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ABSTRACT
While malicious attacks on electronic devices (e-devices) have be-
come commonplace, the use of e-devices themselves for malicious
attacks has increased (e.g., explosives and eavesdropping). Modern
e-devices (e.g., spy cameras, bugs or concealed weapons) can be
sealed in parcels/boxes, hidden under clothing or disguised with
cardboard to conceal their identities (named as hidden e-devices
hereafter), which brings challenges in security screening. Inspec-
tion equipment (e.g., X-ray machines) is bulky and expensive. More-
over, screening reliability still rests on human performance, and the
throughput in security screening of passengers and luggages is very
limited. To this end, we propose to develop a low-cost and practical
hidden e-device recognition technique to enable efficient screen-
ings for threats of hidden electronic devices in daily life. First, we
investigate and model the characteristics of nonlinear effects, a spe-
cial passive response of electronic devices under millimeter-wave
(mmWave) sensing. Based on this theory and our preliminary ex-
periments, we design and implement, E-Eye, an end-to-end portable
hidden electronics recognition system. E-Eye comprises a low-cost
(i.e., under $100), portable (i.e., 11.8cm by 4.5cm by 1.8cm) and light-
weight (i.e., 45.5g) 24GHz mmWave probe and a smartphone-based
e-device recognizer. To validate the E-Eye performance, we conduct
experiments with 46 commodity electronic devices under 39 distinct
categories. Results show that E-Eye can recognize hidden electronic
devices in parcels/boxes with an accuracy of more than 99% and has
an equal error rate (EER) approaching 0.44% under a controlled lab
setup. Moreover, we evaluate the reliability, robustness and perfor-
mance variation of E-Eye under various real-world circumstances,
and E-Eye can still achieve accuracy over 97%. Intensive evaluation
indicates that E-Eye is a promising solution for hidden electronics
recognition in daily life.

CCS CONCEPTS
• Security and privacy → Security in hardware;
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1 INTRODUCTION
Hidden electronic devices (hereafter, e-devices) bring both secu-
rity and privacy threats in our daily life. For instance, explosion
tragedies continuously occur due to the ineffective detection of
remote-controlled disguised bombs [1, 3, 7, 14], which can be trig-
gered by electronic initiators. Apart from these life-threatening
hazards, e-devices (e.g., smartphones and spy camera) can also be
used for eavesdropping, cheating in private zones [13] or access-
ing other areas that restrict electronics [4, 15, 16]. The fact that
these e-devices (hereafter, hidden e-devices) can be sealed in parcels
or boxes, hidden insides in clothing and disguised in appearance
increases the risk that they can easily pass undetected through
security check points.

Entry security check is the current method for defending against
malicious, hidden e-devices requiring an X-ray machine [58] at
safety-critical sites (e.g., airports and embassy offices). Unfortu-
nately, their expensive cost and poor portability make it an infeasi-
ble solution against the proliferation and the deployment of portable
e-devices [45]. Moreover, the radiation emitted from X-rays is harm-
ful to workers and persons passing through the checkpoints. Other
scanning methods based on metal scanners can only detect the exis-
tence of the e-device rather than recognize the specific type directly
(see Sec. 9.1). Conventional computer vision methods cannot be ap-
plied because the camera can not see through containers or bodies.
Thermal imaging also fails because it only can detect the temper-
ature of the hidden e-device [39], which can be easily interfered
with by other heat sources. As a result, how to recognize hidden
e-devices in a cost-efficient, user-friendly and non-invasive manner
remains an unsolved challenge for public security and privacy.

Recently, there is a rising trend of applying radio-frequency
signals, such as millimeter wave (mmWave [10]), in sensing and
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Figure 1: Examples of hidden electronics in different mali-
cious applications. The proposed E-Eye system can detect
and recognize hidden electronic devices under different cir-
cumstances in real world.

tracking applications, because mmWave can penetrate obstacles
and “image” hidden objects due to its highly-directional beamform-
ing and strong reflection properties on objects [64]. For example,
Adib et al. studied the possibility of sensing human occurrence
and vitals through WiFi signals [17]. Zhu et al. developed a 60GHz
mmWave imager for object detection and classification [66]. Wei et
al. designed mTrack, a mmWave instrument for precision object
tracking [64]. However, existing works mainly target either human
or non-electronic object detection and tracking. The capability of
accurately recognizing hidden electronic devices through mmWave
sensing is unknown.

To this end, we propose our system, E-Eye, to facilitate hidden
e-device recognition in public security inspections. Its features are
(1) cost-efficient: the cost of the solution is affordable in daily
life for large scale deployment; (2) portable: it is easy to use in
the inspection of different containers (e.g., delivery boxes, check-
in luggages or even human body) and various environments (e.g.,
postal offices, airports or factories); (3) non-invasive: it can avoid
the obtrusive (even illegal) opening of the container in real practice
which sacrifices efficiency and may cause privacy issues.

The foundation of E-Eye rests on the nonlinear response effect
from electronic circuits when probed by the mmWave. The in-
trinsic difference in circuits’ hardware characteristics (e.g., a cir-
cuits’ components and circuit layout) generates a distinct nonlinear
response, which can serve as the identity of a certain e-device
brand. This way, we enable a novel sensing modality for non-
invasive and cost-effective hidden e-devices recognition based on
the mmWave field. Specifically, we design and prototype a portable
(11.8cm × 4.5cm × 1.8cm) and light-weight (45.4д) 24GHz mmWave
probe device which is enabled to probe the mmWave and capture
the returned nonlinear responses. We address the challenges in noise-
isolation and coherence to achieve high-quality signal with low
complexity and cost (less than US $100). Afterwards, the signal is
transferred to the smartphone and we propose the wavelet-based
analysis module taking into consideration the unavoidable variance
in the signal’s scaling and magnitude in practical usage. Eventually,

we develop a fine-tuned support vector machine (SVM) classifier
for robust recognition under various conditions. In the experiment,
we employ 46 e-devices and the comprehensive results show that
E-Eye can accurately recognize each e-device brand under different
scenarios.

Our contributions are summarized as follows:
• We propose a novel form of recognizing hidden e-devices
by exploring the nonlinear response effect of mmWave of
e-devices. We find that the circuit inside an e-device acts as a
passive signal modulator which reflects back radio frequency
(RF) signals with intrinsic identity information.
• We develop E-Eye, an end-to-end system to facilitate the
low-cost, non-invasive and robust hidden electronics recog-
nition. We prototype the sensing hardware and implement
the recognition algorithm for efficient and effective classifi-
cation.
• We evaluate E-Eye under different sensing time efficiencies,
sensing distances, and device orientations; E-Eye achieves
more than 99% recognition rate. Moreover, a field study and
a threat model study are deployed for evaluating the robust-
ness of E-Eye under the impact of ambient environment, alien
device, combined e-devices, and various cover materials. In
both studies, the system obtains over 97% accuracy.

2 MMWAVE NONLINEAR EFFECT: NEW
CONCEPT AND PRELIMINARIES

2.1 Concept: Radio-Frequency Response of
E-devices

There are usually two following forms of radio frequency (RF)
response when probing a continuous wave (CW) with the transmit
frequency f0 towards a target.
Linear Effects: The main carrier frequency of the received signal
is the same as that of the transmitted signal. The phase change in
the linearly demodulated signals is related to the geometrical infor-
mation, such as object distance, shape and size [42]. However, these
linear effects do not reflect the material properties and we need to
seek other information in the application of e-device detection and
recognition.
Nonlinear Effects: Besides the main carrier frequency, the re-
ceived signal wave is also modulated with a set of the sub-carrier
frequencies with more side lobes in the spectrum. These sub-carrier
frequencies are generated due to the nonlinear properties of the
target (e.g., material reflection efficiency) [48, 49]. In the remaining
part of this section, we provide an in-depth analysis of non-linear
effects in recognizing electronics.
Nonlinear Effects from E-device: As shown in Figure 2, when
the e-device enters the RF beam field, chips, connectors and metal
traces of printed circuit board (PCB) on an e-device are viewed
as an array of antennas in the resolution of mmWave, and these
antenna with inductance (L), capacitance (C) and resistance (R)
act as a passive processor and manipulates the transmit mmwave
signals. More specifically, antennas can conduct and transform the
mmWave signal to a high-frequency current along the conductors
between the electronic components within the device [38]. The
components (e.g., a diode) or parasitic parameters (e.g., a parasitic
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circuit) on the PCB modulate the response signal and generate the
nonlinear distortion [33], formulated as Equation (1):

r (t) =m(z(t), â(t)) ⊗ hf (t), (1)
where z(t) is the response signal,m(·, â(t)) is the nonlinear modu-
lation function of the PCB, â(t) is the complex power-series for the
nonlinear system, ⊗ stands for convolution computing and hf (t) is
the ideal bandpass filter function for the carrier bandwidth [26, 27].
After the modulated signal radiate from the e-device, they would
be captured by the probe receive (Rx) antenna. Thus, this nonlinear
response of the e-device contains rich information of its physical
characteristic and holds the potential to serve as the device’s iden-
tity.

Figure 2: The e-device generates a nonlinear response signa-
ture under the RF beam. The response is determined by its
intrinsic physical characteristics.

2.2 A Preliminary Study: mmWave Nonlinear
Effects from Electronic Circuits

Carrier Frequency Selection: Selecting a transmit frequency
(and consequently a receive frequency) requires all of the typi-
cal trade-offs associated with longer versus shorter wavelengths
for radar, which include availability of components (e.g., amplifiers
and filters), realization of an acceptable gain for the antennas to
achieve a sufficient signal-to-noise ratio (SNR) and exploitation of
the radar cross-section (RCS) associated with a particular set of
targets [28, 46].

If it is assumed, as a very rough approximation [41], that the
length of a typical trace along a PCB is l = 3mm on the High-
frequency high-speed circuits (illustrated in Figure 3), and the ef-
fective dielectric constant of the board is close to ε = 4, the traces
along the board become half-wave resonant dipoles (l = λ

2 ) at a
frequency of f0 = c√

ελ
=

3·108m/s√
4·2·0.003m

≈24GHz, where c is the prop-
agation speed of a radar wave in air. Thus, it is reasonable to expect
that, for nonlinear effect, the radar will transmit frequencies in or
near Super high frequency band, range from 3GHz to 30GHz [8, 52].
Considering the technology for 24GHz radar is significantly mature
and 24GHz is unrestricted in the industrial scientific medical (ISM)
band [2], we apply the 24GHz as the transmit frequency, which is
loosely known as mmWave.

Owing to different product design goals and the circuit IP pro-
tection, the circuits in different e-device brands are different. Thus,
the amplitude, frequency and phase of the nonlinear responses are
different among different e-devices. Therefore, it is possible to de-
sign a mmWave probe to force e-devices to radiate the nonlinear

response signature that reflects their unique properties and can be
used for recognition.

(a) Wearable: Fitbit Charge2 (b) Wearable: Motor 360 watch

(c) Smartphone: Nexus5 (d) Smartphone: iPhoneX

(e) Tablet: iPad pro (f) Accessory: Power bank

Figure 3: Six different e-devices present different nonlinear
responses (the spectrums in the white box are distinct in fre-
quency and amplitude) when forced by the same mmWave
probe. The main circuit board of each e-device is displayed
on the left.

Proof-of-concept: Six different e-device types from four different
representative device categories are stimulated with the mmWave
probe fixed 20cm in distance from the devices. The main circuit
board of each e-device is attached on the left. These circuits are
different from aspects of the size, the components and layout. As
shown in Figure 3, the x-axis is the sensing range, the y-axis is
the frequency of the received signal and the color bar represents
the amplitude of the signal. The varied sub-carrier frequencies can
be clearly observed that their nonlinear responses are significantly
distinct at the frequency, amplitude and phase, which matches
Section 2.1. Given the huge amount of electric units integrated on
the control board, parasitic variations have sufficient space to be
served as powerful resources for device recognition.
A Study on Package Effects: In real-world applications, electron-
ics can be placed inside the container or covered by different materi-
als. As a result, we need to investigate whether the hidden materials
will generate nonlinear responses or have a nonlinear effect [54]. It is
proved in Figure 4(a) that within the area of the nonlinear response,
there is little demodulated signal amplitude for cardboard (less than
0.016V , ambient noise and thermal noise actually), while for Nexus
5, the demodulated nonlinear response signal is quite visible (more
than 0.212V , 13.5× larger than cardboard’s) (more detailed anal-
ysis about the nonlinear response in Section 5). In Figure 4(b), we
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can observe their signal spectrum are significantly different, which
proves the feasibility of unobtrusive hidden e-device recognition.

(a) The detected nonlinear response from the cardboard and
Nexus 5.

(b) The significant difference of two responses in spectrum.

Figure 4: The cardboard’s nonlinear responses are negligible
when compared to Nexus 5’s, indicating the feasibility of
hidden e-device recognition.

2.3 Practical Challenges
There are two technical challenges in our system design:
Low-cost and portable sensing modality: There are significant
challenges in fulfilling such mmWave probe, especially in RF front-
end, antenna, signal processing and manufacture craft parts. More-
over, to make the mmWave probe low-cost and compact with the
portable size and excellent flexibility is arduous.
Effective and robust recognition: Taking into account the ambi-
ent noise, unavoidable variance in signal’s scaling as well as diverse
intervention sources, it is not easy to accurately and efficiently
discriminate the nonlinear responses from different e-devices in a
limited time.

3 E-EYE: HIDDEN E-DEVICE RECOGNITION
SYSTEM

We propose E-Eye, a portable, non-invasive and robust system to
facilitate recognition of the hidden e-devices. Typically, we consider
the real world practice where the inspector conducts the on-site

inspection of the object for forbidden e-devices that may be con-
tained in it. The end-to-end system overview is shown in Figure
5.
E-Eye Hardware: A new mmWave probe with the smartphone
is designed to remotely and robustly acquire the e-device’s non-
linear response for recognition. Specifically, the probe transmits
the continuous wave and process/demodulate the reflected signal.
After that, the kilobyte (KB) size data is sent to smartphone for
recognition via the line-in audio card converter [6].
E-Eye Software: Once receiving the data, the e-device recogni-
tion module first performs the preprocessing and demodulation to
filter the interference and noise. Then, it extracts the effective fea-
tures from the nonlinear responses via wavelet-based analysis. After
that, a fine-tuned classification algorithm is developed to recognize
the e-device type. The result will eventually be displayed on the
smartphone to the inspector.

4 A PORTABLE AND COST-EFFECTIVE
MMWAVE PROBE DESIGN

In this section, we introduce the hardware design of E-Eye, which
is capable of transmitting the 24GHz carrier signal and capturing
the returned nonlinear responses.

4.1 Hardware Architecture
The schematic of the proposed mmWave probe is shown in Figure 6.
It consists of a radio frequency board and a baseband board. The RF
board includes a pair of array antennas (i.e., Tx and Rx), a voltage
controlled oscillator (VCO), a pair of low noise amplifiers (LNA)
and a six-port structure. The baseband board contains baseband
amplifiers (BA) and an on-board sawtooth voltage generator (SVG).

4.1.1 Six-port Structure. A six-port circuit is a simple structure,
as a quadrature mixer, to down-convert RF signal into baseband,
avoiding the use of expensive integrated mixer chips [60]. The
six-port structure consists of three quadrature couplers and one rat-
race coupler. Ports 1 and 2 of the six-port structure are the inputs
for the local oscillator (LO) drive and the RF signal respectively.
Four Schottky diodes are connected at ports 3, 4, 5 and 6. Ports 3
are 4 are for the I-channel differential baseband signal, and ports 5
and 6 are for the Q-channel differential baseband signal.

4.1.2 Coherence. Coherence is one of the most important re-
quirements for the mmWave probe to obtain the effective informa-
tion of the e-device [41, 63]. Opposite to sharing the synchronous
clocks at the signal generation and acquisition stages, which in-
creases the complexity and cost of the system [47], in E-Eye, the
coherence property of the mmWave probe is obtained by simulta-
neously sampling the reference signal and the baseband signal (see
Section 5.1.2). In order to control the VCO, the reference signal is
phase locked to the sawtooth voltage signal. In the synchronization
procedure, the phase of each beat-signal period is aligned in the
digital domain after sampling the reference signal and the base-
band signal. Thus, in this method, the synchronous clocks are not
demanded to share between the generation and acquisition stages,
which simplifies the hardware.
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Figure 5: The system overview for E-Eye to non-invasively recognize the e-device hidden in the container. It comprises of a
mmWave sensing module in the front-end and an e-device recognition module in the back-end.

Figure 6: The hardware schematic for the cost-effective and
portable 24GHz mmWave probe.

4.2 System Integration Design
4.2.1 System Parameters Consideration. Parameters in the mm-

Wave probe design are significant and should be carefully selected.
There are three key factors that determine the performance of the
mmWave probe, detection range, range resolution and the maxi-
mum non-ambiguous wireless signal velocity as follows: Rd =

cfsT
4B ,

∆R =
c

2B and υmax =
c

4fcT , where c is the speed of the light, fs is
the sampling frequency on the baseband board and fc is the center
frequency, which is 24GHz. A larger detection range Rd requires a
longer frequency ramp repetition period T and smaller transmitted
bandwidth B. However, the higher range resolution ∆R requires the
wider bandwidth B. At the same time, the faster non-ambiguous
wireless signal velocity υmax requires the shorter T . Thus there
exists a trade-off between the bandwidth and the frequency ramp
repetition period in the E-Eye system design.

4.2.2 System Integration. The Federal Communications Com-
mission (FCC) in the United States proposed that new flexible ser-
vice among the 24GHz band is roughly in the 24-24.45GHz band
[22]. Also, the wider bandwidth of the probe means more cost for
the probe hardware. Thus, in E-Eye, the bandwidth of the transmit-
ted signal (B) is 450MHz with a center frequency (fc ) of 24GHz,
and the transmitted average power is around 8dBm. The frequency
ramp repetition period (T ) is 6.45ms . The sampling frequency on

the baseband board (fs ) is 192KHz. In addition, an operational-
amplifier-based SVG is employed to generate the sawtooth voltage
to tune the free running VCO. The frequency of the sawtooth signal
and the reference signal is 155Hz.

5 E-DEVICE RECOGNITION
E-Eye listens to the nonlinear response reflected from the e-device
and extracts unique identity from it. We first propose preprocessing
and demodulation to extract the effective nonlinear response y(t).
Then, considering that y(t) is irregular and asymmetric, we employ
the wavelet decomposition to obtain the statistical features repre-
senting the device inner characteristics. In the end, a fine-tuning
classifier is designed.

5.1 Nonlinear Response Preprocessing and
Demodulation

5.1.1 Signal Preprocessing. As depicted in Figure 7, the data
sensed by the mmWave probe is forwarded through the audio chan-
nel as two-channel signals. After parsing the audio signal, we get
the baseband signal and the reference signal respectively. The ref-
erence signal is usually mixed with high frequencies from ambient
noise and thermal noise. Thereby, we employ a filter to remove
these components. However, filtering the reference signal of syn-
chronous clock shape is difficult, which requires smoothing the
shape and preserving the sharp edge at the same time. Specifi-
cally, we apply a Savizky-Golay and median combined filter [20].
Savitzky-Golay filter mainly fits successive sub-sets of adjacent data
points with a low-degree polynomial by the method of linear least
squares. Although it is more effective at preserving the sharp edge
for the pertinent high frequency components in the signal, it is less
effective in noise filtering. Thus, the median filter is combined as it
runs through the signal entry by entry, replacing each entry with
the median of neighboring entries to remove the high frequency
noise.

5.1.2 Signal Demodulation. As shown in Figure 8(a), we observe
the reference signal has an edge effect on the baseband signal,
making some parts distorted. Therefore, we utilize the reference
signal to extract the effective parts in the baseband signal. First, we
define that a cycle is the interval wave between the falling and rising
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Figure 7: The flowchart of e-device recognitionmodule, including three parts signal preprocessing and demodulation, wavelet-
based nonlinear response analysis & feature extraction and fine-tuning recognition.

edges of two adjacent pulses in the reference signal (see Figure 8(b)).
Specifically, we use the falling and rising edges detection method to
locate each cycle [50]. With the cycle information, we demodulate
and extract the effective parts in the baseband signal based on the
synchronized time. As a result, we obtain the effective nonlinear
response signal consisting of N consecutive cycles in Figure 8(c).
Intuitively, the signal with more cycles will contain more unique
physical characteristics of the e-device and thereby achieve better
recognition accuracy. However, it also increases the computation
overhead. To balance this trade-off, we empirically choose N = 5
and the corresponding original baseband signal has the length
within 0.013s (we will investigate the performance of E-Eye with
different N setups in Section 7.1.2).

5.2 Wavelet-based Nonlinear Response Analysis
and Feature Extraction

Given the nonlinear response signal, we find it is hard to classify
them directly using the similarity distance because nonlinear re-
sponses have a large variation in magnitudes as well as frequencies,
which leads to irregularity and asymmetry. Therefore, we present
the wavelet-based analysis which is resilient to the scale and mag-
nitude variation.

5.2.1 Wavelet-based Nonlinear Response Analysis. Wavelet trans-
form (WT) is an effective multi-resolution analysis tool for signal
decomposition [29, 40]. The WT approach can overcome the short-
coming of Fourier analysis, which only works in the frequency
domain, not in the time domain [34]. The signal can be decomposed
intomany groups of coefficients in different scales withWT through
different scaled versions. After removing the DC component, y(t)
becomes a signal with zero-mean and some variance and satisfies
the following condition:

∫ ∞
−∞ f (t)dt = 0, which indicates y(t) is a

waveform. WT uses ψa,b and ϕa,b , where ϕa,b = 1√
a
ϕ( t−ba ) and

ψa,b =
1√
a
ψ ( t−ba ), as the mother wavelet function that satisfies the

condition of dynamic scaling and shifting, where a and b are the
scale and translation parameters accordingly [55]. In order to get
high and low-frequency signal properties separately, the wavelet-
based analysis is achieved as Equation (2):

y(t)︸︷︷︸
Nonlinear response

=
1
Cϕ

∫ ∞
−∞

FW (a0,b)ϕa0,b
db
√
a0︸                                ︷︷                                ︸

The approximation par t

+
1
Cψ

∫ ∞
a1

∫ ∞
−∞

FW (a,b)ψa,b
da

a2
db
√
a
,︸                                         ︷︷                                         ︸

The detail par t

(2)

where FW (a0,b) and FW (a,b) are the coefficients.
For the inverse transform to exist, we require that the analyzing

wavelet satisfies the admissibility condition, given in the following:
Cϕ = 2π

∫ ∞
−∞
|ϕ̂(ω) |2
ω dω < ∞ and Cψ = 2π

∫ ∞
−∞
|ψ̂ (ω) |2
ω dω < ∞,

where ϕ̂(ω) and ψ̂ (ω) are the Fourier transform of ϕ(t) and ψ (t)
respectively. Also, Cϕ and Cψ are constants for corresponding
wavelets. Subsequently, we get the approximation signal as shown
in Figure 9(a) and the detail signal in Figure 9(b). Finally, for compre-
hensive characterization of the nonlinear response, we also get the
spectral approximation and detail signals by Fast Fourier Transform
(FFT) for further feature extraction.

5.2.2 Spatial-temporal Domain Feature Extraction. As the above
mentioned, the nonlinear response contains the unique identity of
the device. As a result, we exploit the internal traits in the nonlinear
response signal by extracting extract 13 scalar features in spatial-
temporal domains. The feature names and descriptions are listed
in Table 1 and 2. These features represent the nonlinear response
signal shape from different aspects [19]. For example, skewness is a
scale of symmetry to judge if a distribution looks the same to the
left and right of the center point, kurtosis is to estimate whether the
data are heavy-tailed or light-tailed relative to a normal distribution
and flatness describes the degree to which they approximate the
Euclidean space of the same dimensionality (marked with * in Table
1 and 2). Thus, in total, a feature vector containing these 26 features
from the approximation and detail parts is formed.

5.3 Fine-tuning Recognition
Electronics recognition can be treated as a classification problem.
E-Eye uses supervised learning to classify e-device types, begin-
ning with a training phase followed by testing, as illustrated in
Algorithm 1. However, it is possible that some e-devices (known
as alien devices) are not included in the database before, which
may spoof the check or cause false alarms. Therefore, to overcome
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(a) The baseband signal parsed from the audio signal.

(b) The preprocessed reference signal.

(c) The nonlinear response signal after the signal demodu-
lation.

(d) The spectrum for the nonlinear response signal.

Figure 8: A Nexus 5 smartphone is sensed within a USPS box
at 20cm distance using the portable 24GHz mmWave probe.
We preprocess and demodulate the raw sensing signal to ex-
tract the nonlinear response.

this problem, we design the Classifier and the Decision maker
to output the final recognition result.

During the training of the Classifier, n traces of nonlinear re-
sponse signals from each e-device type are collected. Form e-device
types in the database (namely,m pre-registered classes), n ×m fea-
ture vectors are used to train the classifier altogether. In E-Eye, we
employ SVM. The Gaussian radial basis function is selected as the
kernel function to map the original data to a higher dimensional
space [56]. During the testing phase, E-Eye collects a trace, extracts
a feature vector, and inputs to the SVM model. The SVM model

(a) The approximation and detail parts of the Nexus 5 non-
linear response signal.

(b) The spectrum for the approximation and detail parts of
the Nexus 5 nonlinear response signal.

Figure 9: The first level wavelet decomposition result of
Nexus 5 nonlinear response. (a) and (b) represent its low and
high frequency information respectively.

Table 1: List of Time Domain Features.

Name Description
Mean Value x̄ = 1

N
∑N
i=1 x(i)

Standard
Deviation σ =

√
1

N−1
∑N
i=1(x(i) − x̄)2

* Skewness γ = 1
N

∑N
i=1(

x (i)−x̄
σ )3

* Kurtosis β = 1
N

∑N
i=1(

x (i)−x̄
σ )4 − 3

RMS
Amplitude λ =

√
1
N

∑N
i=1(x(i))2

Lowest Value l = minNi=1 x(i)
Highest Value h = maxNi=1 x(i)

Table 2: List of Frequency Domain Features.

Name Description
Mean Value ȳ = 1

N
∑N
i=1 y(i)

Standard
Deviation σ =

√
1

N−1
∑N
i=1(y(i) − ȳ)2

* Skewness γ = 1
N

∑N
i=1

y(i)−ȳ
σ

3

* Kurtosis β = 1
N

∑N
i=1

y(i)−ȳ
σ

4
− 3

Crest Factor ε = 20 log(maxNi=1 |y(i) |
σ )

* Flatness Fs = (
∏N

i=1 ym (i))
1
N ⧸((∑N

i=1 ym(i))⧸N )

generates the probability set of classifying this test trace into each
pre-trained class.

In the Decision maker, we define the maximum probability as
the classification score. To distinguish an alien device, a threshold
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Algorithm 1: Fine-tuning Recognition
Input: Q(n): n test nonlinear response traces from an e-device
Output: R: the predicted result

1 Ei , S,R ← 0;
2 Initialize T ;
3 %Classifier:
4 for i ∈ {1, . . . ,n} do
5 E(i) = Cls(Q(i));

▷ Classify m traces

6 %Decision maker:
7 S = Tun(E) ;
▷ Make the classification score

8 if S < T then
9 return ’Alien!’;

10 else
11 R = Rec(E);

▷ Decide the final predicted result return R;

is applied: If the classification score is less than the threshold, the
trace will be declared as an alien device with a second manual
check; if not, the predicted type with the maximum probability
will be regarded as the recognition result. In E-Eye, we select the
threshold as 0.9 empirically.

6 SYSTEM PROTOTYPE AND EVALUATION
6.1 E-Eye System Implementation and

Integration

(a) RF board. (b) Baseband board.

(c) The integrated mmWave probe with two boards.

Figure 10: The design of 24GHz mmWave front-end probe
comprises two parts, i.e., (a) a radio-frequency Tx/Rx board
and (b) a down-frequency baseband board. E-Eye probe inte-
gration is shown in (c).

The prototype of the proposedmmWave probe is shown in Figure
10. The flexible RF board is based on a 0.245mm (0.0096in) thick
substrate Rogers RT/duroid 5880 (Figure 10(a)). The rigid baseband
board is fabricated on an FR4 substrate, which includes the SVG

Figure 11: Commodity electronic devices in our study.

and the baseband amplifiers (Figure 10(b)). The Microprocessor
Control Unit (MCU) is MSP430F2610, a widely used ultra low-power
controller unit [5]. The baseband signals are fed to a 3.5mm audio
jack directly supported by embedded MCU inner driver, which
naturally has two channels for the reference signal and baseband
signal without the extra need of the analog-to-digital converter or
expensive communication chips. It can be easily connected to the
audio interface of a smartphone or a tablet for signal processing.

The mmWave probe is 11.8cm (4.65in) × 4.5cm (4.65in) × 1.5cm
(0.59in) and weights only 45.4д, which is lightweight for ease of
adoption in security inspections. Moreover, it costs within 100 U.S.
dollars. Figure 10(c) illustrates the integrated proposed mmWave
probe. It typically has a 8dBm transmit power with a 3.7-5V supply
voltage and a 350mAmaximum operating current under the 1.2W
DC power consumption. The carrier frequency used in this work is
24GHz. To enhance the directivity, a pair of 4×4 antenna arrays are
designed, offering an antenna directivity of 19.8dBi . The received
RF gain and baseband gain are 34dB and 26dB, respectively.

6.2 Evaluation

Figure 12: The setup for the evaluation: (a) in a controlled
lab environment, (b) in an open hall at the first floor of the
building, and (c) at the entrance of an outdoor public park-
ing lot.

Experiment Preparation: As shown in Table 3, we select 46 com-
mon e-devices and label them into 39 classes as we collect four
duplicate Nexus 5 and three duplicate Uno R3. We also group them
into seven categories based on their functions for ease of descrip-
tion. The corresponding circuit sizes range from 0.42in (diagonal)
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Table 3: E-devices employed during experiments.

# Device
Category Specific Device Brand

1 Laptop Lenovo Xiaoxin310, Macbook Air, Asus
LN4200, Macbook Pro, Mac mini

2 Tablet iPad Pro, Asus ZenPad 3S, Nexus 10

3 Smart-
phone

Nexus 5*4, iPhone 6s, iPhone 6, iPhone X*2,
iPhone 7plus, LG Leon, Nexus4, Smartisan
T1*2, Jianguo Pro2, iPhone 4s, HTC One M8,

Samsung S7

4 Wearable Motor 360, Apple watch3, Fitbit Charge2, Mi
band2

5 Mouse Logitech M510, Rapoo 7200P, Dell MS111

6 Head-
phone

Bose QuietComfort 35, Status Audio CB-1,
Air Pods

7 Others

Auduino Uno R3*3, iPhone Charger, Empty
Box1, Empty Box2, Philips Sonicare 2 Series,

Philips Norelco PQ208, Toshiba Canvio
Basics, Kindle Paperwhite, Pisen power bank

to 13.3in (diagonal). Without loss of generality, we employ two
common containers to conceal the e-devices: a USPS package box
(marked as Box1) and an Amazon package box (named as Box2).
Data Collection: During the experiment, the mmWave probe is
placed 20cm from the container (see Figure 12). We record its initial
position as 0◦ orientation in the horizontal plane. In every test
trail, we conceal an e-device in one particular box and switch it
on (if possible). We collect 10s sensing data with 44.1K sampling
rate. In Section 5.1.2, we define one trace as the subsegment in the
sensing data with the length of 0.013s (13ms), which contains N = 5
consecutive cycles. Eventually, we will randomly extract 100 traces
for each device with regard to one container.
Data Partition: Unless specified, each time we randomly choose
70 out of 100 traces from each device as our training set and use
the rest for testing. Thus, 3220 traces are used for training and 1380
traces are used for testing. Specifically, a 10-fold cross validation
method is employed in classification. It is worth mentioning that
we conduct other types of cross validation experiments in Section
7.2 and 7.3 to examine the system performance under real-world
environments.
Evaluation Metrics: We use accuracy, precision and recall as the
performance metrics for evaluation [44]. Besides, we also adopt the
Equal Error Rate (EER) and the Receiver Operating Characteristic
(ROC). The lower the EER, the better the system performance [18].

7 PERFORMANCE EVALUATION
We evaluate the performance of E-Eye from three aspects:

• The control study validates the system under the ideal en-
vironmental condition, which proves the legitimacy of our
system design.

• The field study considers the variation of system parameters
in the practical usage and gives insights to how to achieve
the best performance.
• The threat study exploits the vulnerability of the system
from the attacker’s perspective by examining more extreme
conditions.

These three strategies serve different roles, which are comple-
mentary to each other.

7.1 E-Eye Control Study
7.1.1 Recognition Performance. We evaluate the ability of E-Eye

to recognize the different e-devices in the optimal lab environment.
First, we exploit the overall performance based on the training and
testing data sensed from Box1 and Box2 respectively (denoted as
Scheme1 and Scheme2). Then, we further apply the testing data
from Box2 upon the training data from Box1 to study the system’s
universality (denoted as Scheme3). For each scheme, we make a
comparison between two commonly used classifiers, SVM and KNN
[61], to determine which classifier is more suitable.

Figure 13: The overall performance of E-Eye with two differ-
ent classification configurations.

The ROC results are shown in Figure 13. SVM achieves the EER
of 0.0044, 0.0045 and 0.0111 respectively in three schemes. Corre-
spondingly, KNN achieves the EER of 0.0647, 0.0669 and 0.0848
respectively. Both classifiers have excellent performance, which im-
plies that the feature vector effectively reflects the unique nonlinear
response characteristics in each e-device. The comparatively low
EER in scheme3 indicates that our trained classifier does not have
the over-fitting issue and can adapt to various usage scenarios.

Moreover, we conduct the McNemar test to determine if there
is a significant difference in two classifiers [24]. McNemar test is
a frequently used test for matched-pair data, with a significance
level of α = 0.05. Under the null hypothesis, the two classifiers
have no significant difference. If the null hypothesis is rejected, the
p value is below 0.05. In our test, the p value maintains around
0.01, which is less than 0.05 and thereby rejects the null hypothesis.
Based on the above analysis, we prove that SVM has the better
classifier and will employ SVM in the following evaluation unless
otherwise specified. In conclusion, our results demonstrate that a
hidden e-device can be precisely recognized by E-Eye.
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Figure 14: Recognition performance with seven different
screening times.

7.1.2 Screening Time Efficiency. In public security, e-device screen-
ing tasks are challenging due to the limited time budgeted for effi-
ciency. As a result, we are interested in analyzing the performance
of E-Eye with regard to different time budgets. Specifically, con-
sidering that 2.5ms audio segment usually represents one cycle,
we manually select seven different time settings between 2.5ms
to 100ms . For each time setting, we follow the same methodology
described in Section 6.2 and re-prepare the training and testing set.
Figure 14 shows the performance results. For the lowest budget of
2.5ms , E-Eye only obtains 95.25% precision, 94.95% recall and 95.47%
accuracy. These results are because the contained one cycle cannot
comprehensively represent the characteristics of the e-device. After
increasing the time, the performance gradually increases. Generally,
we find a turning point at 13ms where the performance saturates
afterwards (reaching 99.61% precision, 99.41% recall and 99.68%
accuracy at 100ms). This observation can guide us to the proper
screening time setting to guarantee recognition accuracy without
sacrificing screening efficiency.

7.1.3 Impact of Sensing Distance and Device Orientation. In prac-
tical scenarios, the inspector should be able to walk around with
E-Eye according to different container shapes and inspection en-
vironments to accelerate inspection progress. Such a convenient
practice, however, will lead to the changing distance and orientation
between the hidden e-device and the mmWave probe. Therefore, it
is important to investigate whether these aspects will affect system
performance. Specifically, we measure the different device orienta-
tions (from 0◦ to 315◦) at different distances (from 2cm to 100cm).
The results are shown in Figure 15. The average recognition ac-
curacy over 46 devices remains high when the sensing distance
varies within 80cm (above 99.5%). As for the orientation, although
the reflected signal slightly changes due to the different probe an-
gles for each e-device, the inter-device distinguishability among 46
devices is significant such that each device can be correctly recog-
nized. Thereby, E-Eye can facilitate portable and convenient public
screening in real practice.

7.2 Field Study
7.2.1 Robustness to Ambient Environment. The ambient envi-

ronment can introduce random noises or even interfere with the
probe hardware operation. We consider common noises in daily
life in terms of human factors and ambient factors. Typically, we

Figure 15: Measurement accuracy under different sensing
distances.

Figure 16: E-Eye recognition performance in different exper-
iment setups.

select four conditions where (1) five people are walking around the
mmWave probe within 2 meters range; (2) the humidity of the test-
ing location is controlled at 70%; (3) the environment temperature is
0◦C (32◦F); (4) There is a working ventilation around. Moreover, we
use the result of the optimal lab environment as the comparison tar-
get (humidity is 30% and the temperature is 20◦C (68◦F)). Again, we
evaluate the above four conditions using 46 e-devices with scheme1.
Figure 16 shows that their performances can achieve up to 99.6%
precision, 99.3% recall and 99.6% accuracy. In conclusion, E-Eye
presents a strong tolerance to different ambient environments.

7.2.2 Impact of Alien Devices. As discussed in Section 5.3, it is
highly likely that E-Eye needs to classify the traces of the alien
devices. In this section, we design an experiment to explore the
ability of E-Eye to detect alien devices. In detail, we randomly
include 9 out of 39 classes in the database as the training set as
aforementioned (note that these data are never used for testing).
Consequently, the remaining 30 classes are all regarded as the
alien ones. Afterwards, we gradually increase the amount of alien
devices from 5 to 30 and verify whether our specifically designed
Algorithm 1 can successfully identity them. For each amount,
we report the average performance. As shown in Figure 17, the
results remain stable in detection accuracy (99.1%-100%) showing
no tendency to decrease in performance. In this way, we prove the
effectiveness of fine-tuning the algorithm and the good scalability
of E-Eye when used in real practice. Under these circumstances,
the inspector can use the second check (e.g., manual inspection) for
further security verification.
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Figure 17: The alien device detection under six different
alien device numbers.

7.3 Threat Model Study
7.3.1 Human Body Intervention. Due to the advanced IC tech-

nology, e-devices are getting smaller in size such that they can be
easily hidden upon the human body to bypass the security check.
Therefore, we assume the attacker hides the device in different body
positions, as listed in Figure 18. We specifically consider the devices
in groups 3 and 4 as they are pervasive and can be used in multi-
ple malicious activities (see Table 3). We recruit five participants
carrying the device and we use E-Eye to scan them at target areas
keeping an approximate distance of 50cm. The reported average
accuracy keeps higher than 97.7%, which implies that our system
is resistant to human intervention.

Figure 18: Detection accuracy under six different human in-
terventions.

7.3.2 Impact of CoverMaterials. We consider the scenariowhere
the attacker intentionally hides the e-device in other materials to
pass through screening. Particularly, we collect seven different
daily-achievable materials as shown in Figure 19. We place the
e-device inside each of them and evaluate the recognition accu-
racy for all 46 e-devices. The performance is reported in the figure,
where we can see that the overall accuracy for each is above 98%.
Certain materials slightly affect the performance to some extent.
This is because E-Eye utilizes high frequency signal and therefore,
has small wavelength and limited penetration ability. As a result, it
is prone to the scattering reflection upon some specific materials.
But in general, E-Eye still provides reliable performance in device
recognition.

Figure 19: Detection accuracy with six different cover mate-
rials.

7.3.3 Impact of Combined E-devices. In another scenario, the
attack may know the benign devices registered in the database and
try to physically stack the malicious device with the benign one
to confuse the system. To explore whether E-Eye can still regard
it as the alien device, we continue with the setup in Section 7.2.2.
We randomly select 2 (labeled as No.1, No.2) devices from the 9
benign classes and 3 (labeled as No.3, No.4, No.5) from the remain-
ing 30 alien classes. As shown in Figure 20, we enumerate all six
combinations of the benign and alien devices and physically tap
them together. For the sake of generality, we report the average and
standard deviation of accuracy. From the results, we can observe
that the average recognition accuracy are higher than 98%. This is
owing to the fact that the equivalent circuit changes if we combine
two devices together along with the nonlinear response.

Figure 20: Detection of combined e-devices.

7.3.4 Impact of E-device Status. Considering the fact that many
detection methods rely on the operation status of the hidden device
(see Section 9.1), we simulate a scenario where the attacker wants
to spoof the inspector by switching off the device or removing
the battery. Thus, we repeat the experiment by shutting down all
e-devices when collecting the data (as described in Section 6.2).
Importantly, we still use the previously trained model where the
devices were switched on. We apply the new 30 traces for each
device for this test. Table 4 illustrates the precision, recall and
accuracy for schemes 1 and 2, which are 99%. For scheme3, the
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accuracy is 98.75% which is in coherence with the results in Section
7.1.1. The high accuracy proves that E-Eye is not sensitive to the
hidden device’s operation status.

Table 4: System performance with the e-device status OFF at
50cm sensing distance.

Setup Precision(%) Recall(%) Accuracy(%)
Scheme1 99.54 99.24 99.57
Scheme2 99.51 99.20 99.55
Scheme3 98.70 98.52 98.75

8 DISCUSSION
HealthHazards:Compared to other security screening techniques
(e.g., Terahertz and X-ray imaging systems), E-Eye has a much
smaller radiation factor, i.e., a 1.2W power consumption and an
8dBm radio transmission power. Considering that typical public
WiFi spots have about 20 to 30 dBm of output power, E-Eye is a
considerably safe screening tool, even for cardiac device patients.
Metal Intervention: Metal has a stronger reflection on EM wave
compared to other materials. We realize that a metal case shields a
large portion of RF signals. By deploying an additional metal hidden
material (e.g., an e-device inside a metal box), it is difficult for E-Eye
to recognize the covered e-device. This limitation can be solved by
detecting the existence of metal [59].
Manual Check: We notice that mechanical motion in the elec-
tronic device and other intruders can affect the sensing performance.
However, it is safe to assume that the security checker controls
the environment thoroughly. If an unusual behavior happens, they
initiate a manual check.
Database Storage: In this pioneering work, we have established
39 classes of an e-device database. Particularly, each feature vector
has 26 dimensions data of size 0.2KB around. Thus, the template for
each device seizes 14KB size data in the experiment setup. There-
fore, it is practical to maintain a vast amount of templates on the
mobile platform or the server (e.g., 1,000 e-device types only require
13.67MB physical storage).
Multiple E-devices: Nowadays, it is normal for more than one
e-device to be concealed in a container [11]. Therefore, it can bring
huge convenience if E-Eye can automatically recognize each type
when multiple devices are present. This problem can be further
solved by employing the existing blind source separation and inde-
pendent component analysis approaches in the speech processing
domain [21, 65].

9 RELATEDWORK
9.1 Hidden E-device Detection
Currently, there are three main methods to detect hidden e-devices:
• X-ray Imaging: The X-ray baggage scanner operates based
on the different X-radiation absorption rates of the pene-
trated objects and can accordingly produce the shape image
of the objects [23]. The typical cost of such a scanner can
reach US $50,000. Besides the undesired privacy concerns
raised by the image of personal belongings [30], x-radiation
also has harmful effects on human [30, 53].

• Terahertz Imaging: Terahertz (THz) imaging is also ex-
ploited in package screening by analyzing object transmis-
sions or reflections of the THz electromagnetic wave. How-
ever, its optical image causes privacy issues and its resolution
is too low for hidden e-devices recognition [38]. The cur-
rent THz imaging systems have very low portability and
extremely high cost (around US $25,000) [12, 25].
• Electromagnetic Emission Sensing: Studies find that e-
devices transmit unintentional electromagnetic (UEM) radi-
ations [51] when they are switched on. Many works [31, 57,
62] detect the existence of e-devices by analyzing their UEM
waves. However, this technology is restricted and cannot be
applied when the electronic device is powered off.

Therefore, we summarize that the current hidden e-devices recog-
nition methods are either bulky, expensive or conditionally re-
strained, which cannot be directly applied in regular and large-scale
public security check. Other alternative handheld scanners [9, 30]
can only provide the existence detection rather than accurately
recognize the device type.

9.2 mmWave Sensing
mmWave radars have been studied in a variety of domains based
on the detection of an object’s inherent movements (e.g., cardiores-
piratory measurements and gesture sensing [32, 36, 37]) in the
last decade. Soli [35] is a 60GHz mmWave radar gesture sensing
system, which can detect all kinds of hand motions for the human-
computer interface. In [43], a 94GHz mmWave radar is deployed
to extract features of cardiorespiratory movements based on the
reflected mmWave signals. These mmWave sensing applications
mainly rely on the Doppler motion of the objects and cannot be ap-
plied to sense the target under clothings or obstacles (e.g., packages
and luggages). Although there are some recent applications to ex-
plore “through-wall” and “through-obstacle” sensing via mmWave
[17, 64, 66], these techniques can only be applied for the target
with specific mmWave-absorption characteristics. According to the
literature, E-Eye is the first mmWave sensing application to explore
nonlinear effects for hidden electronics recognition.

10 CONCLUSION
In this paper, we proposed a hidden e-device recognition system
E-Eye, to aid law enforcement and ensure security. We started from
the basics characteristics of the e-device and cover material under
the nonlinear effect. Then, we proposed a portable 24GHz mmWave
probe and the e-device recognition module to accurately recognize
the hidden e-device type. Furthermore, extensive experiments indi-
cated that our E-Eye can achieve more than 99% accuracy in less
than 20ms response time and centimeter level device physical size.
Different levels of evaluation confirmed the effectiveness, reliability
and robustness of our proposed system. The research findings are
an essential step for understanding the nonlinear response of hidden
e-device and their applications at large.
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