
PIFA: An Intelligent Phase Identification and Frequency Adjustment
Framework for Time-Sensitive Mobile Computing

Xia Zhang1, Xusheng Xiao2, Liang He3 Yun Ma4, Yangyang Huang4, Xuanzhe Liu4, Wenyao Xu5, Cong Liu1
1University of Texas-Dallas, 2Case Western Reserve University, 3University of Colorado-Denver, 4Peking University, 5University at Buffalo

Abstract—Due to the limited battery capacity of mobile de-
vices, various CPU power governors and dynamic frequency
adjustment schemes have been proposed to reduce CPU energy
consumption. However, most such schemes are app-oblivious,
ignoring an important fact that real-world applications often
exhibit multiple execution phases that perform different function-
ality and may request different amounts of hardware resources.
Having a unified app-level frequency setting for different phases
of an application may not be energy efficient enough and may
even violate the desirable latency performance required by
certain phases. Motivated by this observation, in this paper, we
present PIFA, which is an intelligent Phase Identification and
Frequency Adjustment framework for energy-efficient and time-
sensitive mobile computing. PIFA addresses two major challenges
of fully automatically identifying different execution phases of
an application and efficiently integrating the phase identifica-
tion results for runtime frequency adjustment. We have fully
implemented PIFA on the Android platform. An extensive set of
experiments using real-world Android applications from multiple
app categories demonstrate that PIFA achieves closely better
performance than the desired latency requirement specified for
each phase, while dramatically reducing energy consumption
(e.g., >30% energy reduction for most apps) and incurring rather
small runtime overhead (e.g., <5% overhead for most apps).

I. INTRODUCTION

Due to the limited battery capacity of time-sensitive mobile

devices, energy optimization has been an important research

thesis for mobile computing. As reported by recent studies of

user activity, it is most effective to develop power optimiza-

tion techniques focusing on the CPU and screen of mobile

devices [35]. Dynamic voltage frequency scaling (DVFS) is a

key technique that reduces CPU energy consumption through

dynamically adjusting the supply voltage and operating fre-

quency. We find out that the energy efficiency of most existing

DVFS schemes and CPU power governors developed for

mobile devices can be further improved, as such schemes

are app-oblivious and mainly focus on exploring the tradeoff

between raw performance and energy efficiency while ignoring

the following important facts.

First, the CPU processing capacity available on most today’s

mobile devices (e.g., smartphones) far exceeds the maximum

hardware requirements of many applications, which may cause

the latency performance of such applications not to im-

prove after setting the CPU’s frequency above an application-

dependent threshold (see the motivational measurements-based

case studies in Sec. II). Moreover, real-world applications

Work supported by NSF grant CNS CAREER 1750263.

often exhibit multiple execution phases (e.g., a game appli-

cation often has two phases: a menu operation phase and an

actual gaming phase). Applications in different phases perform

different functionality, request different amount of hardware

resources, and even have different latency performance metrics

(e.g., response times for menu operations and frame-per-

second (FPS) for actual gaming). Thus, defining a unified

and app-oblivious DVFS setting for multi-phase applications

is clearly not energy efficient enough and may even violate

the desired latency performance required by certain phases.

Furthermore, for most user-interactive applications such as

mobile games or video-based applications, the upper limit on

an application’s latency performance is often determined by

human perceptual abilities. Achieving better performance than

this upper limit by supplying the maximum CPU frequency is

unnecessary but results in greater energy consumption.

Motivated by these observations, this paper seeks to de-

velop an application-stateful power management framework

for mobile computing, with the goal of identifying the ideal

core frequency setting for running an application that yields

the most desirable performance while significantly reduc-

ing energy consumption. We present PIFA—an intelligent

Phase Identification and Frequency Adjustment framework

for time-sensitive mobile computing. There are two major

challenges addressed by PIFA: (a) how do we automatically
and accurately identify the execution phases, and (b) how
can we efficiently integrate the phase identification results
for frequency adjustment. To address challenge (a), recent

studies find that applications usually request similar amount

of hardware resources within the same phase, and different

amounts of hardware resources in different phases [23], which

can be precisely captured by clustering analysis [17], [20].

However, such knowledge discovery process requires a certain

amount of data and is too expensive to include in runtime

decision making (i.e., challenge (b)).

To address these challenges, PIFA employs a synergy ap-

proach that combines offline analysis and online analysis:

(1) offline analysis is used to perform expensive analysis

(clustering analysis for phase identification) and the results are

summarized as a classification model (a phase classifier) that

can be repetitively and efficiently applied in future analysis;

(2) online analysis is used to perform light-weight decision

making according to the monitored resource usage information

on CPUs, GPUs and memories and adjust CPU frequency

accordingly; (3) the intelligence of the online analysis is

54

2019 IEEE Real-Time and Embedded Technology and Applications Symposium (RTAS)

978-1-7281-0678-6/19/$31.00 ©2019 IEEE
DOI 10.1109/RTAS.2019.00013

enabled by leveraging the classification model obtained from

the offline analysis. Such synergy of offline and online analysis

not only achieves high accuracy in identifying phases, but also

greatly reduces the runtime overhead on decision makings.

With the phase identification, PIFA can then adjust the

voltage and frequency of the core on which an application

is scheduled to run according to the “sweet frequency” setting

that can achieve the desired performance of the corresponding

phase. PIFA defines the sweet frequency for each phase

of an application by exploiting two facts discussed above,

which uses the maximum of the following two values: (i)
the frequency threshold, where further increasing frequency

above this threshold does not further increase performance

(or increases performance in a negligible manner), and (ii)
the frequency value that achieves the upper limit of the

performance due to human perception limits (if any).

We have implemented PIFA on the Android platform. PIFA

is fully automated and thus it is practical and scalable to a

large number of real-world Android apps.1 Specifically, in

offline analysis, we leverage DroidWalker [25] to automati-

cally generate the events for identifying different phases of an

app. DroidWalker is a systematic app-exploration tool that is

shown to achieve comparable or even better performance in

exposing various behaviors in Android apps than the state-of-

the-art app-exploration tools [13]. The clustering analysis is

then applied on the collected resource utilization data, where

data points within a cluster form a phase, and a subsequent

analysis based on the identified phases is used to train a phase

classifier.

The output of offline analysis for an app is a small model file

(usually 30-50 KB) that can be embedded in the app. The on-

line analysis leverages this model file to perform application-

stateful power management, incurring rather small runtime

overhead. Due to this automatic process of phase identification

and the light-weight runtime analysis, our implementation can

easily scale w.r.t. the number of apps. Since DroidWalker

can replay events on apps across different device models,

the offline analysis can be applied to train phase classifiers

for a series of different device models. Each phase classifier

will be leveraged in the online analysis on the corresponding

model. As DroidWalker can replay the generated test cases

in other devices, this process can be fully automated in other

devices before app installation, i.e., enabling auto tuning. This

is also the fundamental reason why our design of PIFA features

portability and auto-adaptation for a wider range of mobile

devices. To the best of our knowledge, no prior works on either

DVFS or clustering provides such a synergistic, automated,

and scalable solution.

We have conducted an extensive set of experiments using

18 real-world Android apps, where 13 apps are downloaded

from official Google Play (e.g., Angry Birds and WeChat)

and 5 apps are obtained from open-source app market (e.g.,

F-Droid [2]), which belong to three common categories: UI

apps that often desire real-time performance, game apps and

1Apps are generally used to denote mobile applications.

video apps that desire certain FPS performance. The evalu-

ation results show that PIFA is rather effective in reducing

energy consumption (e.g., >30% energy reduction for most

apps) while maintaining desired latency performance level

in each phase of an application execution, particularly for

more resource-demanding apps (e.g., game and video apps).

The overhead incurred by PIFA is reasonably small under all

scenarios (e.g., <5% overhead for most apps), which does not

offset the energy saved by PIFA. Moreover, the phase manage-

ment component is proved to be the key for PIFA to reduce

energy consumption while achieving desirable performance,

as defining a unified sweet frequency for all phases of an

application either yields more energy consumption or violates

the desirable latency performance required by certain phases.

II. MOTIVATION AND BACKGROUND

To motivate our design philosophy behind PIFA, we perform

a set of measurement-based case studies using three popu-

lar Android apps that represent three common categories of

mobile apps: the “Candy Crush” app representing game apps

where the performance metric is FPS, the “VideoJohn” app

representing video apps where the performance metric is also

FPS, and the “Scale View” app representing UI apps where

the performance metric is timing (i.e., response time). Through

these case studies, we seek to answer the following questions:

(i) is there an application-dependent frequency threshold?

(ii) whether setting the maximum CPU frequency will yield

high power consumption but performance is unnecessarily

higher than the desired performance either specified by system

designers or due to human perceptual ability limit? (iii) are

there multiple phases existing in an app that may require

dramatically different resources and have different criteria on

defining desired performance?

We perform the case studies on an Android smartphone

Nexus 5 equipped with a Qualcomm 4-core processor that

supports 14 different frequencies ranging from 0.3GHz to

2.26GHz. For each app, we measure the performance of

running each app for 3 minutes by using Monkey [5] to

automatically generate the events for exposing various be-

haviors of the app. Experiments are performed under various

CPU frequency settings, from the lowest frequency value

300 MHz to the maximum value 2.26GHz. We also use a

popular profiling tool Trepn [6] to monitor runtime resource

utilization information on CPU, GPU, and memory under a

fixed frequency setting of 2.26GHz.

The video app: “VideoJohn” is a video app that allows users

to play and edit videos. As seen in Fig. 1a, the resource

utilization on all three types of resources can be considered

to experience two observably different stages (relatively low

GPU resource utilization within [0, 130s] and high GPU

resource utilization during [130s, 220s]). According to the

incurred operations, these two stages reflect two execution

phases available in this app: a video editing phase yielding

low resource utilization and a video play phase yielding high

resource utilization. The performance metrics for these two

phases are also different: the editing phase (phase 0) is a UI

55

CPU Util GPU Util Mem Util

0%

5%

10%

15%

20%

25%

 0 50 100 150 200

U
til

iz
at

io
n

Time (seconds)
(a) Resource utilization

VideoJohn Phase 0
VideoJohn Phase 1

Phase 0 Desired Performance
Phase 1 Desired Performance

 0

 50

 100

 150

 200

 250

 0.5 1 1.5 2
 0
 5
 10
 15
 20
 25
 30

R
es

po
ns

e
T

im
e

(m
s)

F
P

S

Frequency (GHz)

Min-Freq.-Power:1.54W

Sweet-Freq.-Power:1.61W Max-Freq.-Power:1.92W

Min(Sweet)-Freq.-Power:1.56W

Sweet-Freq.-Power:1.64W

Max-Freq.-Power:2.56W

(b) Performance and Power Consumption

Fig. 1: Measurements of VideoJohn

phase with the response time metric and the video play phase

(phase 1) is a video phase with the FPS metric.

Fig. 1b shows the measured performance and the desired

performance for these two phases under various frequency

settings. The desired performance for the editing (video play)

phase is set to be 100 ms (24 FPS) due to human perceptual

ability limit [27] (the app specification given by the developer).

For the video play phase, most of the frequency settings

(i.e., those above 0.65 GHz) can yield closely the same

performance as the desired performance of 24 FPS. This

is because most today’s Android smartphones have specific

hardware for frame-decoding. Thus, the video frames are not

processed by CPUs and CPUs are only responsible for few

simple management work. As the frequency threshold is also

0.65 GHz for the video play phase, the sweet frequency is set

to be 0.65 GHz as it yields the lowest power consumption.

For the video editing phase, we can see that a frequency

of 0.65 GHz can ensure a performance of 100 ms while a

frequency threshold is identified to be at 0.96 GHz. Thus,

setting the sweet frequency to be at 0.96 GHz can ensure

the desired performance while achieving a much lower power

consumption compared to the maximum frequency setting.

Summary: From the case studies, we obtain the answers

for the earlier questions that motivate the design of PIFA.

First, (potentially) for many real-world applications, there is an

application-specific frequency threshold (on a specific mobile

device). Second, setting the maximum CPU frequency often

yields significant power consumption and performance that

is unnecessarily high. Third, many real-world applications

have multiple execution phases due to various embedded

functionality, which often incur observably different resource

utilization profiles on CPUs, GPUs, and memory. This sug-

gests that it may be possible to detect execution phases based

on the runtime resource utilization information. Fourth, it

may be judicious to set the sweet frequency for executing a

specific phase to be the maximum value between the frequency

threshold and the minimum frequency that achieves the the

desired performance for that phase. Intuitively, doing so can

ensure desired performance to be reached even if interference

on an application’s execution exists such as environmental

noise.

III. SYSTEM DESIGN OF PIFA

Figure 2 shows the overview of PIFA. PIFA consists of

both offline and online analyses. In the offline analysis, PIFA

Resource Utilization
Profiling

Cluster Analysis
Sweet Frequency
Sweet Performance
Classifier

Scheduler

Phase
Management

Feedback
Control

Android Application

Offline Analyses Online Analyses

Android System Profiling Management
Android Application Android Application

PIFA

Android Application Android Application

Fig. 2: Overview of PIFA

profiles an app to identify its number of phases and the

corresponding sweet frequency for each phase. PIFA also

trains a phase classifier based on the profiling data, which is

used later in the online analysis. In the online analysis, PIFA

schedules an app to execute in an idle CPU core whenever

possible, and intelligently adjusts the CPU frequency to the

sweet frequency based on which phase the app is in 2. The

online analysis uses the classifier trained in the offline analysis

to identify phases during runtime. We next provide the details

of the offline and online analyses of PIFA.

A. Offline Multi-Phase Identification

Offline analysis aims to capture the major energy con-

sumption patterns (phases) exhibited by an app and train a

phase classifier that can dynamically identify phases for online

analysis. Section II shows that resource utilization is strongly

correlated with the phases in apps. More specifically, given

two data points of resource utilization, if they are in different

phases, their values should be quite different, while their

values should be similar otherwise. Such data characteristics

can be precisely captured by using typical cluster analysis

methods such as K-Means [17], [20]. Thus, the offline analysis

profiles the app to collect its resource utilization, and leverages

the cluster analysis to identify the major phases. We describe

these two steps in details as follows.

Resource Utilization Profiling: Given an app, the offline

analysis runs the app and performs a series of automatic

interactions with the app to obtain its resource utilization at

different phases. In general, if an app is released with descrip-

tions of its major functionality and corresponding functional

2For most apps, the major functionality that is most valuable and perceptible
to users usually runs in a single thread (e.g., such as videos and games in the
UI thread), and thus PIFA focuses on optimizing the frequency value of the
core that runs the major functionality of an app.

56

tests, we can run these tests to exercise the major functionality

and profile its phases. However, apps released in App Stores

such as Google Play [3] may not come with functional tests,

and it is difficult to determine all the major functionality

from the app descriptions since these descriptions focus on

describing only the features that are attractive to users.
To explore apps’ functionality, we leverage Droid-

Walker [25], an app-exploration tool to automatically generate

the events for exposing behaviors of the app. DroidWalker

can systematically explore the app in a depth-first search

strategy by triggering UI events including clicking, keyboard

stroking, and scrolling. Compared with other state-of-the-art

Android testing tools, DroidWalker can achieve comparable or

even better code and activity coverages for Android apps. In

addition, for each explored location, DroidWalker generates a

test case that can be executed to reproduce the corresponding

app behaviors across different device models.
The reproducibility feature of DroidWalker makes it very

useful for identifying the sweet frequency for each phase,

which we will discuss later. We run every app using Droid-

Walker to systematically explore the apps’ behaviors. The

exploration continues until the activity coverage reported by

DroidWalker does not increase in 5 minutes (which is long

enough and expected to be reasonable in practice). Every app

is launched and explored for three times. In this way, we can

collect enough data points to obtain more accurate clustering

results.
At runtime, three types of resource-utilization data are

collected: CPU, GPU and memory. Based on the findings in

Section II, it is quite effective by applying clustering analysis

to identify phases. Note that for many cases it may not be

accurate enough to simply distinguish phases by using only

CPU utilization. It is common that two phases of an app

may have similar CPU utilizations but very different GPU and

memory utilizations. We thus use all three measures for phase

identification, which yields higher accuracy.

Cluster Analysis: To identify phases of the app, the offline

analysis applies the clustering analysis on the collected re-

source utilization data. With such clustering process, data

points with similar values are clustered together to form a

phase.
In general, an app has a few major phases and may contain

various minor phases. As most of the minor phases are

transient ones that exist for a short time, such phases are not

interesting for PIFA to use for saving energy. For the reason

of practicality, it is not desirable for the minor phases to add

too much complexity on the phase identification. Therefore,

we use K-means clustering algorithm, a type of unsupervised

learning algorithms whose k values can be configured to a

small number. This algorithm can cluster the resource utiliza-

tion data into k (k is a small number) clusters {c1, c2, ..., ck}
for identifying major phases. It has been shown empirically

in both prior work [24] and our extensive empirical study

presented in Sec. V that the majority of apps have a few

major clusters, while the minor phases can be ignored. Thus,

K-means with K being a small number is suitable for our

setting. Note that other unsupervised learning algorithms can

also be used instead of K-means.

To obtain the optimal value of k, we apply K-means with

k = 1, 2, . . . , 6. We choose the k ranging from 1 to 6 because

based on our empirical observations, where the number of

phases is not larger than 6 for most Android apps. Such an

observation is also consistent with the previous report [23].

We compute the average error rate for every single value of

k and choose the value that achieves the lowest average error

rate. However, if two adjacent values of k are quite similar,

we choose the smaller value since phases with similar values

often have very similar sweet frequencies. Thus, for each k,

we also compute the delta for the error rate of k and k + 1.

If the delta is smaller than 0.05, then k should be chosen.

Since in this case, increasing the k value does not reduce the

error rate significantly but could result in more clusters, which

makes the analysis unnecessarily complicated.

The complexity of the clustering method is O(n ∗ k ∗ i),
where n is the number of input resource utilization data, k
is the number of clusters and i is the number of iterations.

Obviously, such complexity is prohibitively high for runtime

decision making, but is reasonable when running offline (e.g.,

< 5 seconds for a desktop to find clusters in our experiments).

The clustering analysis identifies k major phases of the

app. Based on the result, we label the data points with k
phases, and use the labelled data to train the classifier. In the

online analysis, we choose the distance-based classification as

it works better with the major phases identified using K-means.

For each phase, we choose the corresponding app behaviors

and use DroidWalker to reproduce them. At the same time, we

adjust the CPU frequency and measure the sweet frequency

using the preceding approach described in Section II.

B. Online Frequency Adjustment

The goal of the online analysis is to schedule the execution

of apps to CPU cores, and adjust their frequencies based on the

performance and resource utilization data collected at runtime.

Fig. 3 shows the overview of the online analysis of PIFA,

which consists of three main components: scheduler, phase

management, and feedback control. The scheduler component

is responsible for assigning an app to a CPU core according to

some criteria. The scheduling is performed whenever a core is

available and at least one app is waiting to be executed. The

phase management component collects the resource utilization

data and identifies which phase the app is running in. Based on

the phase, it assigns the sweet frequency to the corresponding

CPU core. The feedback controller component collects the

performance data and adjust the CPU frequency accordingly

if the performance deviates from the desired performance.

Scheduler Component: The scheduler component includes

two queues and one scheduler. Apps to be executed are put

into two different queues: Qf is for foreground apps and Qb is

for background apps. Whenever there are cores available, the

scheduler chooses an app from the queues to start. In Android

system, two foreground apps running concurrently are not

allowed. But several background services can run concurrently.

57

Scheduler

Phase
Management

Application

Feedback
Control

Online Intelligent Scheduling Qf

Qb

CPU0

CPU2

CPU3

Performance

Fine Tune Frequency

Set Sweet Frequency

CPU1

Fig. 3: Overview of online analysis

Also, one foreground app and several background apps can

run concurrently. Thus, the scheduler component does not

schedule two foreground apps to start at the same time, and the

services are scheduled to execute if there are cores available.

If there is an app running at the foreground, the scheduler

checks Qb directly. If not, the priority is given to Qf ; if Qf

is empty, then Qb is checked.

Phase-Management Component: After assigning the app to

a CPU core, PIFA also decides the frequency at which the app

should run. Since an app may include multiple phases and each

phase has its own frequency, the phase-management compo-

nent first identifies the phase that the app currently resides

in. To this end, the classifier trained in the offline analysis is

used to classify the resource-utilization data collected during

runtime. Based on the identified phase, the phase-management

component sets the CPU to the corresponding sweet frequency.

Algorithm 1 shows the detailed steps performed by the

phase management component. First the resource utilization

data is obtained through reading system profiling files (Line 1).

The phase classifier is then applied on the resource utilization

data (Line 2). The classifier classifies the resource utilization

data by computing the distances between the data and the

k centroids, and associating the data to the cluster with the

minimal distance. To tolerate potential background noise, we

consider that the phase has been changed if a new classification

result appeared at least Switch Treshold times in a row

(Lines 3-8).

Algorithm 1 Phase management Component

1: (Ucpu, Ugpu, Umem) = ReadSystemFiles()
2: Current Phase = Classifier(Ucpu, Ugpu, Umem)
3: if Current Phase = Last Phase then
4: Count← Count+ 1;

5: else
6: Count← 0
7: if Count > Switch Threshold then
8: Freq ← Current Phase.Freqs
9: Last Phase← Current Phase

Feedback-Control Component: The phase-management

component enables PIFA to quickly and accurately identify

the sweet frequency for every phase. We further apply the

feedback-control component to deal with (often small) run-

time performance deviations. The feedback-control compo-

nent dynamically adjusts the CPU frequencies based on the

collected performance data. The workload in Android OS

always fluctuates and is difficult to predict, which could have

severe impacts on the performance of running apps. Therefore,

when the system workload is high, the performance might

deviate significantly from the desired performance with CPU

frequency set as the sweet frequency. To mitigate this issue

during heavy workload periods, the feedback-control com-

ponent needs to make online analysis. The feedback-control

component measures the deviation of the current performance

from the desired performance, and adjusts the frequency

according to the gap between the current performance and

the desired performance.

The feedback-control component reads the performance

data from the system profiling files, which is updated through

online profiling. We compute the average performance in

the past 5 seconds as the measured performance to mitigate

runtime errors, and compare the average performance with the

desired performance: if the average value is α% lower than

the desired performance, the CPU frequency is increase by

a level; if the average value is β% higher than the desired

performance, the CPU frequency is decreased by a level. α
and β are derived from the positive and negative deviations of

the sweet performance (plus 10% for measurement errors).

IV. SYSTEM IMPLEMENTATION

PIFA is implemented as a set of Android tests, a Java

program, a set of Android services that schedule execution and

manage phases. Root permissions are required to read/write

the system files of frequencies and power governors. The

implemented PIFA is full-automated and can be easily applied

by users, which is not device- and/or app-dependent but is

rather easily scalable to a large number of apps and devices.

The offline analysis of PIFA is implemented as a set of

automatically generated Android tests that interact with apps

to be executed and collect the profiling data. The machine

learning algorithm is implemented as a Java program based on

the library provided by Weka [15]. The output of the offline

analysis are the identified phases with their sweet frequencies

and sweet performances, and a classifier model file that can

be used for online classification. For each phase the sweet

frequencies and sweet performance take up 6 bytes (4 bytes

for frequency and 2 bytes for performance), and the size of

classifier model files ranges from 30KB to 50KB. Given that

most apps in the market range from 10-50M, it is very light

weight to embed model files in apps (<1% of the app binary

size). For a given app of a specific version and a given device

model, we need to perform the offline analysis only once, and

the output of the offline analysis can be attached as a part of

the app. As the model files are small and the offline analysis

is fully automated, PIFA can be applied to various device

models and easily generate model files through offline analysis

for them. Therefore, the offline analysis can be performed

by either developers or app markets, and the results can be

embedded in the app to be released in the app markets. In

other cases when the model files are not available for the

model of the target device, PIFA can automatically run the

58

offline analysis for the target model and generate the model

files.

The online analysis of PIFA is implemented as a set of

Android services and a timer thread. The apps to be executed

are first instrumented to report their execution status and

performance data as files in a specific folder. The scheduler

and feedback control components read these files periodically

for decision makings.

App Instrumentation: To allow PIFA to take proper control

of apps, apps need to be instrumented to achieve two fined-

grained controls: affinity setting and performance collecting.

For open-source apps, our instrumentation is done at the

source code. Since most Android apps on the market are not

open-source, we also provide techniques to directly instrument

app binaries (i.e., apk files). To instrument app binaries, we

leverage Soot [36], [9] to systematically convert Android’s

Dalvik bytecode into Jimple, perform code transformations

on Jimple, and then convert the Jimple representation back

to Dalvik bytecode.

V. EVALUATION

In our evaluations, we seek to answer the following research

questions:

• RQ1: How effective is PIFA in identifying the perfor-

mance sweetspots (i.e., saving energy while maintaining

desired performance level)?

• RQ2: How efficient is PIFA in controlling apps to reach

the performance sweetspots (i.e., saving energy while

introducing low overhead)?

• RQ3: How does the phase management contribute to

the effectiveness of PIFA in identifying performance

sweetspots?

• RQ4: How could PIFA be generalized for different phone

models?

A. Evaluation Setup

Our evaluations are conducted on an Android smart

phone Nexus 5 with Qualcomm Snapdragon 808 CPU, 2GB

LPDDR3 memory, and 2700 mA battery. In total, 18 represen-

tative apps are used in the evaluations, including 13 popular

apps from Google Play (e.g., WeChat, Angry Birds), 2 open-

source apps from open-source app market F-Droid [2], and

3 open-source apps from other online sources that provide

open-source Android apps. Specifically, we have 3 video apps

including KM Player, OpenGL Video, and VideoJohn; 3 game

apps including Angry Birds, Candy Crush, and Replica Island;

and 10 UI apps including RAR, Desk Clock, Note Pad,

CM Security, SD Card Cleaner, Cool Reader, Power Tutor,

ScaleView, Alogcat, DidI, WeChat, and Mobike.

We choose these representative apps based on their popular-
ity. For the game apps, the download counts of Angry Birds

and Candy Crush are around 1,500,000, and the download

count for KM Player is around 200,000. The remaining apps

are all UI apps and many of them are used by thousands

of users. These apps fall in different categories and have

different complexities. Specifically, WeChat is one of the most

popular apps used all over the world (5,177,501 download

counts in Google play and 762 million monthly active users).

WeChat has over 600k lines of Java code and 607 distinguished

activities [37], representing the state-of-the-art complexity of

mobile apps. We believe that the apps used in the evaluation

exhibit sufficient practicality, complexity, and variety such

that PIFA’s effectiveness can be assessed in a comprehensive

manner.

After offline clustering, among the 18 apps, 7 apps are

multi-phase apps (5 two-phase apps and 2 three-phase apps)

and other apps are single-phase apps. For example, in the game

Replica Island, the actions in the launching/selection
UIs are mapped to one phase of menu manipulation, and the

touch/swipe/drag actions are mapped to another phase

of game play. In addition, we find that the more complex an

app is, the more phases are identified: WeChat and Mobike

(which provides bike-sharing services) are the two apps with

three phases. Take WeChat as an example. The general UI

actions such as chatting and searching are mapped to one

phase; scanning the QR code (which uses the camera to

capture QR images) is mapped to the second phase; reading

ads or news in the WebView (which involves browser kernels)

is mapped to the third phase.

Table I shows the CPU utilization for running each app un-

der the maximum frequency 2.26GHz, and the sweet frequency

identified for each identified phase of each app. These sweet

frequencies are used for the online frequency adjustment.

Comparison approaches: To demonstrate the effectiveness of

PIFA, we evaluate the performance and energy efficiency of six

methods: three CPU governors without PIFA and three CPU

governors with PIFA. A key novelty of PIFA is the synergistic

approach that synthesizes offline analysis and online analysis,

allowing high accuracy in phase identification and low runtime

overhead on DVFS adjustment. Prior work mostly focuses on

the separate consideration of either offline clustering or online

DVFS adjustment. To the best of our knowledge, no prior

work on either DVFS or clustering techniques can reach this

degree of automation and scalability, and thus we chose to

compare against native Android power governors. We choose

three representative CPU governors:

• Performance governor sets the CPU to the highest fre-

quency and is more energy intensive.

• On-demand governor boosts the CPU frequency to the

highest frequency when a workload comes and decreases

the frequency gradually when the workload abates. It is

less energy intensive.

• Conservative governor promotes the CPU frequency

when a larger and more persistent workload is put on

CPU, saving more energy with possibilities for choppy

performance.

We also compare with PIFA without phase control, which

yields the similar performance as existing online DVFS analy-

sis, because they share the same intuition. The results demon-

strate the value of our synergy.

Energy Measurement: For each experiment, we use Droid-

59

TABLE I: CPU utilization under the maximum frequency 2.26GHz and the sweet frequency
Angry Birds(AB): 4.73% / 0.96GHz Candy Crush(CC): 9.31% / 1.54GHz Replica Island(RI-P1): 5.17% / 0.65GHz

OpenGL Video(OV): 4.01% / 0.30GHz KM Player(KM-P0): 8.73% / 0.30GHz Video John(VJ-P1): 8.45% / 0.65GHz

Desk Clock(DC): 2.13% / 0.73GHz CM Security(CM-P0): 0.54% / 0.42GHz CM Security(CM-P1): 8.73% / 0.73GHz

Note Pad(NP): 0.82% / 0.30GHz RAR: 0.70% / 0.30GHz SDC Cleaner(SDC-P0): 0.15% / 0.65GHz

SDC Cleaner(SDC-P1): 0.30% / 0.96GHz KM Player(KM-P1): 0.30% / 0.30GHz Cool Reader(CR): 0.41% / 0.30GHz

Power Tutor(PT): 4.17% / 0.30GHz Video John(VJ-P0): 1.75% / 0.96GHz Replica Island(RI-P0): 0.07% / 0.30GHz

Alogcat(AC): 2.92% / 0.96GHz Did I(DI): 0.73% / 1.03GHz SubScale View(SV): 2.91% / 0.88GHz

WeChat(WC-P0): 0.82% / 0.96GHz WeChat(WC-P1): 3.98% / 1.57GHz WeChat(WC-P2): 2.64% / 1.26GHz

Mobike(MB-P0): 1.03% / 0.88GHz Mobike(MB-P1): 2.81% / 0.96GHz Mobike(MB-P2): 5.43% / 1.26GHz

Walker to automatically generate events for an app, and use

a popular energy profiling tool trepn [6] to record the energy

consumed during each experiment. For energy consumption,

we compare the energy consumed only for running the specific

app under each method in the first experiment. Such a step

is done by using the measured energy consumption when

running the app under each method minus the measured

energy consumption when running a “dummy” app (which

does nothing) under the same method. We seek to evaluate how

much energy can be saved when running each app under PIFA

compared to using only Android CPU governors. We also

show the device-level energy saving by comparing methods

with PIFA and w/o PIFA (Section V-D). In all experiments,

the energy measured is the total system energy consumed by

all system components.

B. Overall Effectiveness

Fig. 4 shows the evaluation results using boxplot for the

18 evaluated apps under the six methods. For each subfig-

ure, the y axis represents the performance metric and the x

axis represents the energy consumed under the corresponding

baseline approach (i.e., the original Android CPU governor

without applying PIFA). Moreover, the percentage above the

whisker of a box plot represents the percentage of the energy

savings PIFA combined with the corresponding CPU governor

achieves compared to the baseline CPU governor. The pre-

defined desired performance is denoted by the dotted line in

each figure.

We obtain the following two major observations by ana-

lyzing the data shown in Fig. 4. First, for most game and

video apps, PIFA achieves performance close to the desired

performance or closely better performance while significantly

reducing energy consumption. The three methods associated

with PIFA achieve better but close performance to the desired

performance, and reduce energy consumption by 10% - 38%

(respectively, 40% - 71%) compared to the corresponding

baseline method for the three game apps (respective, the

three video apps); while the Android CPU governors often

achieves unnecessarily better performance while incurring a

significantly larger amount of energy consumption. For ex-

ample, the performance governor yields an absolute energy

consumption of 231J for running “Candy Crush”; while “PIFA

+ Conservative” reduces energy consumption by 231J · 22%

= 50.82J for running the same app. The energy savings under

video apps are even more significant. This can be explained

by jointly considering Fig. 4 and Table I together. As seen in

Table I, the sweet frequency identified for video apps is much

lower compared to the game apps. This is because the Android

phone used in our experiments has a dedicated frame-decoding

hardware. Thus, the video frame processing workload does not

utilize CPUs intensively. Due to such a low sweet frequency,

the energy saving for video apps becomes significant when

applying PIFA.

Second, PIFA is more effective in saving energy for game

and video apps and less effective in saving energy for UI apps

that incur rather low workload. As seen in Table I, the UI

app “Did I” incurs a CPU utilization of only 0.73% (since

the only thing app performs is to open up a text-based menu

description which is a highly optimized Android component).

Thus, even if PIFA can effectively reduce the CPU frequency,

the resulting energy saving may not be noticeable due to the

low CPU workload. Indeed, the absolute energy consumption

values for the “Alogcat”, “Did I”, and “ScaleView” UI apps

are merely 19.26J and 23.58J, 19.13J and 15.28J, and 16.72J

and 18.97J under PIFA and the original CPU governor (both

averaged among the three associated methods), respectively.

Also, due to the small workload incurred under such apps,

the interference caused by measurement or environmental

noise may become dominant. This explains why the PIFA-

based approaches actually yields more energy consumption

for two apps, i.e., -33% and -55% for the “Did I” app

under PIFA+Performance and PIFA+Ondemand, respectively,

and -18% for the “Cool Reader” app under PIFA+Ondemand

(incurring a rather small CPU utilization of 0.41%).

Another interesting observation is that for the three game

apps and three video apps with FPS as the performance metric,

all six methods achieve similar performance as the specified

desired performance. The major reason is that for game and

video apps, developers usually maintain a constant FPS to

make the code easier for maintenance and save certain CPU

cycles. Thus, increasing CPU frequency cannot exceed the

performance threshold for these apps; while for the PIFA-

based approaches, it demonstrates the accuracy of PIFA in

setting the sweet frequency to achieve the desired performance.

Summary for RQ1: In general, PIFA is effective in sav-

ing energy while maintaining desired performance levels by

accurately identifying the execution phase and setting the

corresponding sweet frequency for the apps. PIFA becomes

60

PIFA+Performance Performance Desired Performance

 0

 10

 20

 30

 40

 50

 60

 70

159J 231J 150J 34J 47J 127J

F
P

S

10% 22% 36% 40%

43%
69%

0
20
40
60
80

100
120
140

70J 45J 239J 52J 27J 29J 62J 14J 30J 24J 40J 19J 22J 14J 21J 63J 24J 76J 70J 77J 82J

R
es

po
ns

e
Ti

m
e

(m
s)

8%

37% 38%
64%

85%

20% 31%

23%

-18%

86%

63%

42%

0%
-33%

16%
29%

13% 15%
30%

19%
19%

PIFA+Ondemand Ondemand Desired Performance

 0

 10

 20

 30

 40

 50

 60

 70

157J 224J 134J 39J 46J 118J

F
P

S

16% 7% 23% 68%

52%
67%

0
20
40
60
80

100
120
140

70J 45J 239J 52J 27J 29J 62J 14J 30J 24J 40J 19J 22J 14J 21J 54J 76J 71J 73J 80J 76J

R
es

po
ns

e
Ti

m
e

(m
s)

33%

42% 38%
34%

108%

23%

2%

89%

62%

73%

37%

47%

25%

-55%
12% 13%

30% 36%

32%

36% 8%

PIFA+Conservative Conservative Desired Performance

 0
 10
 20
 30
 40
 50
 60
 70

155J
AB

214J
CC

167J
RI-P1

37J
OV

47J
KM-P0

127J
VJ-P1

F
P

S

20% 7% 38% 42%

43%
71%

0
20
40
60
80

100
120
140

43J
DC

45J
CM-P0

239J
CM-P1

52J
NP

27J
RAR

29J
SDC-P0

62J
SDC-P1

14J
KM-P1

30J
CR

24J
PT

36J
VJ-P0

31J
RI-P0

27J
AC

17J
DI

20J
SV

65J
WC-P0

71J
WC-P1

74J
WC-P2

73J
MB-P0

74J
MB-P1

71J
MB-P2

R
es

po
ns

e
Ti

m
e

(m
s)

12%

29%
35%

52%

102%

46% 35%

94%

52%

52%

30%

72%

27%
5%

7%
12% 8% 14% 33% 16%

9%

Fig. 4: The Apps from left to right: Angry Birds, Candy Crush, Replica Island(Phase1), OpenGLVideo, KM Player
(Phase 0), Video John (Phase 1), Desk Clock, CM Security (Phase 0), CM Security (Phase 1), Note Pad, RAR, SD

Card Cleaner (Phase 0), SD Card Cleaner (Phase 1), KM Player (Phase 1), Cool Reader , Power Tutor, Video John
(Phase 0), Replica Island(Phase0), Alogcat, Did I, SubScale View, WeChat(Phase0-2), Mobike(Phase0-2). In the first

(respectively, second and third) rows of graphs, the performance governor (ondemand governor and conservative
governor) with and without applying PIFA are assumed. In the first (second) column of graphs, applications with the

FPS (response time) performance metric are assumed.

more effective for game or video apps that are more resource-

demanding and incur more workload, while being less effec-

tive for apps that incur rather low workload (e.g., UI apps).

Also note that PIFA is able to intelligently choose not to apply

frequency adjustment to the phases that incur low workload.
C. Overhead Incurred by PIFA

Table II shows the overhead incurred under PIFA for run-

ning each app. This overhead is defined to be the difference

between the total energy used for running an app under PIFA

and the total energy used for running the same app under

exactly the same setting but without PIFA. As seen in Table II,

14 apps incur a reasonably low overhead (less than 5%), and

4 apps (“Angry Birds”, “Candy Crush”, “KM Player” and

“Mobike”) incur higher overhead (around 6%). In particular,

for the complex app WeChat, the energy overhead is just

4.12%, indicating PIFA’s practicality for current apps.

Summary for RQ2: In general, the overhead brought by

PIFA is negligible, demonstrating the efficiency of the online

analysis based on the model files produced by the offline

analysis. Such results also demonstrate the advantage of our

synergy approach that integrates the offline phase learning

and discovery analysis and online phase identification and

frequency adjustment analysis.

D. Evaluation of Phase Management

To evaluate the efficacy of the phase management, we

compare two methods in this set of experiments, PIFA-

performance and PIFA-performance without phase manage-

ment, denoted by PIFA and “PIFA w/o Phase MGT”. As

PIFA w/o Phase MGT does not differentiate multiple phases,

for all the phases, we set an identical sweet frequency cor-

responding to the phase whose performance metric is FPS

(for those apps whose performance metrics are both FPS and

response time), or to the first identified phase (for those apps

whose performance metric is only response time). We evaluate

these two methods for the 7 multi-phases apps. In this set

61

PIFA PIFA w/o Phase MGT Desired Performance

0

10

20

30

40

50

60

70

80

VJ-P0(RT) VJ-P1(FPS) KM-P0(FPS) KM-P1(RT) CM-P0(RT) CM-P1(RT) RI-P0(RT) RI-P1(FPS) SDC-P0(RT) SDC-P1(RT) WC-P0(RT) WC-P1(RT) WC-P2(RT) MB-P0(RT) MB-P1(RT) MB-P2(RT)
0

20

40

60

80

100

120

140

160

FP
S

R
es

po
ns

e
Ti

m
e

(m
s)

416J

473J

332J 328J
229J 231J

225J

243J

243J

254J

514J
527J

306J 329J

519J 510J
410J

424J
360J

348J

210J
257J

413J
447J 317J

353J

276J

281J
323J

335J
396J 405J

Fig. 5: Evaluation results of the phase control component. The x axis shows the specific phase of the multi-phase app
and its associated performance metric. For each phase of an app, two boxplots show the results under PIFA and

PIFA w/o Phase MGT, with the absolute consumed energy shown above the boxplot.

TABLE II: Overhead incurred under PIFA, shown in the format of energy overhead under PIFA / total energy under
PIFA (ratio of the overhead over total energy)

App Name ScaleView Alogcat Did I OpenGL Video

Overhead (J) ≈ 0/74.20 ≈ 0/111.70 ≈ 0/101.88 12.87/367.95 (3.50%)

App Name Angry Birds Candy Crush KM Player ReplicaIsland

Overhead (J) 23.73/426.82 (5.56%) 31.44/523.78 (6.00%) 29.90/454.08 (6.58%) 30.52/686.73 (4.45%)

App Name VideoJohn Note Pad RAR Cool Reader

Overhead 9.24/745.18 (1.24%) 15.06/344.53 (4.53%) 11.64/316.23 (3.68%) 14.48/350.80 (4.13%)

App Name Desk Clock SD Card Cleaner Power Tutor CM Security

Overhead (J) 11.55/323.64 (3.57%) 27.68/763.83 (3.62%) 7.32/287.65 (2.55%) 19.85/616.40 (3.22%)

App Name WeChat Mobike

Overhead (J) 11.35/275.38 (4.12%) 24.95/464.57 (5.37%)

of experiments, the energy consumption is the device-level

energy consumption measured when running the app under

each method. Results are shown in Fig. 5 (the organization of

which is explained in Fig. 5’s caption). Note that since each

tested phase either has an FPS metric or a response time metric

(e.g., KM-P0 has a FPS metric and KM-P1 has a response

time metric), we show both FPS (left y-axis) and response

time performance (right y-axis) in Fig. 5.

As seen in Fig. 5, the phase management component is quite

effective w.r.t. both performance and energy consumption.

With this component, PIFA is able to accurately identify the

execution phases, and set the frequency at runtime according

to the sweet frequency learned offline for the corresponding

phase. Additionally, PIFA often yields a performance close to

or better than the desired performance while incurring close or

less energy consumption than PIFA w/o Phase MGT which of-

ten yields a performance worse than the desired performance.

For example, for the phase 0 of SD Card Cleaner app, PIFA

yields a less energy consumption in phase 0 (410J) while

achieving a performance better than the desired performance;

whereas PIFA w/o Phase MGT yields a performance often

worse than the desired performance. For the phase 1 of SD

Card Cleaner app, PIFA actually yields a slightly higher energy

consumption (12J more). This is because in this case, PIFA

clearly yields a performance much better than PIFA w/o Phase

MGT, whose performance is 16.1% deviated from the desired

performance. This result implies that for certain phases, PIFA

sets a more accurate sweet frequency that is higher than the

frequency set by PIFA w/o Phase MGT, and thus consumes

more energy. On the other hand, PIFA w/o Phase MGT simply

sets a single frequency for all phases, saving more energy but

causing performance violations.

Summary for RQ3: In general, PIFA is able to achieve

better performance and energy efficiency than PIFA w/o Phase

MGT. In some cases, PIFA w/o Phase MGT may cause

performance violations due to lack of knowledge of the phases,

but PIFA could guarantee stable performance with slightly

more consumed energy.

E. Generalization to Other Device Models

We choose Nexus 6 (2.7GHz CPU and 3G memory) and

Samsung S4 (1.6GHz CPU and 2G memory) as two alternative

phone models to evaluate the generalization of PIFA. We use

WeChat and Mobike for the experiment as both of them have

three phases. First, we collect the test cases generated by

DroidWalker by exploring the apps on Nexus 5. These test

cases are used in the experiments for RQ1. We then run these

test cases on Nexus 6 and Samsung S4, perform the offline

clustering, and derive the sweet frequency for these two phone

models. The results show that WeChat and Mobike are still

clustered into three phases on both of the phone models and

the sweet frequency for each phase is the same with Nexus

5. Finally, we evaluate the energy saving brought by PIFA

by comparing PIFA with the on-demand governor, which is

less energy intensive. Table III shows the results. We can see

that PIFA saves energy on all the three phone models, but

62

TABLE III: Energy saving on different phone models
Model

WeChat MoBike
Phase 0 (J) Phase 1 (J) Phase 2 (J) Total (J) Average (J) Phase 0 (J) Phase 1 (J) Phase 2 (J) Total (J) Average (J)

Nexus 5 12 (13%) 39 (30%) 43 (35%) 94 31.33 39 (33%) 49 (36%) 10 (8%) 98 32.67

Nexus 6 25 (16%) 163 (57%) 35 (16%) 223 74.33 13 (14%) 62 (38%) 41 (22%) 116 38.67

Samsung S4 2 (12%) 11 (21%) 1 (5%) 14 4.67 7 (34%) 10 (39%) 4 (19%) 21 7

the amount of saved energy is different due to the different

device configurations, such as screen size, CPU, and memory.

Compared to the saving on Nexus 5, for WeChat, PIFA saves

more energy on Nexus 6 in Phase 1 and less energy on S4 in

Phase 3; for Mobike, PIFA saves more on S4 in all phases.

Summary for RQ4: PIFA can be easily generalized for

different phone models. Since DroidWalker can replay the

test cases across phone models, the test cases generated by

DroidWalker on one phone model can be applied on other

phone models. Based on the execution results of these test

cases, PIFA can automatically infer the phases and sweet

frequencies, saving energy for the apps on these phone models.

F. Evaluation Summary and Discussions

Our evaluations using real-world Android apps demonstrate

that PIFA dramatically reduces energy consumption (e.g., >
30% energy reduction for most apps) and incurs rather small

runtime overhead (e.g., < 5% overhead for most apps). In

addition, PIFA achieves closely better performance than the

desired performance specified for each phase. We should

mention that PIFA depends on DroidWalker to explore app

behaviors. Although the activity coverage of DroidWalker is

much larger than the state-of-the-art Monkey for the evaluated

apps (16% in the median case), there are still some behaviors

of the apps that cannot be exposed by DroidWalker, e.g., those

triggered by system events. As a result, the identified phases

may not cover certain functionality of the app. To mitigate this

issue, developers can provide their own UI test cases, written

in Android user interfaces tests [1] or Robotium [4]. Combin-

ing the generated test cases of DroidWalker and the developer-

written test cases can produce a more comprehensive test

suite to cover more behaviors of apps, and thus make the

models learned by the offline analysis achieve higher precision

in identifying energy phases of the apps. Furthermore, PIFA

focuses on optimizing CPU energy, since CPU is one of

major source of energy consumption [35]. Considering other

components simultaneously may yield further benefits, yet

at the cost of more complicated design/implementation and

runtime overheads, which may negate the benefits. In the

experiments, we measured energy consumption for the entire

machine, which shows our CPU-focused energy optimization

techniques yield significant energy saving.

VI. RELATED WORK

DVFS schemes. DVFS is an important power management

technique that has been widely studied for improving energy

efficiency in mobile devices. Existing DVFS algorithms mainly

focus on the trade-off between the energy and real-time

properties [33], [21], [26], [22], [31], [16], [11], [14], [34],

[28], [39], [38]. For example, Pouwelse. et al. and Hamers

et al. proposed several mechanisms to provide just enough

computing capacity for decoding video frames [31], [16]. In

[11], Chang et al. proposed a DVFS scheme to scale the CPU

frequency based on a pre-defined resource usage model. Rao et

al. presented an application-specific energy saving scheme for

Android devices, which is yet phase-oblivious [34]. Generally

speaking, Compared to these existing DVFS-based energy

saving techniques, our key novelty is the combined offline-

online analysis, allowing high accuracy in phase identification

and low runtime overhead on DVFS adjustment. Prior works

mostly focus on separate consideration of either offline cluster-

ing or online DVFS adjustment. Moreover, PIFA achieves full

automation, an important contribution that scales PIFA to large

numbers of apps and devices. To the best of our knowledge,

no prior works on either DVFS or clustering provides such

a synergistic, automated, and scalable solution. Therefore, we

chose to compare against native Android power governors as

seen in the experiments. We compare with PIFA w/o phase

control, which actually yields similar performance as existing

online DVFS techniques ([11], [34], [10], [19] since they share

the same intuition.

Energy-efficient computing for mobile devices. A set of

energy-efficient techniques have been proposed to explore

various features of mobile computing, such as transmission

delay characteristics [32], screen bright levels [7]. In [8], [23],

several automatic techniques were proposed to detect behav-

iors that consume abnormally high system energy. A mobility

prediction-based algorithm for smartphone was introduced to

improve energy efficiency of daily location monitoring [12].

CPU-GPU cooperative power management techniques have

been proposed to target at the case when both CPU and GPU

are heavily used, such as 3D games [30], [18], [29]. Different

from these works, we are minimizing system-wide energy

consumption for running a wide range of apps. We focus on

making the CPU frequency adjustment fully automated and

intelligent, and combine offline analysis and online frequency

scheduling to develop an app-stateful mobile power manage-

ment framework.

VII. CONCLUSION

PIFA, an intelligent phase identification and frequency

adjustment framework for energy-efficient and time-sensitive

mobile computing, is presented. PIFA aims at improving en-

ergy efficiency of mobile computing while satisfying desirable

latency performance required by various phases of an app.

PIFA addresses two major challenges of accurately identifying

different execution phases of an application and efficiently in-

tegrating the phase identification results for runtime frequency

adjustment. Extensive experiments prove that PIFA dramat-

ically reduces energy consumption while satisfying desired

performance requirements with small runtime overhead.

63

REFERENCES

[1] Automating user interface tests for android, 2017.
https://developer.android.com/training/testing/ui-testing/index.html.

[2] F-droid app market, 2017. https://f-droid.org/.
[3] Google Play Store, 2017. https://play.google.com/store.
[4] Robotium: User scenario testing for android, 2017.

http://www.robotium.org.
[5] Ui/application exerciser monkey, 2017.

http://developer.android.com/tools/help/monkey.html.
[6] Trepn power profiler, 2019. https://developer.qualcomm.com/software/tr-

epn-power-profiler.
[7] ANAND, B., THIRUGNANAM, K., SEBASTIAN, J., KANNAN, P. G.,

ANANDA, A. L., CHAN, M. C., AND BALAN, R. K. Adaptive display
power management for mobile games. In Proceedings of the 9th
International Conference on Mobile Systems, Applications, and Services
(2011), MobiSys ’11, pp. 57–70.

[8] BANERJEE, A., CHONG, L., CHATTOPADHYAY, S., AND ROYCHOUD-
HURY, A. Detecting energy bugs and hotspots in mobile apps. In
Proceedings of the 22Nd ACM SIGSOFT International Symposium on
Foundations of Software Engineering (2014), pp. 588–598.

[9] BARTEL, A., KLEIN, J., LE TRAON, Y., AND MONPERRUS, M. Dex-
pler: Converting android dalvik bytecode to jimple for static analysis
with soot. In Proceedings of the ACM SIGPLAN International Workshop
on State of the Art in Java Program Analysis (2012), SOAP ’12, ACM,
pp. 27–38.

[10] BEZERRA, P. T., ARAUJO, L. A., RIBEIRO, G. B., NETO, A. C.
D. S. B., SILVA-FILHO, A. G., SIEBRA, C. A., QB DA SILVA, F.,
SANTOS, A. L., MASCARO, A., AND COSTA, P. H. Dynamic frequency
scaling on android platforms for energy consumption reduction. In
Proceedings of the 8th ACM workshop on Performance monitoring
and measurement of heterogeneous wireless and wired networks (2013),
ACM, pp. 189–196.

[11] CHANG, Y.-M., HSIU, P.-C., CHANG, Y.-H., AND CHANG, C.-W. A
resource-driven dvfs scheme for smart handheld devices. ACM Trans.
Embed. Comput. Syst. 13, 3 (Dec. 2013), 53:1–53:22.

[12] CHON, Y., TALIPOV, E., SHIN, H., AND CHA, H. Mobility prediction-
based smartphone energy optimization for everyday location monitoring.
In Proceedings of the 9th ACM Conference on Embedded Networked
Sensor Systems (2011), SenSys ’11, pp. 82–95.

[13] CHOUDHARY, S. R., GORLA, A., AND ORSO, A. Automated test input
generation for android: Are we there yet? (E). In 30th IEEE/ACM
International Conference on Automated Software Engineering, ASE
2015, Lincoln, NE, USA, November 9-13, 2015 (2015), pp. 429–440.

[14] GU, Y., AND CHAKRABORTY, S. A hybrid dvs scheme for interactive
3d games. In Proc. IEEE Real-Time and Embedded Technology and
Applications Symposium (RTAS) (2008), pp. 3–12.

[15] HALL, M., FRANK, E., HOLMES, G., PFAHRINGER, B., REUTEMANN,
P., AND WITTEN, I. H. The weka data mining software: An update.
SIGKDD SIGKDD Explorations Newsletter 11, 1 (2009), 10–18.

[16] HAMERS, J., AND EECKHOUT, L. Exploiting media stream similarity
for energy-efficient decoding and resource prediction. ACM Trans.
Embed. Comput. Syst. 11, 1 (Apr. 2012), 2:1–2:25.

[17] HAN, J., KAMBER, M., AND PEI, J. Data Mining: Concepts and
Techniques, 3rd ed. Morgan Kaufmann Publishers Inc., San Francisco,
CA, USA, 2011.

[18] HSIEH, C.-Y., PARK, J.-G., DUTT, N., AND LIM, S.-S. Memory-aware
cooperative cpu-gpu dvfs governor for mobile games. In Embedded
Systems For Real-time Multimedia (ESTIMedia), 2015 13th IEEE Sym-
posium on (2015), IEEE, pp. 1–8.

[19] JANG, H. B., KIM, J. M., LEE, H.-J., CHUNG, S. W., SHIN, Y., AND

SON, J. C. Intelligent governor for low-power mobile application
processors. In SoC Design Conference (ISOCC), 2013 International
(2013), IEEE, pp. 206–207.

[20] KANUNGO, T., MOUNT, D., NETANYAHU, N., PIATKO, C., SILVER-
MAN, R., AND WU, A. An efficient k-means clustering algorithm:
analysis and implementation. IEEE Transactions on Pattern Analysis
and Machine Intelligence 24, 7 (2002), 881–892.

[21] KUMAR, R., FARKAS, K. I., JOUPPI, N. P., RANGANATHAN, P., AND

TULLSEN, D. M. Single-isa heterogeneous multi-core architectures:
The potential for processor power reduction. In Proceedings of the
36th Annual IEEE/ACM International Symposium on Microarchitecture
(2003), MICRO 36.

[22] LIU, C., LI, J., HUANG, W., RUBIO, J., SPEIGHT, E., AND LIN, X.
Power-efficient time-sensitive mapping in heterogeneous systems. In
Proceedings of the 21st International Conference on Parallel Architec-
tures and Compilation Techniques, PACT ’12, ACM, pp. 23–32.

[23] MA, X., HUANG, P., JIN, X., WANG, P., PARK, S., SHEN, D., ZHOU,
Y., SAUL, L. K., AND VOELKER, G. M. edoctor: Automatically diag-
nosing abnormal battery drain issues on smartphones. In Proceedings
of the 10th USENIX Conference on Networked Systems Design and
Implementation (2013), pp. 57–70.

[24] MA, X., HUANG, P., JIN, X., WANG, P., PARK, S., SHEN, D., ZHOU,
Y., SAUL, L. K., AND VOELKER, G. M. Edoctor: Automatically
diagnosing abnormal battery drain issues on smartphones. In NSDI
(2013), vol. 13, pp. 57–70.

[25] MA, Y., HUANG, Y., HU, Z., XIAO, X., AND LIU, X. Paladin:
Automated generation of reproducible test cases for android apps. In
The 20th International Workshop on Mobile Computing Systems and
Applications (2019), HotMobile 2019.

[26] MEJIA-ALVAREZ, P., LEVNER, E., AND MOSSÉ, D. Adaptive schedul-
ing server for power-aware real-time tasks. Journal ACM Transactions
on Embedded Computing Systems (TECS) 3, 2 (2004), 284–306.

[27] MILLER, R. B. Response time in man-computer conversational transac-
tions. In Proceedings of the December 9-11, 1968, Fall Joint Computer
Conference, Part I (1968), AFIPS ’68 (Fall, part I), pp. 267–277.

[28] MISHRA, N., ZHANG, H., LAFFERTY, J. D., AND HOFFMANN, H. A
probabilistic graphical model-based approach for minimizing energy
under performance constraints. In Proceedings of the Twentieth Interna-
tional Conference on Architectural Support for Programming Languages
and Operating Systems (2015), ASPLOS ’15, pp. 267–281.

[29] PATHANIA, A., IRIMIEA, A. E., PRAKASH, A., AND MITRA, T. Power-
performance modelling of mobile gaming workloads on heterogeneous
mpsocs. In Proceedings of the 52Nd Annual Design Automation
Conference (2015), DAC ’15, pp. 201:1–201:6.

[30] PATHANIA, A., JIAO, Q., PRAKASH, A., AND MITRA, T. Integrated
cpu-gpu power management for 3d mobile games. In Proceedings of
the 51st Annual Design Automation Conference (2014), pp. 40:1–40:6.

[31] POUWELSE, J., LANGENDOEN, K., LAGENDIJK, I., AND SIPS, H.
Power-aware video decoding. In Proc. 22nd Picture Coding Symposium
(2001), pp. 303–306.

[32] RA, M.-R., PAEK, J., SHARMA, A. B., GOVINDAN, R., KRIEGER,
M. H., AND NEELY, M. J. Energy-delay tradeoffs in smartphone appli-
cations. In Proceedings of the 8th International Conference on Mobile
Systems, Applications, and Services (2010), MobiSys ’10, pp. 255–270.

[33] RANGAN, K. K., WEI, G.-Y., AND BROOKS, D. Thread motion: Fine-
grained power management for multi-core systems. In Proceedings of
the 36th Annual International Symposium on Computer Architecture
(2009), ISCA ’09, pp. 302–313.

[34] RAO, K., WANG, J., YALAMANCHILI, S., WARDI, Y., AND HANDONG,
Y. Application-specific performance-aware energy optimization on
android mobile devices. In 2017 IEEE International Symposium on
High Performance Computer Architecture (HPCA) (Feb. 2017), vol. 00,
pp. 169–180.

[35] SHYE, A., SCHOLBROCK, B., AND MEMIK, G. Into the wild: Studying
real user activity patterns to guide power optimizations for mobile archi-
tectures. In Proceedings of the 42Nd Annual IEEE/ACM International
Symposium on Microarchitecture (2009), MICRO 42, ACM, pp. 168–
178.

[36] VALLEE-RAI, R., GAGNON, E., HENDREN, L., LAM, P., POMINVILLE,
P., AND SUNDARESAN, V. Optimizing java bytecode using the soot
framework: Is it feasible? In Proc. Compiler Construction (2000).

[37] ZENG, X., LI, D., ZHENG, W., XIA, F., DENG, Y., LAM, W., YANG,
W., AND XIE, T. Automated test input generation for android: are
we really there yet in an industrial case? In Proceedings of the 24th
ACM SIGSOFT International Symposium on Foundations of Software
Engineering, FSE 2016 (2016), pp. 987–992.

[38] ZHU, Y., HALPERN, M., AND REDDI, V. Event-based scheduling for
energy-efficient qos (eqos) in mobile web applications. In Proc. High
Performance Computer Architecture (HPCA) (2015), pp. 137–149.

[39] ZHU, Y., AND REDDI, V. High-performance and energy-efficient mobile
web browsing on big little systems. In Proc. High Performance
Computer Architecture (HPCA) (2013), pp. 13–24.

64

