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Abstract—Medical monitoring represents one of the most
critical components in existing healthcare system. The accurate
and reliable acquisition of various physiological data can help
physicians and patients to properly detect and identify potential
health risks. However, this process suffers from severe limitations
in terms of missing or degraded data, which may lead to a rather
high false alarm rate and potentially compromised diagnostic
results. In this paper, we investigated three different approaches
for missing data prediction in clinical settings: mean imputation,
Gaussian Process Regression (GPR), and Kalman Filter (KF).
Experimental results show that, the heart rate (HR) signals
largely rely on most recent data and missing data prediction
will be less effective for further prediction.

I. INTRODUCTION

Health is a critical component of human well-being and
has raised increasing concerns from the entire world. It was
estimated by the Department of Health and Human Services
that the health share of GDP will continue its steady growth
[1]. Similar results were reported by the Organization for Eco-
nomic Co-operation and Development (OECD) [2]. The great
challenges for healthcare are the increased life expectancy and
the consequently increased aging population. A vital and costly
part of the current healthcare system is the monitoring of pa-
tients’ relevant physiological signals, such as heart rate (HR),
respiratory rate (RR), blood pressure (BP) and oxygen satura-
tion level, to accurately identify and indicate the health status
of each individual. Driven by the huge demands of healthcare
services and caregiving workloads, the healthcare system is
now transforming from a physician-centric and hospital-centric
model to patient-centric, continuously monitoring manner [3].
In this sense, the quality of healthcare heavily rely on the
quality of those medical monitoring systems.

However, it is not always the case that the monitor can
obtain the physiological signals flawlessly. It is not uncommon
that, the acquired physiological signals are strongly impaired
by noises; the sensors are temporarily or permanently discon-
nected from the patient (due to the patient’s movement or
loose adhesion) and thus cannot detect anything; there may
be errors resulted from transmission or recording, or omitted
by human. Some pieces of physiological signals can also
be simply ignored since the data is less important and less
used. Or the records may not match with each other because
of asynchronous clocks, and so on [4]. Unfortunately, for
traditional patient monitors, they generate alarms if any of
monitored physiological parameters exceeds a certain range,
which becomes problematic for the case when the data is

missing. In this case, a huge amount of false alarms may be
generated just because of missing or corrupted data. Table I
shows the missing rate of some patients’ heart rate and blood
pressure records from the MIMIC II database [5]. The missing
rate varies a lot for different patient records, from 0.19% to
an extraordinary high level of 38.95%. Those missing data
can cause rather high level of false alarms which can not
only increase the workload of the caregivers, causing them
fatigue [6], but also increase the life threatening risk of the
patients [7]. Several studies have reported an extremely high
rate of false alarms in critical care monitoring (up to 90%
of all alarms are false positives) while the vast majority of
such alarms have no real clinical impact [8]–[10]. Since the
missing data can decrease the accuracy of decision making,
it is important to minimize its influence. If we can make a
reasonable prediction that is very close to its actual value, this
would be very helpful. As it is well demonstrated in other
literature that the physiological signals show strong spatial-
temporal relations, it is possible that we can predict the missed
pieces based on historical data.

Missing data problem has been extensively studied in a
wide variety of domains, such as economics, finance, and
engineering. Some existing methods can be properly applied in
patient monitoring. Acute Physiology, Age and Chronic Health
Evaluation (APACHE) system [11] is an accepted scoring sys-
tem derived from physiological signals, blood tests and arterial
blood gas tests. It assumed the missing data was in normal
state and used the mean value to represent the part. In [12],
the authors presented a weighted K-nearest neighbor algorithm
on multi-dimensional intensive care unit (ICU) clinical data.
The signal quality index method considered the effect of the
signal quality [13] and used other more reliable physiological
signals to extract the clinical features. But this method required
other different sources of signals.

In this paper, we present a comparative analysis of the
performance of mean imputation, Gaussian Process Regression
(GPR), and Kalman Filter (KF) approaches. Since HR and BP
are vital signs having similar characteristic in the missing data
prediction, here we use the HR as an example to investigate the
performance of the three different methods. In the following
sections, we first describe these three algorithms. Then based
on the described experimental setting, we evaluate the pre-
dicted results on the HR from MIMIC II database and analyze
how the window size and prediction step influence the results.



TABLE I. MISSING RATE IN MIMIC II DATABASE

Record Total Heart Rate % Blood Pressure %
a40017 3610 571 15.82 1406 38.95
a40022 8633 192 2.22 5960 6.90
a40076 4228 8 0.19 212 5.01
a40084 3887 102 2.62 396 10.19
a40093 2677 372 13.90 401 14.98
a40154 4090 67 1.64 249 6.09
a40414 4663 382 8.19 476 1.02
a40471 1668 40 2.40 74 4.44
a40502 11117 115 1.03 1183 10.64
a40645 6749 287 4.25 465 6.89
Total 51322 2136 4.16 10822 21.09

II. ALGORITHMS

As many algorithms are developed to predict the missing
data in various areas, they can be generally classified into four
categories: completely recorded units based, imputation based,
weighting procedure based, and model based methods [14].
The completely recorded units based method simply discards
the incompletely recorded units and only uses the complete
data for analysis purpose. The imputation-based procedure uses
the standard methods to analyze the resultant completed data
after the missing values are filled in. The weighting procedure
analyzes the data by their contribution. The predict values will
rely on the more relevant points. The model-based procedure
builds a model based on the partially missing data and uses this
model to predict the missed values. Since this method is on the
likelihood, it is more flexible. Specifically, mean imputation,
GPR and KF are among the most representative algorithms for
prediction.

A. Mean Imputation

In mean imputation, it simply uses the average value of
measured data to replace the missed ones.

B. Gaussian Process Regression

Gaussian Processes (GPs) [15] extend multivariate Gaus-
sian distributions to infinite dimensionality. There are two
functions involved in GPR: the mean function which is as-
sumed to be 0 everywhere, and the covariance function:

k(x, x′) = σ2
fexp

[
− (x− x′)2

2l2

]
+ σ2

nδ(x, x
′) (1)

where σ2
f is the signal variance, l is the length scale, σ2

n

is the noise variance, δ(x, x′) is the Kronecker delta function.
Based on the covariance, we can get the best estimation by
the format of mean of the distribution and the uncertainty in
variance. A sparse pseudo-input Gaussian process [16], [17]
was proposed to improve the computational efficiency and
relaxing the restrictive modeling assumptions of the standard
Gaussian process by sparse approximation based on a set of
M “pseudo-inputs”. For these advantages, we used the sparse
pseudo-input method for GPR prediction.

C. Kalman Filter

Kalman Filter is a state space model based optimal esti-
mator. It can be expressed in the following way:

x(k + 1) = Ax(k) +Bu(k) + w(k)(state)
y(k) = Cx(k) + v(k)(measurement) (2)

where, x(k) is the state, y(k) is the observation, u(k) is the
outside input, w(k) and v(k) are noises and have zero-mean
and normal probability distribution, A is the state transition
model applied to the previous state, B is the control-input
model applied to the outside input, C is the observation model.
Based on the above two equations, one gets the prediction by
minimizing E

[
(xk − x̂k)(xk − x̂k)T

]
. To predict the patients’

vital signs, like HR, the state equation can be simplified by
setting A = 1, B = 0, and C = 1, let the HR be both the
measurement and the state describing the process [18], [19].

Generally, KF relies on the current observation and requires
less memory to store previous information. For 1-step predic-
tion, the predicted value is calculated as following equation:

x̂ [N + 1|N ] = Ax̂ [N |N − 1] +K (N) e (N) (3)

When two or more points ahead need to be predicted, but
the new observations are unknown, the r-step ahead prediction
value is calculated as the following equation using the data we
currently known:

x̂ [N + r|N ] = A(r−1)x̂ [N + 1|N ] (4)

The multi-step predictions mainly based on the state tran-
sition model A and the prediction depth r.

III. RESULTS

A. Experiment Setting

The MIMIC II database [5] was used as a source of data
for the experiment and the numerical heart rate data which
was one sample per minute was selected as the testing data.
The records of 10 patients were selected. Each record of the
selected 10 patients was first separated into smaller segments
without unknown or zero data by the trends which were shown
in Table II. Since when we kept receiving data, we knew the
trend in the short time period and the heart rate seemed to
hold the short time trend. By analyzing the performance of
each trend, we could evaluated how reliable we could trust on
the predictions.

Given the fact that the window size of the historical infor-
mation may influence the results, we would like to investigate
a more effective way to predict more data because it is very
often that two or more consecutive data samples are missing.
In this study, we randomly chose a point, shown by the red
arrow in Figure 1, to decide where to start the prediction. To
evaluate the influence of the window size, we included more
or less data from the red point to the left. To analyze how
many points we could predict that were close to the actual
values, 10 points data on the right of the red point from 1 to
20 with incremental of 2 were predicted. Since the multi-step
prediction was actually using only the data already known, we
thus used the fixed window without sliding. After we got the
predictions, we compared them with the original data using
the Mean Squared Error (MSE) in the following equation to
evaluate the performance:

MSE =
1

N

N∑
i=1

(
Ŷi − Yi

)2
(5)



TABLE II. DESCRIPTION OF TESTING DATASETS

Trend Screen Shot Description # of sets
STABLE almost a constant value 21

INCREASE 1 stably increasing segment 15

DECREASE 1 stably decreasing segment 16

INCREASE 2 general trend is increasing, but
data vary a lot for a short pe-
riod of time

22

DECREASE 2 general trend is decreasing, but
the data vary a lot for a short
period of time

19

OBSCURE data change frequently in large
amplitudes

53

Fig. 1. Experiment Window Size and Prediction Length Set Up

where N is the total number of predictions, Yi is the
original value, Ŷi is the predicted values.

B. Experiment Results

In order to better compare the performance for different
window sizes and prediction lengths, we plotted two figures for
each approach. One showed the MSE distribution of different
window sizes from 1 to 56 with incremental of 5 on 1-
step, 2-step and 3-step prediction. The other showed the MSE
distribution of different prediction lengths on fixed window
sizes of 5, 10 and 15. The box plot was chosen to show the
spread degree of the results. The white circle with black dot
inside represented the median of the test results. The edges
of the box were the 25th and 75th percentiles. The vertical

Fig. 2. Results of Mean Imputation Based Prediction (Different Window
Sizes)

lines indicated the variability outside the two quartiles up to
the extreme data.

Figure 2 presents the MSE values using mean imputation
over different window sizes and the color boxes represented
the results of different prediction lengths. From this figure, we
can see that the STABLE trend had the best performance. The
predicted values were very close to their expected values. The
maximum error was no larger than 1 for 1-step and 2-step
prediction and 2 for 3-step prediction. Both INCREASE 1 and
DECREASE 1 cases had the results that the errors were small
when the window size was not large for all the three different
step predictions. When the window size was no greater than 16
for INCREASE 1 and 11 for DECREASE 1, the MSEs were
less than 5. When the window size exceeded these values,
the errors would increase rapidly. The errors in INCREASE
2 and DECREASE 2 were larger. Although a few MSEs can
reach over 10 when the window size was small, most of the
MSEs were distributed in the range less than 10 when the
window size was no larger than 16 for INCREASE 2 and
41 for DECREASE 2. For INCREASE 2, the errors range at
window size 16 extended to around 20. As the window size
increased, the MSE range would drop or rise slowly. Compared
to 2-step and 3-step prediction, 1-step prediction had the worst
results. For the OBSCURE case, when the window size was no
larger than 26, most of the errors were in the range less than
5 for prediction length of 1 while 2-step and 3-step prediction
had most MSEs less than 10. Since the blue boxes were higher
than green ones while the green boxes were higher than the red
boxes in general when the window size was larger and equal
than 26, the accuracy of predicting more data decreased.

Figure 3 shows the results of the MSEs for different
prediction lengths and the color boxes show the results on
different window sizes of 5, 10, and 15 respectively. The
predictions were very accurate at the STABLE trend no matter
how many data we wanted to predict because the maximum
error was no larger than 3.5. The MSEs were increasing for
both INCREASE 1 and DECREASE 1 as more data were



Fig. 3. Results of Mean Imputation Based Prediction (Different Prediction
Lengths)

predicted. And also almost all the result ranges of window
size 15 were the largest and window size 5 were the smallest.
Thus, when the window size was small, reliable results could
be obtained even when several data samples needed to be
predicted. For OBSCURE case, about 80% of MSEs were
below 5 for 1-step prediction. But when we tried to predict
more steps ahead, the 75th percentile fluctuated around 10.
For INCREASE 2, window size 5 and 10 had small MSEs
when the prediction length was less than 5. Otherwise, the
errors could be large and the predictions could be inaccurate.
For DECREASE 2, all the three window sizes had the results
where most errors fell below 10 for the prediction length no
greater than 5. Then, as the prediction length increased, the
MSEs would also increase.

Figures 4 presents the MSE values using sparse pseudo-
input Gaussian process algorithm over different window sizes
and the color boxes showed the results on different prediction
lengths. The STABLE trend had the best performance for
all the three steps predictions with all the results below 2.
INCREASE 1 had a good performance with MSEs less than 3
except the window size of 61. DECREASE 1 also had a good
performance with MSEs below 8. For OBSCURE trend, most
MSEs of 1-step prediction were in the range below 5. For 2-
step and 3-step predictions, most errors were below 10 when
the window size was less than 41 for INCREASE 2. Most of
the 1-step and 2-step prediction results were less than 5 for
DECREASE 2. Also, the 3-step prediction seemed to be less
accurate than 1-step and 2-step with most of MSEs less than
10.

Figure 5 shows the results of the MSE for different
prediction lengths on window sizes of 5, 10 and 15. The
STABLE state had the best performance. As the prediction
length increased to 20, the MSEs were smaller than 3.5. The
errors increased when we predicted more points ahead for
trends INCREASE 1 and DECREASE 1. When the prediction
length was smaller than 15, the MSEs were most likely to
be less than 5 for both cases. For OBSCURE trend, the 75th

Fig. 4. Results of GPR Based Prediction (Different Window Sizes)

Fig. 5. Results of GPR Based Prediction (Different Prediction Lengths)

percentiles were mostly below 10 with a slowly increasing
trend. For INCREASE 2, when predicting no more than
5 points ahead, the MSEs were less than 10. If we kept
predicting, the errors would increase. For DECREASE 2, the
predictions were accurate for all the three different window
sizes to predict up to 5 data samples. Then, the error ranges
increased slowly as prediction length increased. But most of
the errors were below 20.

Figures 6 presents the MSE values using Kalman filter
over different window sizes and different prediction lengths.
The Kalman filter showed a good performance for STABLE,
INCREASE 1 and DECREASE 1 trends. All the MSEs were
less than 1.5, 1.5 and 3 for STABLE, INCREASE 1 and
DECREASE 1 respectively. The 75th percentiles of MSEs
were below 8 for OBSCURE, 6 for INCREASE 2 and 5



Fig. 6. Results of Kalman Filter Based Prediction (Different Window Sizes)

for DECREASE 2. Also the results did not change as the
window size increased because the prediction only depended
on the most current data and did not care about the previous
information.

Figure 7 shows the distributions of the MSEs for different
prediction lengths with window size of 5, 10 and 15. The
STABLE trend had the best performance with all the errors
less than 3. For INCREASE 1 and DECREASE 1, the ranges
of MSEs increased as the prediction length increased. When
the prediction length was less and equal than 15, the prediction
errors were more likely to be less than 5 in INCREASE 1 trend.
For DECREASE 1, most of the errors between the predictions
and the actual values were below 5 when the prediction length
was up to 20. The MSEs in OBSCURE were in the range less
than 10 with a slowly increasing trend. Because the transition
matrix A was set to be 1 so that A(r−1) was always 1 in
this study, the MSEs were mainly obtained by the variations
of the HR changes. For INCREASE 2, the predictions were
very close to the expected values when the prediction length
was less than 5. The error range increased when the prediction
length reached 15. After this value, the error range decreased.
Most of the MSEs were less than 10 when the prediction length
was less and equal than 11 for DECREASE 2. Then the error
range slowly increased as the prediction length increasing.

Since the KF-based prediction did not change for multi-step
prediction and the mean imputation based prediction was using
the average to replace all the missed data, we compared the
performance of 1-step prediction for all three methods, shown
in Figure 8. At STABLE trend, all the three methods had a
good performance with MSEs less than 1. At INCREASE
1 and DECREASE 1 trends, both GPR and KF had the
best performance with small errors. Mean imputation became
very worse as the window size increasing. For INCREASE 2
and DECREASE 2, KF had the best performance and mean
imputation was the worst. GPR also had a good performance.
But when the window size was large, it could make more
predictions far away from the actual data. For OBSCURE

Fig. 7. Results of Kalman Filter Based Prediction (Different Prediction
Lengths)

Fig. 8. 1-Step Prediction Comparison (KF, GPR, and Mean-based Ap-
proaches)

trend, in general, most MSEs were less than 10 for all the
three methods and different window sizes. When the window
size was less and equal than 26, GPR seemed to have the
predictions more closer compared to other two methods. As
window size increased, KF seemed to perform better than
GPR.

IV. DISCUSSION

For all the three different prediction approaches, they had
very good performance when the period data were in STABLE
trend no matter how many past samples were considered.

For trend INCREASE 1 and DECREASE 1, both GPR and
KF had good performance for the window size increasing from



1 to 56 with incremental of 5 on 1-step, 2-step and 3-step
predictions. When GPR method dealing with the prediction
problem, it first found the nonlinear line which fit largest
data it could reached in the fixed window size. This nonlinear
line showed the trend of the trained heart rates which was
very helpful to predict data had the same trend information.
Thus GPR showed small errors in predicting INCREASE 1
and DECREASE 1 trend data. Because the trend information
held by the data in different window sizes was different, the
predictions could be varied. Therefore, the ranges of results did
not simple increasing as the window size increased. Since KF
kept adjust its predictions by the error between the prediction
and actual value in previous point, it was good to follow
the INCREASE 1 and DECREASE 1 trends. So it could
give predictions very close to the actual HRs. Also, KF only
used the most recent measurement for prediction. This made
the predictions constant although the window size increased.
However, mean imputation only got small MSEs when the
window size was small; otherwise, the errors increased a lot.
The reason causing this was the characteristic of the data
trend. Considered the INCREASE 1 trend for example since
DECREASE 1 had the same reason. We averaged a fixed
window size data before the starting point of predictions and
used the mean value to replace the first prediction point.
Since the trend was increasing, the mean value was absolutely
less than what was expected. If more data were included for
calculation, more smaller data were included. This would make
the mean value even smaller than the actual value. Thus, mean
imputation worked well only when the window size was small.

When the data had the trends of INCREASE 2 and DE-
CREASE 2, it was hard for the prediction method to follow the
immediate HR change. However, when the window size was
small, the performance of all the three methods was similar
with most of the MSEs below 5 which was a reasonable
tolerant range. Increasing window size did not help to improve
the performance. It even could have worse results.

For OBSCURE case, most of MSEs were below 10 for
mean imputation, GPR and KF methods when the window
size was small. Otherwise, the errors could increase.

It can happen that two or more data may be missing. For
STABLE trend, the predictions, no matter how many samples
we wanted to predict ahead, were very close to the actual HRs.
For a fixed window size, mean imputation, GPR and KF had
worse performance as more data were predicted. Because HRs
were more relevant in a short time, the predictions would be
less accurate for points several minutes away. For INCREASE
2 and DECREASE 2, all the three prediction methods only had
small MSEs when the prediction length was small. For large
prediction lengths, it was more likely to have less accurate
predictions. For OBSCURE case, although the MSEs had a
slight increasing, more than 75% errors were less than 10.

V. CONCLUSIONS

The missing data has been a long-standing issue in pa-
tient monitoring since it can introduce degraded signals and
adversely affect the clinical decision making process. In this
paper, we investigated three different approaches for missing
data prediction in clinical settings: mean imputation, GPR and
KF. Experimental results showed that KF and GPR had a

good performance for 1-step prediction when the data were
stable without frequently large changes; when dealing with
data varying a lot frequently, the predicted values seemed to
be less reliable. The larger window size did not necessarily
mean the better performance. In most situations, the heart rate
was more closely relevant to its most recent values.
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