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Abstract
Vibration-based side channel is an ever-present threat to
speech privacy. However, due to the target’s frequency re-
sponse with a rapid decay or limited sampling rate of ma-
licious sensors, the acquired vibration signals are often dis-
torted and narrowband, which fails an intelligible speech re-
covery. This paper tries to answer that when the side-channel
data has only a very limited bandwidth (<500Hz), is it feasi-
ble to achieve a wideband eavesdropping based on a practical
assumption? Our answer is YES based on the assumption
that a short utterance (2s-4s) of the victim is exposed to the
attacker. What is most surprising is that the attack can recover
speech with a bandwidth of up to 8kHz. This covers almost all
phonemes (voiced and unvoiced) in human speech and causes
practical threat. The core idea of the attack is using vocal-tract
features extracted from the victim’s utterance to compensate
for the side-channel data. To demonstrate the threat, we pro-
posed a vocal-guided attack scheme called VibSpeech and
built a prototype based on a mmWave sensor to penetrate
soundproof walls for vibration sensing. We solved challenges
of vibration artifact suppression and a generalized scheme
free of any target’s training data. We evaluated VibSpeech
with extensive experiments and validated it on the IMU-based
method. The results indicated that VibSpeech can recover
intelligible speech with an average MCD/SNR of 3.9/5.4dB.

1 Introduction

Sound-induced vibration is a common phenomenon and preva-
lent when a sound source (e.g., a loudspeaker) produces acous-
tic waves. Researchers have revealed great threats posed by
these sound-related vibrations via different sensing meth-
ods, e.g., optical sensors [14, 34, 38–40, 45], motion sen-
sors [5, 8, 18, 21, 37], wireless devices [9, 19, 20, 36, 50–52],
and vibration-sensitive components [28, 44]. For a protected
zone like a soundproof room, millimeter-wave (mmWave)
sensors can be exploited for through-wall eavesdropping due
to the advantages of penetrability and high precision.

However, current mmWave-based works [19, 56] either
require an ideal reflector with a wideband frequency response
or require abundant training data from the target to achieve
satisfactory performance. These methods suffer narrowband
frequency responses and the strong assumption of targets’
training data. With a laser vibrometer (Figure 1), we found
that narrowband frequency response is often the case due to
the forced damped vibration [15] induced by excitation audio.

In this paper, we reveal a new speech threat that adversaries
can recover wideband (up to 8kHz) intelligible speech from
acquired narrowband (<500Hz) vibration signals on loud-
speakers. An attacker can use a mmWave sensor to capture
the sound-related vibrations in a soundproof zone and lever-
age the proposed wideband-speech-recovery scheme called
VibSpeech to recover intelligible speech. The core idea of
our work is using vocal-tract features extracted from a pre-
obtained utterance of the victim to compensate for acquired
narrowband signals during the attack and recover wideband
speech. Compared with prior works, our proposed attack is

(1) Free of a tough requirement of wideband frequency re-
sponse of the target. Frequency response plays an important
role in vibration-based speech recovery. However, an ideal tar-
get with wideband frequency response is not always available.
Our study (Section 5) indicates that due to the characteristic
of the forced vibration, the vibration amplitude on loudspeak-
ers can suffer over 20dB degradation when the excitation fre-
quency is above 500Hz. A consequence is that high-frequency
vibration is overwhelmed by noise and practically unavailable.
VibSpeech focuses on the prevailing narrowband status quo
while holding the goal of wideband speech recovery.

(2) Free of training data from the target. Although using
a neural network to learn the mapping between narrowband
vibration signals and wideband audio may merge the gap
between the two signals, such a method requires a large train-
ing dataset of the target to achieve satisfactory performance,
which is impractical to conduct in real cases. One of our goals
is to free the narrowband-wideband speech transition from
the abundant training data of the target. Only with a short ut-
terance (2s-4s) of the victim, our work can recover wideband



Figure 1: Frequency response of sound-forced vibrating objects measured by a laser vibrometer (Figure 4(a)). Compared with
(a) the ideal frequency response, pervasive uneven response on objects (b)-(f) challenges a wideband and intelligible speech
recovery from the distorted and narrowband vibration signals. Please refer to Section 5 for a detailed investigation.

intelligible speech during the attack.
(3) A through-wall and non-invasive attack. Although exist-

ing works revealed that the vibration signals can be acquired
using lasers, cameras, optical sensors, and motion sensors,
these methods either cannot penetrate opaque obstacles or
work in an invasive manner of deriving data from the target via
malware. Our mmWave-based attack can break through sound-
proof protections in a non-invasive manner, and achieve a bet-
ter resolution than the ones based on other radio-frequencies
techniques such as WiFi and ultra-wide-band radio.

(4) An intelligible speech recovery with a bandwidth of up
to 8kHz. Although many works revealed that attackers can
use narrowband vibration signals to infer speech contents
(i.e., word recognition), such a method is restricted to spe-
cific vocabulary and cannot recover arbitrary speech that is
not contained in the vocabulary. By contrast, VibSpeech can
recover hearable speech with high intelligibility and quality.

To achieve the attack, we aim to solve the following chal-
lenges. First, how to eliminate the distortion and artifacts in
acquired narrowband vibration signals? In a real case, the col-
lected vibration signal often suffers distortions and artifacts
due to the target’s uneven frequency response and noise (Sec-
tion 5). To solve this problem, we proposed adaptive multi-
bandpass filtering to suppress distortion and inter-harmonic
noise in the narrowband signal (Section 6.2). Second, how to
merge the bandwidth gap between the vibration signal and
intelligible speech? Formants of consonants can be up to 4k-
8kHz (Figure 2). Narrowband audio with incomplete formants
can be blurred and unintelligible. To solve this challenge, we
designed a vocal-guided scheme by fusing narrowband speech
and the target’s vocal-tract features. The vocal-tract features
are extracted via a SpkEnc network that only requires a short
utterance (2s-4s) from the victim (Section 6.1). Further, the
wideband speech is reconstructed via a bandwidth-extension
network (Section 6.3) and a generalized vocoder (Section 6.4).
Third, how to free the narrowband-wideband speech transi-
tion from the labor-intensive and impractical assumption of
training data collected from the target? To achieve this goal,
we proposed to manipulate the bandwidth of public audio
datasets to generate narrowband audio as training data. This
training strategy makes the attack free of the requirement of
abundant data from the target to achieve satisfactory perfor-
mance and becomes a general scheme that can also applied

to other vibration side channels, e.g., IMUs (Section 8).
Our contributions are summarized as follows:

• We revealed a new speech threat that when the vibration
side-channel data has a limited bandwidth as low as 500Hz,
it is feasible to recover wideband (8kHz) intelligible speech.
The attack is based on the assumption that a short (2s-4s)
utterance of the victim is exposed to the attacker.

• We first investigated the narrowband characteristic of the
vibration-based side channel. We proposed a vocal-guided
attack scheme (VibSpeech) and used a mmWave sensor to
penetrate soundproof protections to demonstrate the threat.

• We performed extensive experiments to evaluate the pro-
posed attack. The results indicate that VibSpeech can re-
cover wideband and intelligible speech with an overall
MCD/SNR score of 3.9/5.4dB. The evaluation under dif-
ferent conditions shows the robustness of the attack. We
also validated the generalization of the attack on the IMU-
based method. Audio samples are available at https://demo-
online.github.io/VibSpeech/.

2 Related Work

Sound-induced vibrations on objects can be measured by
sensors or vibration-sensitive devices for speech recovery,
e.g., lasers [38, 45], inertial measurement units (IMU) [5, 8,
18, 21, 37], wireless signals [19, 20, 36, 49, 51–53], optical
sensors [14,34,40], vibration motors [44], and hard drives [28].
These works revealed great threats to speech privacy. Table 1
shows the comparison with typical and state-of-the-art work.
Different features are involved to discuss their pros and cons,
such as the dependency on the target’s prior data, invasiveness,
through-wall capability, sensing distance, and the bandwidth
of recovered speech. Considering that metrics used in these
works are different, common metrics (e.g., SNR) are reported
for quantitative comparison. Furthermore, we conducted an
experiment under the same experimental setting (Section 7.13)
for a fair comparison with related methods [20, 56].

Optical-based: Laser microphone has been studied since
the 1980s [38]. Adversaries can use laser transceivers to mea-
sure sound-induced vibrations on objects to recover sound.
Sami et al. [45] revealed that the Lidar sensor on a robot

https://demo-online.github.io/VibSpeech/
https://demo-online.github.io/VibSpeech/


Table 1: Comparison with prior work on vibration-based side channel.

Sensor Work Target
Target’s

prior data
Non-

invasive
Through-wall

(opaque)
Sensing
Distance

Speech
Bandwidth

Performance

Optical
[14, 38, 40] Loudspeaker - ✔ ✘ Far Narrow SNR:7.4dB [40]

[34, 45] Loudspeaker Moderate ✘ ✘ Moderate Narrow Acc:81% [34]

IMU
[37] Loudspeaker Heavy ✘ ✘ Close Narrow Acc:65% [37]

[8, 21] Smartphone Moderate ✘ ✘ Close Narrow MCD:4.8 [21]

mmWave
[9, 50] Smartphone Light ✔ ✘ Moderate Narrow PSNR: 20dB [50]

[20, 56] Loudspeaker Heavy ✔ ✔ Moderate Narrow SNR:0.2dB/MCD:10.3 1

VibSpeech Loudspeaker Light ✔ ✔ Moderate Wide SNR:5.4dB/MCD:3.9
1 The result was acquired under the same experimental setting with VibSpeech. More details are introduced in Section 7.13.

cleaner can sense the speech-related vibration on objects for
eavesdropping if the attacker hacks the robot cleaner and ac-
cesses the sensor data. Besides the laser, visible light can
also be used for vibration measurement. The Visual Micro-
phone [14] decoded audio from videos via a high-speech cam-
era. Lamphone [40] and Glowworm [39] used electro-optical
sensors and telescopes to capture the light bulb’s vibration
and the light changes of power indicators to recover speech
of around 7.4dB SNR. With a professional lens, the sensing
distance can be enlarged over 10m but can only work with-
out opaque walls. Recently, Long et al. [34] revealed that
pixel changes in smartphone images can also be used for
speech decoding. It achieves 81% accuracy for digit recogni-
tion. Optical-based methods can sense delicate vibrations and
often have a longer sensing distance than other methods with
professional lenses for enhancement. But this kind of method
cannot penetrate opaque blockage for sensing. Although Vib-
Speech has a lower SNR of 5.4dB than the state-of-the-art
(7.4dB) due to the penetrating attenuation, it still indicates
satisfactory performance for speech recovery.

IMU-based: Motion-sensor-based attacks have been
widely studied these years [5, 8, 18, 21, 37]. Gyrophone [37]
exploited smartphone gyroscopes to capture the external loud-
speaker’s vibration for digit inference. AccelEve [8] achieved
word reconstruction and gender inference via the built-in
accelerometer to collect the vibration of the smartphone’s
loudspeaker. Recently AccelEar [21] exploited generative ad-
versarial networks to recover audible speech from accelerom-
eter data. For the IMU-based attacks, an intelligible speech
recovery is challenging due to the low sampling rate of IMUs.
Although recent work [21] revealed the possibility of using
a more powerful network to learn the mapping between the
distorted vibration signal and the corresponding utterance,
they still required abundant vibration data and ground-truth
audio from the specific target to achieve satisfactory perfor-
mance. Compared with current IMU-based work, we do not
rely on the strong assumption of abundant training data from
the specific target while holding the attack goal of recover-
ing intelligible speech. For the motion-sensor-based attacks,
another drawback is their intrusive manner, i.e., requiring ma-
licious applications on the target to collect vibration data.

IMU-based methods can cause threats to smartphones besides
external loudspeakers. This kind of attack can be achieved
with low-cost motion sensors but often requires physical con-
tact with sound sources for vibration measurement. Compared
with non-invasive methods like optical-based and mmWave-
based ones, the IMU-based methods also require to hack the
target for data collection. VibSpeech works in a non-invasive
manner and achieves a lower MCD of 3.9 (better performance)
than the state-of-the-art (4.8) of IMU-based methods [21].

Wireless-based: Wireless signals have been exploited by
researchers for speech inference [9, 19, 20, 30–33, 48–50, 52,
53]. An advantage of wireless signals is that it can pen-
etrate soundproof obstructions. Benefiting from a shorter
wavelength, mmWave sensors can acquire more dedicated
vibrations for speech recovery. Work [19] proposed a phase-
calibration method to recover vibration signals. However, an
ideal object is not always available and current work still
cannot essentially solve the narrowband dilemma that is per-
vasive in vibration-based side channels. Our work does not
rely on the ideal reverberator but leverages the prevalently-
narrowband vibrating signals. mmSpy [9] and mmEve [50]
are good works to reveal the vibration-based side channel on
smartphones that can cause threats to speech played by the
earpieces. They found that the built-in earpieces can induce
vibration on the smartphone backshell, which can be used
to infer words or recover narrowband sound. However, these
works still suffer the narrowband condition of vibration-based
side channels and can only recover bandlimited sound with
damaged speech intelligibility. For comparison, VibSpeech
seeks to solve the pervasively narrowband feature of vibration-
based side channels and can recover 8kHz-wideband sound
that shows practical threats. Besides, VibSpeech is a general-
ized framework for different vibration-sensing methodologies,
e.g.,mmWave sensors, laser vibrometers, and IMUs. Com-
pared with laser-based and IMU-based methods, the mmWave-
based methods often have a moderate sensing distance of
several meters(<10m) but can penetrate opaque walls for non-
contact vibration sensing. It is also a non-invasive manner
without hacking the target. However, current works still suffer
the narrowband limitation of vibration-based side channels
and rely on heavy training data from the target to achieve



Figure 2: Frequency range of
phoneme formants (F1, F2).

Figure 3: Freq. response of
forced damped vibration [4].

satisfactory performance. Recent work [20, 56] used neural
networks to learn the mapping between the acquired vibra-
tion signals and corresponding audio. However, they required
both abundant vibration data and ground-truth audio collected
from the victim to achieve satisfactory performance. This con-
strains prior work to a target-dependent attack with the strong
assumption of requiring a large training set from the victim.
Without sufficient training data from the target, the perfor-
mance can get worse with SNR/MCD scores of 0.2dB/10.7.
By contrast, VibSpeech uses vocal-tract features to compen-
sate for narrowband audio instead of learning the mapping. It
achieves better performance (5.4dB/3.9) with less prior data
(2-4s audio) from the target. This frees the attack from a tough
requirement of training data from the victim.

3 Background

Speech Production. Human speech is produced by the coop-
eration among vocal organs (e.g., lungs, vocal cords, and ar-
ticulators). The lungs pump the air through the vocal cords to
cause an acoustic resonance and produce low-frequency com-
ponents (e.g., pitch and its low-order harmonics) of the speech.
The resonating air further passes through the vocal tract com-
posed of the articulators (e.g., the tongue, mouth, and lips),
and is fine-tuned to generate higher frequency components
(e.g., formants) to make a hearable speech. The phoneme
is the basic unit of pronunciation. In the case of English,
there are seven categories of phonemes, i.e., vowels (e.g.,
“/e/” in bet), fricatives (e.g., “/s/” in this), stops (e.g., “/p/” in
cap), affricates (e.g., “/Ù/” in change), nasals (e.g., “/m/” in
make), glides (e.g., “/l/” in lip), and diphthongs (e.g., “/æ/” in
at). Each phoneme is produced by different configurations
of human vocal organs and has different formant frequency
bands [10, 35] as shown in Figure 2 (F1 and F2 mean the first
and second formants). The combination of phonemes with
transitions (e.g., bigrams) helps people distinguish the words.
A damaged frequency band of phonemes (e.g., losing high
frequencies) will make the speech blurred and unintelligible
for human hearing.
mmWave-based Vibration Sensing. Millimeter-wave sen-
sors operating in frequency-modulated continuous-wave
(FMCW) mode are widely used in automatic driving and
industrial monitoring. Benefiting from the millimeter-level
wavelength, the mmWave sensor can measure delicate vibra-

Figure 4: The laser vibrometer and experimental setup to
measure the frequency response of vibrating objects.

tions from the phase of demodulated intermediate-frequency
(IF) signals. The reflected signal can be taken as a delayed
replica of the transmitted signal. Given a transmitted signal
with a frequency slope of S, the IF signal demodulated by the
sensor can be represented by Asin(2π f0t+φ0). The frequency
f0 of the IF signal indicates the distance d of the target from
the sensor d = f0c

2S where c is the speed of light in a vacuum.
To acquire the target’s vibration signals, we can apply fast
Fourier transform on the IF signal (called range-FFT) and ac-
quire the rang-bin (i.e., f0) corresponding to the target. Then
the vibration signal ∆d can be derived from the phase change
∆φ of the range-bin ∆d = λ∆φ

4π
where λ is the wavelength of

the transmitted signal. To acquire the range-bin corresponding
to the target, we can apply a high-pass filter ( fc=80Hz) on
all derived phase sequences and calculate the power density.
Then we choose the one with the highest score as the derived
vibration signal. The sampling rate fs of the vibration signal
is determined by the chirp rate fchirp, i.e., fs = fchirp.

4 Threat Model

Attack Scenario and Goal. We consider an attack scenario
where an individual is having an online conversation in a
soundproof room. The individual uses a loudspeaker to play
the speech. The speech may contain private information and
secrets. An attacker who is interested in the speech launches
eavesdropping from the outside of the isolated zone. The at-
tacker can use a portable mmWave sensor to penetrate the
sound insulator and capture the sound source vibration for
speech recovery. To cause a practical threat, the attacker aims
to overcome the limitations of the distorted narrowband vi-
bration signals, and recover wideband intelligible speech.
Assumption. Considering the practicality of the attack, we do
not assume the attacker has plenty of vibration data and audio
data collected from the victim to train a target-dependent
model. By contrast, we assume that the attacker can acquire
a short (2s-4s) utterance of the victim before launching the
attack. The utterance can be collected by a hidden microphone
or acquired in cyberspace, e.g., by making phishing calls to
record seconds of audio of the victim.



Figure 5: Frequency response measured by the laser vibrome-
ter. (a)(e) show the waveform and spectrum of played chirp
audio. (b)(c)(d) show measured vibration on objects. (f)(g)(h)
show corresponding spectrums. The marked points in (f)(g)(h)
indicate the maximum magnitude, and the magnitudes when
the excitation frequency equals 500Hz, 1kHz, and 2kHz.

5 Characteristic of Vibration-based Side Chan-
nel: the Narrowband Nature

In this section, we first introduce the theoretical model of
sound-related vibration and reveal the significant nature of
the vibration-based side channel, i.e., the sound-related vibra-
tion can attenuate with the increasing frequency of audio sig-
nals, resulting in uneven frequency response and ubiquitously-
narrowband vibration signals. Then we introduce our investi-
gation and observations about the narrowband phenomenon
via a professional laser vibrometer and a mmWave sensor.

Frequency Response of Vibration-based Side Channel.
Frequency response characterizes the relationship between
the object’s vibration and the excitation signal in the fre-
quency domain. Sound-induced vibration (e.g., on passive
diaphragms) or coil-driven vibration (e.g., on a loudspeaker)
can be taken as forced damped vibration [15]. Given an excita-
tion signal with acoustic-wave function P(t) = P0 cos(ωt+φ),
the radiation force on the object can be represented by
F = F0 cos(ωt + φ) where F0 = AP0 and A is the object’s
equivalent surface area. Then the forced vibration on the ob-
ject m can be characterized by the typical spring-oscillator
model [4] and the forced displacement is formulated by

x(t) =
F0

m[(ω2 −ω2
0)

2 +4δ2ω2]
1
2

cos(ωt +φ), (1)

where δ and ω0 are constants and known as the damping
coefficient and the natural angular frequency of the object,
respectively. Eq.1 indicates that when ω > [ω2

0 −2δ2]
1
2 , the

displacement amplitude F0

m[(ω2−ω2
0)

2+4δ2ω2]
1
2

of the vibrating

object degrades greatly with the increasing frequency f = ω

2π

of the excitation signal, as shown in Figure 3. When the
vibrating frequency increases to the point where the induced
displacement is overwhelmed by noise, the captured vibration
loses high-band components and causes a narrowband result.

Figure 6: Frequency response measured by a mmWave sensor.

Laser Vibrometry. To quantitatively investigate the char-
acteristic of the vibration-based side channel, we used a
laser vibrometer (LV-FS01 [3]) with a displacement resolu-
tion smaller than 1nm, to measure sound-related vibration
as shown in Figure 4. Tested objects included tinfoil, a chip
bag, and an HP loudspeaker. The object vibrated due to the
excitation of chirp audio (80-8kHz, 68dB) played by the loud-
speaker. The frequency response of tested objects is shown
in Figure 5. Compared with the flat spectrum of the exci-
tation signal shown in Figure 5(e), we can observe that the
spectrums of vibrating objects have an attenuating magnitude
with increasing frequency as shown in Figure 5(f)(g)(h). Com-
pared with the strongest response at the frequency band be-
low 1kHz, the attenuation of the frequency response achieves
11dB-16dB when f =500Hz, 26dB-33dB when f =1kHz, and
31dB-41dB when f =2kHz. The result validated that, with
the increasing frequency of excitation audio, the amplitude
of induced vibration on objects will decrease. On one hand,
the uneven frequency response causes distortions in captured
signals (i.e., distorted speech) compared with the ground-
truth audio. On the other hand, the attenuated high-frequency
components are prone to be overwhelmed by background
noise resulting in narrowband signals. The narrowband
dilemma of the vibration-based side channel causes loss of
abundant speech information in the high-frequency band,
and challenges intelligible speech recovery.

mmWave Sensing. As shown in Figure 6, we used a
mmWave sensor (AWR1843Boost) to capture the vibration
of the same objects mentioned above. The same chirp audio
was played as the excitation signal to acquire the frequency
response. The vibration signals are derived from the mmWave
signals as introduced in Section 3. The spectrogram and spec-
trum of acquired vibration signals are shown in Figure 6.
From Figure 6(c)(f)(i), we can observe that the power density
of the vibration signal decreases with increasing frequency
and is overwhelmed by background noise when the frequency
reaches a specific high-frequency band. Compared with the
strongest response shown in Figure 6(h), we can find that the
frequency response of the loudspeaker suffers attenuation of



Figure 7: Through-wall results. (a) and (b) show the spec-
trograms of played audio. (b) shows the 0-1kHz band of (a).
(c)(d) show spectrograms of mmWave-recovered audio. (d)
shows the 0-1kHz band of (c).

20dB/32dB/44dB at the frequency of 500Hz/1kHz/2kHz.
mmWave Sensing (Thru-wall). To further investigate the

impact of wall blockage on captured vibration signals, we set
the mmWave sensor outside a room to penetrate the sound-
proof glasses and sense the loudspeaker’s vibration from a
distance of 3m (Figure 10(a)). The loudspeaker played speech
audio that contained frequency components of up to 8kHz, i.e.,
“at this moment, the whole soul of the old man seemed centred
in his eyes which became bloodshot”. Spectrograms of the
excitation audio and raw mmWave-recovered audio (i.e., de-
rived vibration signals) are shown in Figure 7. Compared with
the original audio as shown in Figure 7(a), we can find that
the recovered audio shown in Figure 7(c) suffers a significant
loss of high-frequency response, especially the frequencies
above 500Hz. The result is consistent with our observation
and analysis mentioned above, i.e., the vibration-derived au-
dio has a limited bandwidth due to the uneven frequency
response with rapid decay of the vibration-based side channel.
The high-band speech components are prone to be buried in
the noise resulting in unintelligible speech. We can also find
that there is trailing noise in the mmWave-recovered audio
as shown in Figure 7(c). Besides, for the 0-1kHz band of the
mmWave-recovered audio as shown in Figure 7(d), there are
artifacts between the pitch and harmonics due to the sensor
noise. These artifacts degrade the signal-to-noise ratio of the
speech and make speech blurred, which should be suppressed.

Short Summary. Based on the above investigation, we
can find that (1) the amplitude of sound-related vibration
actually does not follow linearity with the excitation audio,
but degrades with the increasing frequency of the excitation
audio. This also explains the narrowband results in prior
work on vibration-based side channels [14, 20, 40, 56]. Such
characteristic of the vibration-based side channel causes
distortion in the vibration-derived audio and restricts the
recovered speech to the dilemma of a narrow band. (2) Al-
though mmWave sensing is feasible for through-wall vibration

Figure 8: The structure of SpkEnc.

sensing, the mmWave-recovered audio still suffers the loss of
high-band response (especially for f >500Hz) and artifacts
in the available low-frequency band ( f <500Hz), which chal-
lenge intelligible and wideband speech recovery.

6 VibSpeech: A Wideband Speech Recovery
Scheme for Vibration-based Side Channel

System Overview. In this section, we introduce how to over-
come the aforementioned challenges. We propose to use the
vocal-tract features of the speaker to compensate for the com-
promised and narrowband speech. We first introduce SpkEnc
to extract speaker embeddings that characterize the speaker’s
vocal-tract features (Section 6.1). The feature extraction only
requires a short utterance of around 2s-4s from the victim.
Before feeding the narrowband vibration data for wideband
speech recovery, we preprocess the vibration signal to sup-
press the distortion and artifacts in the low-frequency band
(Section 6.2). Then a vocal-guided bandwidth extension net-
work is proposed to compensate for the narrowband signal
using extracted vocal-tract features (Section 6.3), and produce
an enhanced spectrogram. Finally, a vocoder transforms the
enhanced spectrogram into audible waveforms (Section 6.4).

6.1 Vocal-tract Feature Extraction
Deep-learning-based vocal-tract feature extraction has shown
a powerful ability to characterize the features of human vocal-
tracts [7,11,23,47]. An ideal way of vocal-tract feature extrac-
tion is to collect all the phonemes/bigrams from the speaker
for the feature extraction. However, in a real case, speech con-
tents of acquired utterances from the victim can be arbitrary
and cannot be promised on expected phonemes. Thus, a key
challenge of the vocal-tract feature extraction is how to make
the extraction independent of the pronounced phonemes (i.e.,
utterance-independent features) of the speaker and achieve an
accurate extraction based on a short utterance with acceptable
duration. To achieve this goal, we designed a speaker-encoder
network SpkEnc. We trained SpkEnc with the GE2E loss [47]
which computes the loss on each embedding and aims to push
the embedding result to the centroid of the same speaker on
the feature space and away from ones of other speakers. For a
satisfactory generalization performance, we randomly chose
fragments from utterances of different individuals. The train-
ing process randomly takes utterances from different speakers
without the requirement of utterance alignment to achieve an



Figure 9: Vocal-guided bandwidth extension. The network parameters are detailed in Appendix C.

utterance-independent embedding extraction. The GE2E loss
is detailed in Appendix A. The network consists of six layers
of Long-Short-Term-Memory (LSTM) blocks followed by a
full-connected layer as the projection layer. The feature size
of each LSTM layer and the projection layer is 256 which is
consistent with the embedding size. A Rectified Linear Unit
(ReLU) outputs the final embedding from projected features.

Training: We used a public dataset (Voxceleb2 [13]) to
train SpkEnc with 5.9 million steps for convergence. During
training, we applied voice-activity-detection (VAD) [25] to
remove internal silence parts and segmented the utterance into
fragments of 1.6 seconds with an overlap of 0.8 seconds. The
40-band mel spectrogram of each fragment is fed into SpkEnc
to generate the embedding of each fragment. The final speaker
embedding is derived by calculating the L2-normalization of
these embedding vectors. Note that the network for vocal-tract
feature extraction is trained offline in advance and free of tar-
get’s training data. Based on the trained SpkEnc, the attacker
can collect a short utterance from the victim and feed the
utterance into SpkEnc to derive the victim’s speaker embed-
dings. During the attack phase, the attacker uses the extracted
embeddings for wideband speech reconstruction(Section 6.3).

6.2 Preprocess
As investigated in Section 5, besides the limited bandwidth,
the vibration signal also suffers distortion and artifacts due to
the uneven frequency response of objects and the sensor noise
in the raw vibration signal. Thus, before feeding the narrow-
band signals for wideband speech reconstruction, we need to
correct the distortion and remove the artifacts first. The deriva-
tion of vibration signals from mmWave data is introduced
in Section 3. From Figure 7(d), we can find that the artifacts
exist between the pitch and its harmonics. For such inter-band
noise, an intuitive solution is to apply a finite impulse re-
sponse (FIR) filter with multiple passbands to remove the
noise. However, finding proper filter parameters (e.g., center
frequency) is hard and impractical to achieve considering that
the frequency of pitch and harmonics can change according to
different pronunciations. To address this problem, we propose
an adaptive bandpass-filtering algorithm based on the feature
of human speech. The core idea is based on the fact that for a
short fragment, the pitch often shows a high power density in
the low-frequency band (80-255Hz) while the harmonics are
multiples of the pitch. Thus, we can first acquire fragments of

the speech (OverlapSegment) and estimate the fundamental
frequency f0 for each fragment sn (PitchEstimation). Then
we apply multiple bandpass-filtering BPF(sn, fc) on the har-
monics by setting the center frequency fc of the filter into
multiples of f0, i.e., fc = M · f0. To suppress the low-band dis-
tortion, a correction coefficient is applied on m-th harmonic
based on its power density |Sm|. The final result is acquired
by adding the segments with overlap (OverlapAdd). The al-
gorithm is shown in Algorithm 1 (Appendix B). After the
preprocessing, the artifacts and distortion in the raw vibration
signals are suppressed. The result is fed into the vocal-guided
bandwidth extension to derive a wideband spectrogram.

6.3 Vocal-guided Bandwidth Extension
The core idea of VibSpeech is to use the extracted vocal-
tract features of the victim to compensate for acquired nar-
rowband vibration signals. The key is how to fuse the nar-
rowband spectrogram and extracted vocal-tract features (i.e.,
speaker embeddings mentioned in Section 6.1) to acquire a
wideband spectrogram. To achieve this goal, we designed
an attention-based neural network as shown in Figure 9 to
fuse the speaker embedding and narrowband signal. Specif-
ically, we used adversarial training to improve the general-
ity of the model. The generator takes an encoder-decoder
structure that shows superior performance in pixel-to-pixel
transformation, as the backbone. The shortcut connection be-
tween every two blocks helps to maintain details in the upper
level [43]. To capture non-local correlations among harmonics
in the time-frequency (T-F) domain, we adopted a frequency-
transformation-block (FTB) for each block. The core of FTB
is to learn a transformation matrix applied on the frequency
axis and has a full-frequency receptive field [55]. Its inner
convolution layers predict an attention map in the T-F domain
and help to capture the essential correlation among speech
harmonics using the channels with speaker embeddings. The
discriminator aims to justify the consistency of two inputs
and output the predicted label, i.e., real or fake. It consists
of four convolution blocks to extract pixel-wise features of
inputs, and a Sigmoid layer to predict the result. The network
parameters are introduced in Appendix C.

Training: During the training of the generator, we adopt
the mel loss and adversarial loss to improve the distortion
of reconstructed spectrograms. We use the BCE loss to up-
date the discriminator. Details of the loss functions are in-



Figure 10: (a) A room with the soundproof wall (two layers of
1cm-thick glass). (b)Tested vibrating objects in the evaluation.

Figure 11: The spectrograms of (a) original audio, (b) raw-
recovered audio via mmWave, and (c) reconstructed audio by
VibSpeech. (Speech: at this moment the whole soul of the old
man seemed centred in his eyes which became bloodshot)

troduced in Appendix C. The generator takes narrowband
spectrogram and speaker embedding as inputs to reconstruct
lost formants in the high-frequency band. The narrowband
spectrograms used for training are derived from public audio
datasets (train-clean-100/train-clean-360/train-other-500 of
LibriSpeech [41]) by applying low-pass filtering (with a cut-
off frequency fc of 500Hz) to each audio trace. The generator
and the discriminator are updated alternatively. The network
was trained with 61k steps for convergence. During the attack,
the attacker feeds the preprocessed narrowband signal (Sec-
tion 6.2) and pre-extracted speaker embedding (Section 6.1)
into the trained generator to acquire a wideband spectrogram.

6.4 Vocoder
To recover hearable voice, we need to transform the enhanced
spectrogram (Section 6.3) into waveforms in the time domain.
The transformation can be achieved by a vocoder. In recent
years, generated adversarial network (GAN)-based vocoders
such as WaveRNN [24], MelGAN [27], HiFiGAN [26], and
BigVGAN [29], have shown great improvement in the natu-
ralness and fidelity of reconstructed speech compared with
traditional methods (e.g., Griffin-Lim vocoder [16]). Thus, we
adopt the state-of-the-art structure, i.e., BigVGAN [29], which
achieves superior performance and generality for audio syn-
thesis. The vocoder is composed of six blocks of transposed
1-D convolution followed by an anti-aliased multi-periodicity

composition (AMP) module. To model complex waveforms,
the AMP module contains multiple signal components with
learnable periodicities and adopts a low-pass filter to reduce
the high-frequency artifacts. Training: The vocoder takes the
mel spectrogram as the input and produces hearable audio
waveforms. We used public datasets (train-clean-100/train-
clean-360/train-other-500 of LibriSpeech [41]) to train the
vocoder. The mel-spectrograms are produced by applying a
128-mel-transform on the result of a short-time Fourier trans-
form. The model was trained with 110k steps for convergence.

7 Evaluation

7.1 Setup and Metrics
We used samples from a widely-used speech corpus Lib-
riSpeech (dev-clean) [41] for evaluation. The dataset contains
2,073 audio traces sampled at 16kHz from 40 individuals (i.e.,
20 males and 20 females). We played the audio (68dB) via an
HP loudspeaker and collected corresponding vibration data
via a mmWave sensor (AWR1843Boost) as shown in Figure
10(a). The derived vibration signal is at a sampling rate of
10.2kHz and resampled at 16kHz for further processing. Note
that in a real case, the speech contents for vocal-tract fea-
ture extraction may be different from the spoken ones during
the attack phase. Thus, for each tested individual, we ran-
domly chose one trace for the vocal-tract feature extraction,
and used the left samples to evaluate the performance of the
speech reconstruction. The models were trained offline with
four NVIDIA RTX A6000 GPUs and deployed on a laptop
(ThinkPad) for speech recovery. For robustness experiments
(Section 7.4-7.9), the used corpus includes 663 samples of the
first five males and five females in the 40-individual dataset.

Mel-Ceptral Distortion (MCD): The MCD is a widely
used metric to quantify the speech distortion between the
recovered audio and the original audio. Considering the target
waveform xtarg and the reference waveform xre f , the MCD
can be calculated by

MCD =
10

T ln10

T−1

∑
t=0

√
2

D

∑
d=1

[ctarg
d (t)− cre f

d (t)]2, (2)

where ctarg
d (t) and cre f

d (t) denote the MFCC [17] of xtarg and
xre f respectively. T and D mean the total frames and MFCC
dimensions. Typically, the recovered audio with an MCD
value smaller than 8 indicates satisfactory performance [54].
A lower MCD score indicates better speech intelligibility.

Frequency-weighted Signal-to-Noise Ratio (SNR): To
quantify the gain and quality of the reconstructed speech,
we used the frequency-weighted SNR [22] calculated by the
average gain across multiple frequency bands of the signal:
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Figure 12: Raw: the score of raw-recovered audio. Rec: the
score of reconstructed audio by VibSpeech.

Figure 13: Raw: the score of raw-recovered audio. Rec: the
score of reconstructed audio by VibSpeech.

where S(k,n) and Ŝ(k,n) are weighted spectrums in the k-th
frequency band at the n-th frame of original and reconstructed
speech. W (k,n) is the weight placed on the k-th frequency
band where W (k,n) = |S(k,n)|0.2. N is the total number of
frames. A higher SNR indicates a better speech quality.

7.2 Overall Performance

To intuitively observe the performance of the wideband
speech recovery, we compared the spectrograms of original
audio, raw-recovered audio, and reconstructed audio by Vib-
Speech, as shown in Figure 11. Compared Figure 11(a) with
Figure 11(b), we can observe that the frequency components
above 500Hz in the raw-recovered audio are absent due to
the narrowband frequency response of the vibration-based
side channel. From Figure 11(c), we can observe that the
high-frequency components are recovered with a bandwidth
of up to 8kHz (e.g., consonants /s/ and /z/) after the recon-
struction. The reconstructed spectrogram shows a high simi-
larity with the original one in (a). The overall MCD and SNR
scores are shown in Figure 12 and Figure 13, respectively.
Overall, VibSpeech-reconstructed audio achieves an average
MCD/SNR score of 3.9/5.4dB while the raw-recovered au-
dio only achieves an average MCD/SNR score of 11.5/0.2dB.
This indicates that VibSpeech can effectively correct the dis-
tortion and suppress artifacts in raw-derived vibration signals,
and improve the speech intelligibility and quality significantly.

Figure 14: (a) Original audio of speaker A. (b) Reconstructed
audio without speaker embedding (speaker A). (c)(d) show
results with speaker embeddings extracted from two different
utterances of speaker A. (e) Difference between (c) and (d).

Figure 15: Impact of (a)speaker embedding and (b)volume.

7.3 Impact of Speaker Embedding

To investigate the impact of the speaker embedding, we used
different durations of the audio trace for speaker embedding
extraction, including 0s (random noise), 2s, 4s, 6s, and 8s.
The tested dataset is the one we constructed in Section 7.1.
For each tested individual, we randomly chose a trace and
selected one of the fragments for the embedding extraction.
The collected vibration data corresponding to the left sam-
ples are used for the speech reconstruction. The calculated
MCD and SNR scores are shown in Figure 15(a). (1) Overall,
the MCD score decreases and the SNR score increases with
the increasing duration of the embedding audio. (2) We can
observe that without the speaker embedding from the victim
(i.e., 0s), the recovered audio achieves a limited performance
with an MCD score of 9.7 and SNR of -2.4dB. (3) With a
short utterance (⩾2s) for speaker embedding extraction, the
reconstructed audio achieves an MCD score lower than 4.5
and an SNR higher than 6.1dB, which indicates satisfactory
speech intelligibility and quality. The results indicate that
VibSpeech can effectively extract speaker embeddings from
the short utterance of the victim to recover wideband speech.

To intuitively observe the impact of the speaker embed-
ding, we used random noise and two different utterances from
the same speaker for speaker embedding extraction and com-
pared the spectrograms of reconstructed audio. The results
are shown in Figure 14. (1) Compared the original spectro-
gram (Figure 14(a)) with the reconstructed spectrogram with-
out speaker embedding (Figure 14(b)), we can find although
the latter maintains low-band speech components, the recon-
structed high frequencies are random-like instead of consis-
tent with formants as shown in the original spectrogram. (2)
Figure 14(c) and Figure 14(d) show the reconstructed spectro-
grams with speaker embeddings extracted from two different
utterances of the same speaker. Compared with the original



Figure 16: Impact of preprocessing.

audio shown in Figure 14(a), we can observe that the two
reconstructed audio in Figure 14(c)(d) contain most of the
high-band components of up to 8kHz and the two spectro-
grams both show high similarity with the original spectrogram.
This indicates that VibSpeech can accurately reconstruct lost
formants in high band and recover wideband speech. Figure
14(e) shows the difference between the spectrograms shown
in Figure 14(c)(d). We can observe that the difference is sub-
tle, which indicates robust speaker-embedding extraction.

7.4 Impact of Sound Volume
We played audio by setting the volume into different val-
ues including 20% (63dB), 40% (68dB), 60% (72dB), 80%
(78dB), and 100% (84dB). We conducted the experiment
in the same scenario as shown in Figure 10(a) with a sens-
ing distance/angle of 3m/0◦. The calculated MCD and SNR
scores are shown in Figure 15(b). We can observe that the
performance is satisfactory in a normal sound volume (e.g.,
20%-40%). We also noticed that the performance does not
show great promotion but a steady improvement as the sound
volume increases. The possible reason is that even though the
sound volume increases, this does not change the narrowband
frequency response of the vibrating target. Thus, the improve-
ment is not as significant as we expected but shows a smooth
ascent. Overall, the reconstructed audio by VibSpeech has an
average MCD score of below 5.3 and an average SNR score of
above 3.5dB, which indicates satisfactory performance with
intelligible speech recovery.

7.5 Impact of Preprocessing
A key training strategy for vocal-guided wideband extension
(Section 6.3) is generating narrowband speech from public
audio datasets by applying low-pass filtering. However, as
investigated in Section 5, the difference between the narrow-
band audio and narrowband vibration signal is that the raw
vibration signals suffer distortions and artifacts in the low
band. Thus, we proposed Preprocess in Section 6.2 to merge
the gap between normal narrowband audio and distorted vibra-
tion signal. To study the impact of Preprocess, we compared
the results of speech reconstruction with and without Prepro-
cess and kept other settings the same. The tested dataset is the
one we constructed in Section 7.1. As shown in Figure 16(a),
we can find that the MCD score degrades from 7.7 to 4.1

Figure 17: Impact of (a) oscillators and (b) blockages.

when the speech is reconstructed with Preprocess. As shown
in Figure 16(b), the SNR increases from 3.4dB to 6.7dB with
over 3.3dB improvement. This indicates the Preprocess in
Section 6.2 can effectively suppress the distortions and arti-
facts in the low band of vibration signals and thus contributes
to speech recovery with better intelligibility and quality.

7.6 Different Oscillators
We chose different targets for speech recovery, including loud-
speakers (HP, JBL, Philips, and Mi), passive films (chip bag
and tinfoil, 40cm from the HP loudspeaker), built-in loud-
speakers of laptops (MacBook and ThinkPad), and human
speaker (male, 40cm away from the tinfoil). We placed the
mmWave sensor outside the soundproof room (Figure 10(a))
with a sensing distance/angle of 3m/0◦ and captured the vi-
bration of the in-room target. The loudspeakers and laptops
played audio with an SPL of 68dB. The human speaker read
the same corpus with around 72dB SPL and induced vibra-
tions on the tinfoil. A microphone recorded the audio at the
same time. From Figure 17(a), we can observe that the MCD
ranges from 3.5 to 7.3 and the SNR score ranges from 3.1dB
to 4.5dB. The results on loudspeakers are better than the ones
on passive films and human speaker (MCD/SNR: 7.3/3.1dB).
The reason is that the vibration amplitude on loudspeakers is
larger than the sound-induced vibration amplitude on passive
films by loudspeakers or a human speaker, which results in
a higher SNR on the reflected mmWave signals. This also
reveals that compared with passive films, loudspeakers can be
more prone to be a compromised target. We can also find that
the results on external loudspeakers are better than the ones
on built-in loudspeakers of laptops (6.4/3.8dB, 6.6/4.3dB).
The reason is that the solid-propagated vibration on the laptop
shell can suffer more attenuation compared with the former.
Overall, VibSpeech can both cause threats to passive films
and loudspeakers. When passive films are not available in
the attack scenario, VibSpeech can still cause threats to the
commonly used loudspeakers and recover intelligible speech.

7.7 Blockage Materials
We performed experiments by penetrating different materials
for vibration sensing. Tested materials include soundproof
glass, wood (0.5cm-thick), sponge (1.5cm-thick), curtain, and
drywall (2cm-thick). We placed the mmWave sensor 3m away



Figure 18: Impact of sensing (a) distance and (b) angle.

Figure 19: Impact of (a) movement and (b) raw bandwidth.

from the HP loudspeaker with an angle of 0◦, and penetrated
these materials for speech recovery. The loudspeaker played
audio with an SPL of 68dB. The result is shown in Figure
17(b). We can observe that although the performance varies
across different materials, the overall MCD and SNR scores
are below 5.0 and above 3.9dB, respectively. This indicates
that VibSpeech is resistant to common-used soundproof ma-
terials and can recover intelligible speech.

7.8 Sensing Distance and Angle
The SNR of reflected mmWave signals can change with the
sensing distance and angle, and may affect the performance
of speech recovery. Thus, we performed a quantitative ex-
periment penetrating the soundproof wall (Figure 10(a)) to
investigate the impact of sensing distance and angle. The
distance refers to the distance between the mmWave sensor
and the target (i.e., an HP loudspeaker). The angle refers to
the angle between the orientation of the loudspeaker and the
transmitted-beam direction of the sensor. The loudspeaker
played audio with an SPL of 68dB. The results are shown in
Figure 18(a)(b). We can find that when the distance increases
up to 5m and the angle reaches 60◦, the performance shows
a noticeable degradation. The reason is that the attenuating
reflection due to the increasing distance and angle causes a
lower SNR on the received signals and the delicate vibrations
are prone to be overwhelmed by the noise floor. But overall,
with a sensing distance of around 4m and an angle within 45◦,
the calculated MCD and SNR scores are lower than 6.2 and
above 4.8dB, which indicates a satisfactory performance.

7.9 Impact of Movement
VibSpeech extracts the range-bin of the target after the range-
FFT and removes irrelevant range-bins to eliminate interfer-
ences, e.g., background movements. Considering that there
can be moving subjects around the target during the attack, we

Figure 20: Comparison with laser vibrometry.

Figure 21: Spectrograms of (a) original, (b) laser-recovered,
and (c) VibSpeech-enhanced audio (“go, do you hear”).

conducted a comparison experiment to investigate the impact
of surrounding movements. We asked a volunteer to sit on a
chair and type randomly at a distance of 1m from the targeted
loudspeaker (HP) in the room (Figure 10(a)). Another volun-
teer is asked to pace back and forth at a distance of 1.5-2.5m
from the target. The loudspeaker played audio with an SPL
of 68dB. The result is shown in Figure 19(a). We can find
that when there are movements around the target (i.e., w/),
the MCD score achieves 5.2 which is close to the score of 5.1
when without (i.e., w/o) the movements. The calculated SNR
scores under the two conditions are also very close (i.e. 6.2dB
for w/o and 6.5dB for w/). The result indicates that VibSpeech
is resistant to surrounding movements in the attack scenario.

7.10 Bandwidth of Raw Narrowband Signal

To investigate the impact of the bandwidth of raw-acquired
vibration signals, we performed low-pass filtering with differ-
ent cut-off frequencies fc on the raw vibration data to acquire
narrowband signals with different bandwidths. We used the
constructed dataset in Section 7.1. For each experiment, we
retrained the bandwidth-extension model (Section 6.3) by set-
ting fc of the low-pass filter to 200Hz/500Hz/800Hz while
keeping other processing (e.g., SpkEnc, Preprocess, and the
vocoder) in Section 6 unchanged. We calculated scores of
reconstructed audio under different fc. As shown in Figure
19(b), we can observe that the performance is improved when
fc increases from 200Hz to 800Hz. Because a higher band-
width of raw-vibration signal contains more speech compo-
nents and contributes more to the bandwidth extension.

We also notice that the performance is limited when the raw
vibration signal has a bandwidth of 200Hz with MCD>11.2
and SNR<1.4dB. The possible reason is that the limited band-
width compromised the pitch considering the pitch ranges
from 80Hz to 255Hz. Besides, we can notice that there is
a significant improvement when the bandwidth of vibration
signals increases from 200Hz to 500Hz. This indicates that a



Table 2: Performance on the Common Voice corpus.
Performance Overall A-C B-C C-C

MCD 3.7 9.1 10.2 3.3
SNR 6.1dB 0.1dB 0.2dB 5.9dB

wider bandwidth of the narrowband vibration signal can bring
great improvement in the speech recovery and the perfor-
mance is satisfactory when only with a bandwidth of 500Hz.
To investigate the root cause of this result, we used a motion
sensor to measure a male speaker’s throat vibration when he
spoke. We found that frequency components of human vocal-
cords vibration can be around 500-600Hz rather than just
the pitch (as shown in Figure 26 in Appendix E). Note that
these basic frequencies induced by human vocal cords pass
through the vocal tract to produce intelligible speech. Thus,
when the narrowband (<200Hz) signal loses these frequency
components, the produced high-frequency components after
the vocal tract can be compromised. This is possibly another
reason for the limited performance of VibSpeech when the
raw signal has a bandwidth below 200Hz. Note that such nar-
row bandwidth (<200Hz) is rare for common sound sources
as we have investigated in Section 5 and Section 7.6. Overall,
VibSpeech can recover intelligible speech even though the
raw vibration signal has a narrow bandwidth as low as 500Hz.

7.11 Different Vocal Tracts
To further investigate the performance of VibSpeech across
different vocal tracts, we tested VibSpeech on another public
dataset (i.e., Common Voice [6]). There were 400 utterances
from twenty individuals (10 males and 10 females) involved.
We made sure that none of the samples was used to train the
model of VibSpeech. We used the trained model in Section
7.1 and kept the setup the same for speech recovery. The cal-
culated MCD/SNR scores of recovered speech are shown in
Table 2. We can find that the overall performance is satisfac-
tory with average MCD/SNR scores of 3.7/6.1dB. The result
validates the generalization ability of VibSpeech across differ-
ent vocal tracts. To better understand the impact of vocal-tract
features (i.e., speaker embeddings), we chose samples of three
individuals and used the embedding from individual A (male),
individual B (female), and individual C (male) to compensate
for the narrowband speech of individual C. The results of
reconstructed speech with embeddings of A, B, and C are
denoted as A-C, B-C, and C-C, respectively. We can find that
VibSpeech performs well with embedding C (3.3/5.9dB). But
the performance degrades when with embeddings from an-
other person (e.g., A or B). Considering that VibSpeech used
target’s vocal-tract features (i.e., speaker embedding) to com-
pensate for the narrowband speech, the degradation possibly
results from the differences in vocal tracts between C and A/B.
The result indicates that currently vocal-tract features of the
target are still required to achieve satisfactory performance.

7.12 End-to-End Attack

We performed an end-to-end attack to demonstrate the attack
process of VibSpeech by penetrating the soundproof wall
shown in Figure 10(a) with a sensing distance/angle of 3m/0◦.
We asked a volunteer to sit in the room and play the speech au-
dio (68dB SPL) of five males and five females chosen from the
40 individuals via an HP loudspeaker. For each individual, we
randomly selected one audio trace to extract his/her speaker
embedding and used the remaining samples for testing. The
used models for speech recovery are the ones pre-trained in
Section 6. During the attack, we used the mmWave sensor to
transmit and receive mmWave signals from the room outside,
and derived captured vibrations of the loudspeaker on a laptop.
(1) The derived vibration signals were first fed into the Pre-
process (Section 6.2) to suppress the low-band distortion and
artifacts. (2) Then the preprocessed signal and corresponding
speaker embedding were fed into the vocal-guided bandwidth
extension module (Section 6.3) to recover the high-frequency
band. (3) Finally, the enhanced spectrogram was fed into the
vocoder (Section 6.4) to generate an audible waveform.

To fully understand the performance of the end-to-end at-
tack, we compared the performance of VibSpeech with the
laser vibrometry. For the laser vibrometry, we performed the
experiment in a line-of-sight condition (1m) without blockage
as the same configuration shown in Figure 4(d) and used the
same speech corpus as the one for VibSpeech. We calculated
the scores of raw laser-recovered audio (LV-Raw), VibSpeech-
recovered audio (Ours), and the laser-recovered audio but
enhanced by our method (LV-Enh, i.e., we precessed the au-
dio of LV-Raw with VibSpeech as mentioned above to acquire
the audio of LV-Enh). The results are shown in Figure 20.

We can find that the average MCD/SNR of the laser vibrom-
etry (LV-Raw) achieves 9.7/ -0.1dB which indicates the worst
performance. By contrast, VibSpeech (Ours) performed better
with an average MCD/SNR score of 4.1/6.8dB. The reason
is that although the laser vibrometry has a higher resolution
than the mmWave sensor for vibration sensing, the recovered
audio is still distorted and has large attenuation in the high-
frequency band due to the uneven frequency response of the
vibration-based side channel (Section 5). The attenuated high-
frequency components can cause mel distortions in the laser-
recovered audio and result in poor performance. Enhanced by
our proposed scheme, the performance of the laser vibrometry
(LV-Enh) is improved with an average MCD/SNR score of
4.3/5.6dB. Figure 21 shows the result of LV-Raw and LV-Enh.
Compared with the original audio shown in Figure 21(a), we
can find that high-frequency components (>500Hz) of the
raw laser-recovered audio attenuate significantly as shown in
Figure 21(b) while the enhanced audio shown in Figure 21(c)
has a wider bandwidth which contributes to higher speech
intelligibility. This result also validates that VibSpeech can
be applied to laser vibrometry for speech enhancement.



Figure 22: Compared with target-dependent speech recovery.

Figure 23: (a) We played audio via a smart speaker (Redmi).
(b) The accelerometer captured the vibration of the speaker.

7.13 Comparison with Target-dependent
Speech Recovery

To achieve intelligible speech recovery, an intuitive method is
to learn the mapping between narrowband vibration signals
and wideband audio of the victim using an end-to-end neural
network [20, 56]. In such a case, the attacker is required to
collect both vibration (narrowband) data and ground-truth
(wideband) audio from the target at the same time to train the
model, i.e., a target-dependent attack. Besides, such trained
models represent the mapping between limited combinations
of phonemes in the training set. But for the same combina-
tion of phonemes, the interval and duration of each phoneme
can be different for two individuals. Next, we compared our
method quantitatively with the one mentioned above.

Quantitative Experiment. For a fair quantitative compari-
son with related methods [20, 56], we used the same dataset
constructed under the same experimental setting in Section
7.1. For the end-to-end learning, we used the widely-used
Unet structure [20,56] to learn the mapping between the spec-
trograms of vibration signals and corresponding ground-truth
audio, and used the vocoder in Section 6.4 to generate audio
waveforms. We separated the 40-individual dataset into three
parts, 80% data from the first 20 individuals as the training
set, the remaining 20% data from the first 20 individuals as
a testing set (InterTest), and the data of the remaining 20 in-
dividuals as another testing set (ExterTest). For VibSpeech,
we used the models in Section 6 and used the same dataset as
ExterTest to show the performance on untrained targets.

Result Analysis. To compare the performance of above
methods, we calculated the MCD and SNR scores of recov-
ered audio and the results are shown in Figure 22. For the
end-to-end learning, we can observe that when the testing data
is from individuals included in the training set (InerTest), the
performance is satisfactory with an MCD/SNR of 5.7/6.5dB.
However, for unseen targets that are not included in the train-
ing set (ExterTest), the performance is poor with the MCD

Figure 24: Overall performance of the IMU-based method.

Figure 25: (a)Original, (b)IMU-recovered, and (c)VibSpeech-
enhanced audio (“it is obviously unnecessary for us”).

score increasing to over 10.3 and the SNR degrading to below
0.2dB. The result illustrates the limitation of the end-to-end
learning on the cross-target attack. For unseen targets, our
method outperforms the former with an MCD score lower
than 4.7 and an SNR higher than 5.3dB, which indicates an
intelligible and high-quality speech recovery. The results indi-
cate that our method has a better generality for unseen targets
which is more practical in a real attack case.

8 Extension to IMU-measured Vibration

In this section, we applied the proposed scheme (Section 6) to
IMU-measured vibration signals for speech recovery. Modern
commercial acoustic devices [1] are equipped with accelerom-
eters to enable tap gesture controls to pause/resume music or
detect position changes of the device. Adversaries e.g., mali-
cious service suppliers or man-in-the-middle attackers, may
use the acquired vibration data from the motion sensor for
eavesdropping. Due to the inaccessibility of the motion-sensor
data on commercial loudspeakers, we attached an accelerom-
eter (ADXL345) to a smart speaker’s motherboard as shown
in Figure 23 to reveal the threat.

End-to-End Wideband Speech Recovery. We played au-
dio of the same corpus in Section 7.1 via the smart speaker
(68dB SPL) and acquired corresponding accelerometer data
over the SPI interface of a Raspberry Pi 4B at a sampling rate
of 1kHz. For each individual, we randomly chose a sample
and used 3s of audio for his/her speaker embedding extraction
(Section 6.1). The remaining samples of the individual are
used for testing. The detailed process for each audio recon-
struction is as follows. (1) We upsampled the vibration signal
to 16kHz and preprocessed (Section 6.2) the data to remove
artifacts and correct low-band distortions. (2) We performed
the vocal-guided bandwidth extension (Section 6.3) with the



preprocessed vibration data and the extracted speaker em-
bedding, and acquired the enhanced spectrogram. (3) We fed
the enhanced spectrogram into the vocoder (Section 6.4) and
acquired the reconstructed audio. Note that all the models are
the ones introduced in Section 6 without re-training.

Result Analysis. For comparison, we calculated scores of
recovered audio from raw vibration data (Raw) and recon-
structed audio by VibSpeech (Rec). The results are shown
in Figure 24. From Figure 24(a), we can observe that the
audio recovered from the raw IMU-captured vibration data
suffers significant distortions with an average MCD score of
17.7 and SNR of -2.2dB. The reason is that the sensor can
only recover frequency components lower than 500Hz due to
the limited sampling rate of 1kHz according to the Nyquist
theorem [42]. The absence of higher frequency components
causes severe distortions and a poor SNR of the recovered
audio. However, after the enhancement by VibSpeech, the
IMU-recovered audio has a wider bandwidth of up to 8kHz,
and thus achieves a better MCD score of 6.5 and SNR of
5.1dB. Figure 25(a)(b)(c) show the spectrograms of original
audio (ground-truth), raw-IMU-captured vibration signal, and
VibSpeech-reconstructed audio based on the raw IMU data,
respectively. Comparing (b) with (a) in Figure 25, we can
find that the raw vibration signal captured by the IMU loses
high-frequency components above 500Hz. After reconstruc-
tion (Figure 25(c)), the lost speech formants are recovered
which contributes to better speech intelligibility and quality.

9 Limitation and Discussion

Vibration Signal with a Narrower Bandwidth. VibSpeech
achieves wideband speech recovery with up-to-8kHz band-
width for narrowband vibration signals below 500Hz. How-
ever, we find that the performance is not satisfactory when the
raw narrowband signal has an extremely limited bandwidth
under 200Hz. As analyzed in Section 7.10, the vocal-cord-
induced components (denoted as source components) can be
around 500Hz, which pass through the human vocal tract to
generate higher frequencies and finally produce intelligible
speech. Thus, a narrowband signal with incomplete source
components may cause a limited performance on wideband
speech recovery by VibSpeech. The frequency aliasing should
also be considered when with a low sampling rate. To make
VibSpeech work under a narrower bandwidth (e.g., smart-
phone IMUs), a potential improvement is to investigate the
inner relationship between the pitch and low-order harmonics.
A General Model for Wideband Speech Recovery. Recov-
ering wideband audio from band-limited signals has always
been a challenging problem, especially for the vibration-based
side channels. Besides addressing the uneven frequency re-
sponse, another key challenge lies in how to reconstruct the
high-band components accurately without information loss
or bias. From an attacker’s point of view, an ideal solution is
to design a general model that can recover high-band speech

components of an arbitrary victim without any prior knowl-
edge about the victim. However, there is a fact that the high-
band components are determined mostly by human vocal-tract
features (i.e., the classic source-filter model [46]) that are di-
verse among people. This introduces a contradiction between
the goal of a general model and the uniqueness of human
pronunciation. VibSpeech reveals the threat that vocal-tract
features can be used to extend the bandwidth of narrowband
audio once the attacker acquires a short (2s-4s) utterance
from the victim. This reminds the public that people should
be aware of their casual speech leakage to avoid exposure of
their vocal-tract features, e.g., be careful with unknown calls
or posting voice samples on the Internet.

10 Countermeasures

RF-based methods. To defend against the malicious
mmWave sensor, (1) an intuitive method is to deploy electro-
magnetic shielding to block the transmitted mmWave signals,
such as a Faraday cage. However, it is costly to deploy the
shielding materials for a conference room with hundreds of
square meters. By contrast, (2) passive smart surfaces [12] can
be a potentially cost-effective solution to defend against mali-
cious mmWave signals. The user can deploy the tag near the
loudspeaker to manipulate reflected mmWave signals and dis-
turb the acquired vibration in the reflected signal. To actively
defend against the attack, (3) the user can use a wireless jam-
mer to interfere with the malicious receiver. However, such
defense requires parameters of the malicious device [50], such
as operating frequency band and chirp duration.
Acoustic-based methods. The mmWave-based attack in
this paper works in a scenario where the user plays audio
via a loudspeaker. To avoid speech leakage via the outside
vibration-based side channel, the user can choose a headset for
confidential communication. However, note that VibSpeech
not only works in the mmWave sensing methodology but also
works for other vibration-based side channels, such as IMU-
based speech recovery. Nowadays, IMUs are widely used in
headsets and earphones [2] for touch control and position esti-
mation, which may still be able to acquire the inner vibrations
and become potential attack surfaces.

11 Conclusion

In this paper, we revealed a new speech threat that adversaries
can recover wideband (up to 8kHz) intelligible speech from
narrowband (<500Hz) signals of vibration-based side chan-
nels, when a short utterance (2s-4s) of the victim is exposed
to the attacker. We proposed a vocal-guided general scheme
(VibSpeech) and a mmWave-based prototype to demonstrate
the threat. We evaluated VibSpeech with extensive experi-
ments and validated its generality on the IMU-based method.
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A Loss Function of SpkEnc in Section 6.1

The Generalized End-to-End (GE2E) loss [47] character-
izes the similarity of embeddings from different speakers
by building a similarity matrix. Considering the embeddings
ei j(1 ⩽ i ⩽ N,1 ⩽ j ⩽ M) of M utterances from N speakers,
the similarity matrix Si j,k is calculated from a two-by-two
comparison of all embeddings ei j against the embedding cen-
troid ck(1 ⩽ k ⩽ N) for every speaker:

S ji,k =

{
ω · cos(e ji,c

(−i)
j )+b if k = j;

ω · cos(e ji,ck)+b otherwise,
(4)

where ck = 1
M ∑

M
m=1 ekm, c(−i)

j = 1
M ∑

m ̸=i
m=1 e jm. ω and b are

learnable parameters of the network. Then the loss on each



embedding e ji and GE2E loss LG can be calculated by

L(e ji) = S ji, j − log
N

∑
k=1

exp(S ji,k),LG = ∑
j,i

L(e ji). (5)

B The Algorithm in Section 6.2

Algorithm 1: Artifacts&Distortion Suppression
Input: s: raw vibration signal
Output: ŝ: processed signal

1 Nseg = 512, Noverlap = 256, bw = 20, fc = 500;
2 s0,s1, ...,sN = OverlapSegment(s,Nseg,Noverlap);
3 for n = 1, ...,N do
4 f0 = PitchEstimation(sn);

5 ŝn = ∑
M
m=1

|S1|
|Sm|BPF(sn,m · f0,bw);

6 ŝ = OverlapAdd(ŝ1, ŝ2, ..., ŝN ,Nseg,Noverlap);
7 ŝ = LPF(ŝ, fc);
8 return ŝ

Table 3: Parameters of the generator.

Block Parameter

Blk_0 ConvBlk(2,64)
Blk_1 FTB(64,128), MaxPool, ConvBlk(64,128)
Blk_2 FTB(128,64), MaxPool, ConvBlk(128,256)
Blk_3 FTB(256,32), MaxPool, ConvBlk(256,512)
Blk_4 FTB(512,16), MaxPool, ConvBlk(512,1024)
Blk_5 UpConv(1024,512), Concat, ConvBlk(1024,512)
Blk_6 UpConv(512,256), Concat, ConvBlk(512,256)
Blk_7 UpConv(256,128), Concat, ConvBlk(256,128)
Blk_8 UpConv(128,64), Concat, ConvBlk(128,64)
Blk_9 Conv2d(64,1)

Table 4: Parameters of the discriminator.

Block Parameter

Blk_0 Conv2d(2,64), BatchNorm(64), ReLU
Blk_1 Conv2d(64,128), BatchNorm(128), ReLU
Blk_2 Conv2d(128,256), BatchNorm(256), ReLU
Blk_3 Conv2d(256,512), BatchNorm(512), ReLU
Blk_4 Conv2d(512,1), Sigmoid

C Details about the Model in Section 6.3

Discriminator Loss: Considering a predicted label x and a
true label y, the Binary Cross Entropy (BCE) loss

LBCE =−(y log(x)+(1− y) log(1− x)) (6)

We denote the narrowband mel-spectrogram, reconstructed
mel-spectrogram, and the ground-truth mel-spectrogram as
mnb, mre and mgt , respectively. The loss of the discriminator

LD = LBCE(D(mre,mnb),0)+LBCE(D(mgt ,mnb),1), (7)

where D(·) represents the output of the discriminator.
Generator Loss: The loss of the generator LG consists of two
parts, i.e., the adversarial loss Ladv and the mel loss Lmel :

Ladv = LBCE(D(mre,mnb),1), (8)

Lmel = L1(mre,mgt),LG = Ladv +0.5 ·Lmel . (9)

Table 3 and Table 4 show the model parameters.

D Details about the Used Speech Corpus

The dataset used to train models in Section 6.3 and Section
6.4 includes train-clean-100, train-clean-360, and train-other-
500 from LibriSpeech [41]. The test set for evaluation (Sec-
tion 7) includes dev-clean subset from LibriSpeech. Note
that there is no overlap among these datasets to ensure the
experimental result is target-independent.

Table 5: Training sets in Section 6.3 and Section 6.4.

dataset hours
per-spk
minutes

female
spkrs

male
spkrs

total
spkrs

train-clean-100 100.6 25 125 126 251
train-clean-360 363.6 25 439 482 921
train-other-500 496.7 30 564 602 1166

Table 6: Test set in the evaluation (Section 7).

dataset hours
per-spk
minutes

female
spkrs

male
spkrs

total
spkrs

dev-clean 5.4 8 20 20 40

E Frequency of Human Throat Vibration

We attached an accelerometer to a male speaker’s throat area
to capture the vibration signal when the speaker said /m/.

Figure 26: Spectrograms of (a) throat vibration and (b) micro-
phone audio when a male speaker pronounced /m/.
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