  variation is not relevant  to the res- 
piratory rate.    From  the experiments,  we also  realize  that 
side postures tend  to  cause  low-quality respiratory signals. 
Failure to  identify  sleep  postures and  chest  locations may 
misinterpret the respiratory signals collected from continu- 
ously automatic monitoring. After  all, no one can keep the 
same  sleep  posture or  position   throughout  a  whole  night. 
The  proposed design  effectively  solves these  issues and  pro- 
vides  desirable measuring results.  Nevertheless, in the fol- 
lowing subsections, we want to further investigate how much 
accuracy can be obtained while the subject changes  his/her 
sleep posture.  Also, we want  to  investigate  whether or not 
the type of mattress underneath causes different respiratory 
rate results. 

6.1   Effect of Human Movement 
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
Figure  12: The  respiratory rate monitoring system  tends to 
fail when  the subject under  test is moving.   The  raw  pres- 
sure feature data and  the  corresponding ground  truth infor- 
mation are  provided.  Fortunately,  apnea  and  other  highly 
dangerous respiratory diseases  commonly  happen when  the 
patient is not moving.   Therefore, we can  safely  leave  this 
problem  for future work and  still use this system  to provide 
a respiratory rate monitoring service. 
	
  
In this  experiments, test  subjects are asked  to begin with  a 
supine sleep posture, then slightly move their body, and then 
change their  position  to side or prone.  In order to extract the 
best possible  respiratory information, standard deviation of 
the chest  area  is exploited as a respiration-related  feature. 
Fig.    12  summarizes the experimental results.  From   the 
results, we can realize that measuring respiratory rate when 
the subject is changing  his/her sleep position is not practical. 
Nevertheless, measuring respiratory rate  of moving  subject 
may not be necessary. The proposed design which can track 
sleep posture and position  is sufficient for continuous on-bed 
respiratory rate monitoring. 
	
  
6.2   Effect of Measurement Environment 
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
Figure  13: The stiffness of the mattress under  the bed sheet 
may  affect  respiratory rate monitoring as  well.   This  bed 
sheet  works well on the ground  and  hard  mattress.  In order 
to deploy this system  in clinics or hospitals, better hardware 
design  or signal  extraction  techniques  need  to be explored 
in order  to generate good results  from soft mattresses. 
	
  
In order  to deploy  the  bed  sheet  to the  home/clinical envi- 
ronment, we should  test if different  mattresses  change  the 



respiratory monitoring results. The  bed sheet  was deployed 
to different environments such as ground, hard  mattress (de- 
fault  in  all  the experiments),  and  soft  mattress.   Fig.   13 
shows  that harder surfaces  seem  to be better because  soft 
surface  can  absorb   some  of the pressure from  the human 
breathing. 

	
  
6.3 Procedures to Handle Respiratory Detec- 

tion Failure 
From  the discussion  above,  the  proposed system  can  still 
make  inaccurate  measurements  if the subject  under  test  is 
moving  or is in a side position. Also the  mattress type does 
indeed cause some differences in measuring. Therefore, the 
respiratory  prediction for a moving  or side-positioned sub- 
ject should  be marked and manually examined. In addition, 
prior  knowledge  about  normal  breathing,  from  3 times  in 
20 seconds to 24 times in 60 seconds, should be taken into 
consideration. This prior knowledge highly depends on the 
subject’s  age [24]. 

	
  
7. CONCLUSION AND FUTURE WORK This  
paper  has  presented  a new  inconspicuous monitoring design 
for accurately measuring on-bed respiratory rate.  High 
density pressure sensor  maps  are  built from e-textile mate- 
rial.    An  e-textile-based  bed  sheet  is  similar  to  a  regular 
cotton-made bed  sheet.  Therefore, it can  be seamlessly  in- 
tegrated  in home/clinical environments  and  reduces  possi- 
ble interferences to patients’ regular  sleeping  habits.  In ad- 
dition, this  bed  sheet  sensor  can  capture full human body 
pressure distribution, locate a subject’s chest,  and map pres- 
sure variations to respiratory rate  signals. 

	
  
8.   ACKNOWLEDGEMENT 
This work is partially supported by NSF grant IIS- 1329119. 
	
  
9.   REFERENCES 

[1] M. Cretikos and  J. Chen  and  K. Hillman  and  R. 
Bellomo and  S. Finfer  and  A. Flabouris, “The 
objective medical  emergency  team  activation criteria: 
a case-control study,” Resuscitation, vol. 73, no. 1, 
pp.  62–72, 2007. 

[2] TJ.  Hodgetts and  G. Kenward and  IG. Vlachonikolis 
and  S. Payne and  N. Castle, “The  identification of risk 
factors  for cardiac  arrest and  formulation of activation 
criteria to alert  a medical  emergency  team,” 
Resuscitation, vol. 54, no. 2, pp.  125–131, 2002. 

[3] JF. Fieselmann and  MS. Hendryx and  CM. Helms and 
DS. Wakefield,  “Respiratory rate predicts 
cardiopulmonary arrest for internal medicine  patients,” 
J Gen  Intern Med, vol. 8, no. 7, pp.  354–360, 1993. 

[4] DR.  Goldhill  and  AF.  McNarry and  G. Mandersloot 
and  A. McGinley,  “A physiologically-based early 
warning  score for ward  patients:  the association 
between  score and  outcome,” Anaesthesia, vol. 60, 
no. 6, pp.  547–553, 2005. 

[5] CP.  Subbe  and  RG  Davies  and  E Williams  and  P. 
Rutherford and  L. Gemmell, “Effect  of introducing the 
modified  early  warning  score on clinical  outcomes, 
cardio-pulmonary arrests and  intensive care utilisation 
in acute medical  admissions,” Anaesthesia, vol. 58, 
no. 8, pp.  797–802, 2003. 

[6] S. Fleming, “Measurement and  fusion of non-invasive 
vital signs for routine triage  of acute  paediatric 
illness,” Master’s  thesis, University of Oxford,  2010. 

[7] L. Blue, “When Are You Most  Likely to Have a Heart 
Attack.” http://www.time.com/time/health/article/0, 
8599,1825044,00.html. 

[8] “Acoustic Respiration Rate(RRa)  Masimo Corporation.” 
http://www.masimo.com/rra/index.htm. 

[9]  M.-C.  Huang, E. Chen, W.  Xu,  M. Sarrafzadeh, B. Lange, 
and  C.-Y.  Chang, “Gaming for Upper Extremities 
Rehabilitation,” in ACM/EMS  Conference on  Wireless 
Health, Oct. 

[10]  M.-C.  Huang, W.  Xu,  Y. Su,  C.-Y.  Chang, B. Lange,  and 
M. Sarrafzadeh, “Smart Glove  for Upper Extremities 
Rehabilitative Gaming Assessment,” in International 
Conference on  Pervasive Technologies Related to Assistive 
Environments, Jun. 2012. 

[11]  A. Bates, “Respiratory Rate and  Flow  Waveform 
Estimation from  Tri-axial Accelerometer Data,” in Body 
Sensor Networks (BSN),  2010  International conference on, 
pp.  144–150,  IEEE press,  2010. 

[12] “BAM Labs  Touch-free Life Care  (TLC) System. BAM 
Labs,  Inc..” http://www.bamlabs.com/product/. 

[13]  Y. Yamana and  S. Tsukamoto and  K. Mukai and  H. Maki 
and  H. Ogawa and  Y. Yonezawa, “A sensor  for monitoring 
pulse  rate, respiration rhythm, and  body  movement in 
bed,” in Conf  Proc  IEEE Eng  Med  Biol  Soc, 
pp.  5323–5326,  IEEE Press, 2011. 

[14]  X. Zhu  and  W.  Chen  and  T.  Nemoto and  Y. Kanemitsu 
and  K. Kitamura and  K. Yamakoshi and  D. Wei, 
“Real-time monitoring of respiration rhythm and  pulse  rate 
during sleep,” IEEE Trans Biomed Eng,  vol. 53, no.  1, 
pp.  2553–2563,  2006. 

[15]  W.  Xu,  M.-C.  Huang, N. Amini, J. Liu,  L. He, and 
M. Sarrafzadeh, “Smart Insole:  A Wearable System for Gait 
Analysis,” in International Conference on  Pervasive 
Technologies Related to Assistive Environments, Jun. 2012. 

[16]  M.-C.  Huang, W.  Xu,  J. Liu,  L. He, Y. Su,  and 
M. Sarrafzadeh, “Inconspicuous Personal Computer 
Protection with  Touch-Mouse,” in International 
Conference on  Human Computer Interaction, 2013. 

[17]  DI.  Townsend and  M. Holtzman and  R. Goubran and  M. 
Frize  and  F.  Knoefel, “Simulated central apnea detection 
using  the pressure variance,” in Conf  Proc  IEEE Eng  Med 
Biol  Soc,  pp.  3917–3920,  IEEE press,  2009. 

[18]  W.  Xu and  Z. Li and  MC.  Huang and  N. Amini  and  M. 
Sarrafzadeh, “ecushion: an  etextil device  for sitting posture 
monitoring,” in Body  Sensor Networks (BSN),  2011 
International conference on,  pp.  194–199,  IEEE press, 
2011. 

[19]  Wenyao Xu and  Ming-Chun Huang and  Navid Amini  and 
Lei He and  Majid Sarrafzadeh, “Smart cushion: Design  and 
calibration of textile sensors  for sitting posture analysis,” 
IEEE Sensors Journal, 2013. 

[20]  J. Liu and  W.  Xu and  MC.  Huang and  N. Alshurafa and 
M. Sarrafzadeh, “A  Dense  Pressure Sensitive Bedsheet 
Design  for Unobtrusive Sleep  Posture Monitoring,” in 
Pervasive Computing and  Communications (PerCom), 
2012  IEEE International Conference on,  IEEE press,  2013. 

[21]  J. Liu,  M.-C.  Huang, W.  Xu,  N. Alshursfa, and 
M. Sarrafzadeh, “On-bed Monitoring for Range of Motion 
Exercises with  a Pressure Sensitive Bedsheet,” in IEEE 
Conference on  Body Sensor Network, 2013. 

[22]  J. Meyer,  “Textile Pressure Sensor:   Design,  Error Modeling 
and  Evaluation,” Master’s thesis, ETH Zurich, 2008. 

[23] “peakdet: Peak detection using  MATLAB.” 
http://www.billauer.co.il/peakdet.html. 

[24] “Delmar’s Comprehensive Medical Assisting: 
Administrative and  Clinical Competencies.” 
http://books.google.com/books?id=AUhJKmKJ_eEC&pg= 
PA573#v=onepage&q&f=false. 


