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Abstract—Electroencephalogram (EEG) brainwaves have re-
cently emerged as a promising biometric that can be used for
individual identification. In this study, we present a new visual
stimuli-driven, non-volitional brain responses based method-
ological framework towards individual identification. The non-
volitional mechanism provides an even more secure way in
which the individuals are not aware of security credentials
and thus can not manipulate their brain activities. Given the
intercorrelated structure of brain functional areas, instead of
making the identification decision relying on any single EEG
channel, we propose a new identification approach based on
the decision-level fusion of multichannel EEG signals, using the
Radial Basis Function (RBF) neural network and its improved
versions. Specifically, the identification decision is determined
according to the identification patterns reflected from multiple
EEG channels over the desired brain functional region. We
evaluate the performance of our proposed methods based on
four different visual stimuli and four independent EEG channels.
Experimental results show that, the proposed fusion technique
can significantly improve the identification accuracy, compared to
the conventional single channel based solution. For RBF network,
the accuracy of identifying 37 subjects could reach over 70%,
which is better than the average accuracy of about 55% achieved
through individual channels. For the improved RBF networks,
the frequency-based decision making could reach the accuracy
of 90%, while the probability-based method could reach over
91%. Our study lays a foundation for future investigation of
more accurate and reliable brainwave-based biometrics.

I. INTRODUCTION

Over the past few decades, biometric approaches have
gained dramatically increasing interest for individual identi-
fication and authentication, since they are closely associated
with an individual’s physiological or behavioral features. Some
of those features, such as fingerprint, face, iris and voice [1],
have been extensively investigated and proved to be scientifi-
cally unique across the entire human population, which result
in very promising biometrics in the cyber security domain.
However, those existing biometric characteristics still suffer
from various limitations and weaknesses, far from perfect. For
example, the fingerprint is a popular biometric measurement
with a high matching accuracy, however it can be faked [2]
or obtained by force. It has been reported that a violent gang
in Malaysia chopped off a car owner’s finger to get round
the vehicle’s hi-tech security system [3] and a fingerprint of a

Germany’s federal minister of defense has been collected and
cloned by a hacker group using pictures taken with a standard
camera [4]. The “noncancellable” nature of fingerprints or
iris make the breach of such identity information catastrophic
and non-recoverable to the nation’s security [5]. Therefore, it
is highly desired to seek new biometric approaches that can
possibly overcome those limitations.

Recently, electroencephalogram (EEG) based biometrics,
representing the unique human brain activities, have emerged
as a new and promising way for labeling each individual per-
son [6], [7]. EEG records the brain’s electrical activity which is
inherently determined by the person’s unique pattern of neural
pathways and closely associated with each individual’s unique
memory and knowledge base and sensitive to mood, stress and
mental state [8]. Thus EEG signals can be a more secure and
reliable identification and authentication biometric because it
is unique for each individual [9], [10], impossible to imitate
others’ brain activities [7], [11], very difficult to be obtained
under force and threat and stable over time [12].

EEG signals collected over the entire scalp reflect a wide
range of brain activities and the signals from the electrodes
placed over the occipital lobe and a broad region of the medial
scalp are believed to be able to show more distinguishable
features (closely related to the individual’s visual association
and semantic memory), compared to the ones collected from
other locations. Although a single EEG channel in the desired
region could largely represent the brain activities, the signals
are very sensitive to artifacts, e.g., the movement between
the electrodes and the head, and contain useless information.
It is very challenging to point out which specific channel
(that is, which specific position point on the scalp) has better
signal quality over the course of time. For example, occipital
lobe region is the visual processing center of human brain
containing most of visual cortex. Channel Oz has shown
better performance than other channels, like O1, O2, and Pz
[13]–[15]. However, it does not necessarily mean that the
Oz channel can always make the right decision, while other
channels always give incorrect decisions. It is important to
note that, EEG signals from different channels are eventually
reflecting the brain activities in response to the same visual
stimulus, especially the channels which are close to each



other can obtain similar brainwaves. Thus, in this study,
we argue that a more accurate identification decision can
be achieved by concurrently investigating EEG signals from
multiple channels, which will help mitigate the influence of
unexpected or random artifacts in certain channels, as well as
reinforce the consistent identification results from one or more
channels.

In this paper, we present a multichannel EEG-based user
identification framework using an improved RBF neural net-
work and fusing the identification results from various inde-
pendent EEG channels at the decision level. We also seek
to explore the potential impacts and performance of adopting
different types of visual stimuli. Specifically, we analyzed
four EEG electrode channels (over the occipital lobe region)
under four types of visual stimuli from 37 human subjects.
The rest of the paper is organized as follows: Section II
gives a brief introduction to the related work. Section III
introduces the RBF network and the improved versions we
proposed for making the final identification decision. Section
IV describes the experimental setting for EEG data collection
and preliminary identification decision makings, and then
discusses the experimental results. Section V concludes our
research work and results.

II. RELATED WORK

Existing research has demonstrated that EEG brainwave
signals can be used as a viable biometric for individual
identification and authentication. Those prior research efforts
represent different emphasis. For instance, some researchers
focus on the work to find out the more effective stimuli or
mental tasks, while some others investigate a variety of noise
removal methods, feature extraction methods and classifiers
to improve the identification accuracy. Electrode locations and
which channels can best capture the brain activities are also
concerned. One way is to choose the channel which reflects
the brain activities most. Poulos et al. [16], [17] proposed
a linear rational model of ARMA type to fit the alpha band
EEG signals. Using the learning vector quantization (LVQ)
neural network (NN) on the voltage difference between leads
O2 and Cz, for the 75 people being tested, to distinguish a
specific person from others, correct classification scores of
LVQ classifier in the range of 72% to 84% were obtained. Gui
et al. [18] used Oz channel which is located in the occipital
region to analyze the identification performance on 32 subjects
using neural network to classify features after wavelet packet
decomposition (WPD). The accuracy of authentication (i.e.,
recognizing the authorized individuals) was around 90%, but
the accuracy of identifying all the 32 subjects individually is
only from about 10% to 50%. Euclidean distance (ED) and
dynamic time warping (DTW) approaches were proposed to
analyze four EEG channels separately [19]. The results showed
that the Oz channel performed better than the other three
channels and it can reach an accuracy of over 80% for ED
method and about 68% for DTW method.

Since any single channel itself can hardly reflect the entire
picture of highly complicated brain activities, not to mention

the influence of noises and artifacts, it is thus desirable to
investigate multiple interrelated EEG channels around the
target brain functional region which can elicit the most dis-
tinguishable brain activities. On the other side, the potentially
increasing computational overhead caused by more EEG signal
channels requires us to pick up a small set of EEG channels
in our framework. Researchers have been trying to make
decisions using two or more EEG channels. The most common
way is to combine the feature vectors of each channel together
to form a new feature vector and then use these combined
feature vectors for classification. For instance, Ashby et al.
[20] extracted 5 features, the autoregressive (AR) coefficients,
power spectral density (PSD), spectral power (SP), inter-
hemispheric power difference (IHPD) and interhemispheric
channel linear complexity (IHLC) from 14 channels. After
combining them all together, the final dimension of the feature
vector is 1358. Then they used the linear SVM classifier for
authentication on 5 individuals and got the false rejection
rate (FRR) of 2.4% to 5.1%, and the false acceptance rate
(FAR) of 0.7% to 1.1%. Nguyen et al. [21] extracted 21
AR coefficients and 12 PSD components from channel C3,
C4 and Cz and resulted a feature set of 99 features. They
reached the best average equal error rate of 4.09% for support
vector data description (SVDD) with RBF kernel and 4.41%
for Gaussian mixture model (GMM) on 9 subjects. In [22],
the authors extracted the same features but from 6 channels
and formed a feature vector of 198 attributes. Shedeed [23]
extracted 92 and 40 features for Discrete Fourier Transform
(DFT) and 72 and 96 features for WPD from 6 channels. Using
artificial neural network (ANN) as the classifier, the accuracy
reached over 87% to verify 3 subjects. Other studies also form
the feature vector in a similar way, e.g., Hema [24] extracted
129 PSD features from 2 channels and Liang [25] extracted
36 AR features from 6 channels. Although multiple channels
could bring more useful information, the dimension is quite
large. Thus, methods, like principle component analysis [26]
and one-way-analysis-of-variance (ANOVA) [27], [28] were
adopted to lower the dimension and keep the most relevant
features.

III. METHODS

A. Radial Basis Function (RBF) Network

RBF network [29] is a particular type of artificial neural
network that uses radial basis functions as activation functions.
The general architecture of RBF network is shown in Figure 1.
It typically has three layers: an input layer, a hidden layer with
non-linear RBF activation functions and a linear output layer.
Given an input vector of real numbers x ∈ <n, the output of
the network is a linear combination of radial basis functions
of the input vector, f : <n → <, and is given by Equation 1.

f(x) =

N∑
i=1

wiφ(‖x− ci‖) (1)

where N is the number of neurons in the hidden layer, ci
is the center vector for neuron i, wi is the weight of neuron i



Fig. 1. Architecture of a RBF network

in the linear output neuron, and φ is the radial basis function
depends only on the distance from the input vector to a center
vector.

RBF network is more intuitive than the multi-layer per-
ceptron neural network. According to [30], the RBF network
could be simplified without the radial basis function but
keeping the norm calculation. Such simplification has enabled
the possibility of developing a dedicated, ultra-low-power
silicon chip which has been proven to be very effective in
supporting RBF classification tasks [31], [32], including the
potential brain-based biometric authentication applications. In
this architecture, each neuron is designed to save the pattern
and influence field of which the area means the similarity
domain. To build a model of the network, the information
of the training data is learned and stored in the neurons in
the training phase. Figure 2 shows a decision space mapping
results of the neurons using Manhattan distance after training.
The influence fields reflected by the diamond areas, the pat-
terns which are the centers of the diamonds, and the categories
which are shown by different colors are stored in the neurons.
In the training process, when an input vector and its category is
presented to the network, the neurons in the hidden layer will
check whether one of them can recognize this input pattern
with the same category. If this is the case, the neurons will
keep the same. As the black point at (7, 10) is in the same
domain belonging to the point at (6, 10), no new neuron will
be activated to save this input. On the contrary, if the input is
not recognized by any neuron, a new one will be created to
store the pattern and its category, and also its similarity range.
It can happen that a vector in category B falls in the similarity
domain of different category A. In this case, a new neuron is
created to store the input of B and also the influence field of
category A shrinks so that it no longer recognizes the vector
of category B. Based on these actions, the neurons will learn
the information of the training data, which lead to the different
areas and colors of the diamonds in the figure.

When the training process is finished, the recognition pro-

Fig. 2. Decision space mapping

cess simply check the corresponding category of the influence
field which the testing pattern falls in. Since the influence
fields of different categories may overlap to each other, it is
possible that a pattern falls in a region covering by multiple
influence fields which can cause an uncertainty. And also a
pattern can fall out of any influence field and causes unknown
status. So we propose to adopt a simple way using the smallest
distance to make a decision.

B. Improved RBF Neural Network

The RBF network uses the regular distance, such as Eu-
clidean distance or Manhattan distance, between the input
vector and center vectors to make classification decisions. But
this is only reasonable when the processed data are numeric.
In the case of brain biometric, we use the RBF network at the
decision level, after the preliminary identification results have
been obtained based on the four EEG channels respectively.
Although we could numerically label the subjects, the labeled
data could still introduce errors when we try to find out the
similarity between two patterns. For example, it could happen
that the input vector and one pattern stored in the neurons are
very similar to each other except that the decisions from each
channel are quite different. If the labeled values of different
samples are very far from each other, the RBF network would
give a larger distance value. There may be another chance that,
a stored pattern, whose preliminary results are different from
the input vector with the labeled values, is closer to the input
vector. In this case, although the distance is small, the pattern
is quite different from the input pattern. Therefore, we propose
a more reasonable distance evaluation method and decision
making scheme according to the specific characteristics of the
input vectors.



In the preliminary results from four channels, it is frequent
that incorrectly predicted channels are more likely to give the
same incorrect results. The channels making correct predic-
tions are not the same at all the times. Therefore, instead of
using distances like Euclidean distance or Manhattan distance,
we propose to use the total number of correctly identified
channels, ignoring the order of the results from four channels,
as the distance to present the similarity between two patterns.
We use the similarity score to represent the distance. Two
vectors are more similar if the similarity score is higher. So
the category that has the largest similarity score is more likely
to be the output.

Before the classification, we first use a set of preliminary
results to finish the training process by storing patterns and
categories which are distinct from each other. Based on those
stored information, we could start the testing process. When
there is a new input vector, first the similarity scores to all
the stored patterns are calculated. Let S = {s1, s2, · · · , sL}
represent the similarity scores between the input vector and
the stored patterns, Y = {y1, y2, · · · , yL} represent the
corresponding categories, D = {D1, D2, · · · , DL} denote
the corresponding different samples between the input vector
and stored vectors, where L is the number of activated
neurons with stored patterns. The maximum similarity score is
smax = max{S}. The most possible results are the categories
that have the maximum similarity score as Equation 2.

ŷ = yi, D̂ = Di for ∀i, si = smax (2)

where yi ∈ Y , Di ∈ D, and si ∈ S.
Since only four channels are considered in this study, it is

possible that the similarity scores between the input pattern
and several stored patterns in different categories are same.
Let SBJ = {sbj1, sbj2, · · · , sbjM} denote all the possible
outputs in ŷ, nSBJ = {n1, n2, · · · , nM} are the corresponding
frequencies, where M is the total number of different subjects
that are being predicted. One method to make the final decision
is based on the frequencies, called frequency-based RBF
network, shown as Equation 3.

ŷfreq = sbji, i satisfies ni = max{nSBJ} (3)

Another method for final decision making is probability-
based RBF network. Based on the training data, we can not
only obtain the training model of RBF network, but also the
probability matrix of correct and incorrect predictions between
any two subjects. The matrix is denoted by AN in Equation 4.

AN =



a1,1 a1,2 · · · a1,j · · · a1,N
a2,1 a2,2 · · · a2,j · · · a2,N

...
...

. . .
...

. . .
...

ai,1 ai,2 · · · ai,j · · · ai,N
...

...
. . .

...
. . .

...
aN,1 aN,2 · · · aN,j · · · aN,N


(4)

where ai,j is the probability that subject i is recognized as
subject j, and the sum of each row

∑N
j=1 ai,j is 1.

Based on the probability matrix AN , the probability based
method is to find the category in which the samples between
any two patterns had the highest probability as shown in
Equation 5.

ŷprob = argmax
ŷi∈ŷ,D̂i∈D̂

p(ŷi|D̂i) (5)

IV. EXPERIMENTS AND RESULTS

A. EEG Data Collection

The raw EEG signals were collected from 37 adult par-
ticipants (19 females, age range 18-25, mean age 19.53)
using “EASY CAP” device (Ammersee, Germany) [33] from
four electrode sites (Pz, O1, O2, Oz) around the area of the
occipital lobe region, which is the visual processing center
of the mammalian brain and is believed to better reflect
each individual’s visual cognitive behaviors [34]. The data
was sampled at 500 Hz. 1.1 seconds of raw EEG signals
were recorded, which made 550 samples for each channel.
In this experiment, the participants were asked to silently
read an unconnected list of texts which included 75 words
(e.g., BAG, FISH), 75 pseudowords (e.g., MOG, TRAT), 75
acronyms (e.g., MTV, TNT), 75 illegal strings (e.g., BPW,
PPS), and 150 instances of their own names [14]. By showing
the subjects with the stimuli, the non-volitional (“involuntary”
or “intuitive”) brain activities were recorded. Each human
subject was tested twice.

B. Preprocessing

Since the raw EEG signals are noisy, it is common to
average many trials together which can get rid of the random
brain activities but keep the event-related potentials (ERPs).
Thus the EEG signals were first ensemble averaged for 50
individual measurements. Based on the ERPs, we can find
that the morphology of the patterns from the same individual
were very similar. Furthermore, the patterns were persistent
during different tests which was an important indicator that
the similar EEG patterns (i.e., non-volitional brain responses)
could be captured in any later tests. Moreover, it can be
observed that the patterns were quite different among different
human subjects. Such observations testify the psychological
rationale about the uniqueness of people’s non-volitional brain
responses, even to the exactly same stimuli, and also imply the
feasibility of recognizing an individual through identifying the
similarity between the unknown EEG brainwave segment and
the reference pattern.

C. Decision Making

We used a simple but effective pattern matching approach,
named Euclidean Distance (ED), to assess the similarity level
among the unknown EEG brainwave segment and the refer-
ence pattern set, for each EEG electrode channel [19]. 10 trails
for each subject and each channel from the first test were
randomly chosen as the references. 10 trails for each subject



TABLE I
IDENTIFICATION PERFORMANCE OF DIFFERENT APPROACHES BASED ON SINGLE CHANNEL AND FOUR CHANNELS

XXXXXXXXXXStimuli
Channel Single Channel 4 Channels

Pz O1 O2 Oz RBF network Frequency based Probability based
Acronyms 47.30% 55.68% 48.38% 53.24% 74.86% 88.65% 90.27%

Illegal Strings 58.92% 58.92% 59.46% 67.57% 78.92% 90.00% 91.62%
Pseudowords 54.32% 55.41% 52.16% 62.70% 71.08% 82.70% 84.05%

Words 47.84% 59.46% 52.43% 67.03% 70.27% 83.24% 86.49%

and each channel from the second test were also chosen. Then
the ED method was adopted to make a preliminary decision
between the trails and the references. These decisions were
fed into the RBF network to build the training model. Another
10 different trails for each subject and each channel from the
second test were also chosen to compare against the references,
where the preliminary decision results were used as the testing
dataset. When the training data and testing data were ready,
we used the methods described in section III to evaluate the
performance.

D. Experimental Results

Table I presents the accuracy of ED method based on single
channels, and RBF network and improved RBF network based
on four channels. The multi-channel-fused results are more
accurate than the single-channel-based schemes. For example,
for the single channel solutions, to identify all the 37 human
subjects, the worst accuracy is 47.30% using acronyms and
the Pz channel and the best accuracy is 67.57% using illegal
strings and the Oz channel. In contrast, using the classic
RBF network-based multi-channel fusion method, the worst
accuracy is 70.27% using words and the best accuracy is
78.92% using illegal strings. More impressively, based on the
proposed improved RBF networks, the best accuracy can reach
90.00% (frequency-based) and 91.62% (probability-based),
both using illegal strings. According to the table, identification
results based on four channels are much better than the ones
based on any single channel, and the improved RBF network
shows superior performance advantage, over the classic RBF
network. Also, all the results indicate that the accuracy using
illegal strings are higher than other visual stimuli.

E. Discussion

In this study, we proposed a new user identification method-
ological framework using improved RBF neural network ap-
proaches, leveraging the non-volitional brain activities which
are associated with and reflect people’s unique memory and
knowledge. In the data collection stage, acronyms, illegal
strings, words and pseudowords were presented to the human
subjects. The involuntary responses of each individual when
reading those stimuli were captured. Although the Oz channel
showed stronger distinguishing capability compared with other
channels around this region, it is still possible that other
channels could make a correct decision while Oz channel
was incorrect due to the noises or artifacts introduced during
the EEG data collection process. The RBF network saved the

possible patterns which have some errors that could happen
to be one subject. Next time, when the same pattern is
observed, the correct decision could be made. Thus, the RBF
network can improve the performance compared with the
single-channel scheme. Since the input data in the network
were numerically labeled subjects, the regular distance could
not represent the differences so well. The proposed methods
used the pairs of the same numbers to avoid the problem
and thus demonstrated better performance. Among different
visual stimuli, illegal strings which were not familiar by people
seem to be able to evoke more distinguishable human brain
responses, than acronyms, pseudowords and words.

V. CONCLUSION

In this paper we focus on a preliminary study using non-
volitional EEG brainwaves as a biometric, based on improved
RBF neural networks, to identify 37 human subjects. For the
classic RBF network, the accuracy can only reach 78.92%.
The frequency-based and the probability-based RBF methods
can reach an accuracy of 90.00% and 91.62% respectively. It
is observed that illegal strings can evoke more distinguishable
brain activity patterns among different individuals and thus
lead to better identification accuracy. In general, the multi-
channel EEG-based approach using improved RBF networks
can achieve a significantly higher identification accuracy than
the classic single-channel EEG-based identification method.
This study represents an early stage research effort to strate-
gically integrate the results from multiple sources together,
which still suffers many limitations and drawbacks. In the
future, we will explore more data and other types of visual
stimuli and investigate more robust classification approaches.

ACKNOWLEDGMENT

This research was supported by NSF grants SaTC-1422417,
SaTC-1423061, and BCS-1252975, and the Binghamton Uni-
versity Interdisciplinary Collaboration Grant.

REFERENCES

[1] A. Riera, A. Soria-Frisch, M. Caparrini, C. Grau, and G. Ruffini, “Un-
obtrusive biometric system based on electroencephalogram analysis,”
EURASIP Journal on Advances in Signal Processing, vol. 2008, 2008.

[2] T. Matsumoto, H. Matsumoto, K. Yamada, and S. Hoshino, “Impact
of artificial “gummy” fingers on fingerprint systems.” Datenschutz und
Datensicherheit, vol. 26, no. 8, 2002.

[3] J. Kent, “Malaysia car thieves steal finger,” BBC News, March
2005, [accessed September 30, 2015]. [Online]. Available: http:
//news.bbc.co.uk/2/hi/asia-pacific/4396831.stm



[4] S. Khandelwal, “Hacker clones german defense minister’s fingerprint
using just her photos,” The Hacker News, Dec. 2014, [accessed
September 30, 2015]. [Online]. Available: http://thehackernews.com/
2014/12/hacker-clone-fingerprint-scanner.html

[5] D. E. Sanger, “Hackers took fingerprints of 5.6
million u.s. workers, government says,” Teh New York
Times, Sep. 2015, [accessed September 30, 2015].
[Online]. Available: http://www.nytimes.com/2015/09/24/world/asia/
hackers-took-fingerprints-of-5-6-million-us-workers-government-says.
html? r=0

[6] J. Thorpe, P. C. van Oorschot, and A. Somayaji, “Pass-thoughts: Authen-
ticating with our minds,” in Proc. Workshop on New Security Paradigms
(NSPW). New York, NY, USA: ACM, 2005, pp. 45–56.

[7] R. Palaniappan and D. P. Mandic, “Biometrics from brain electrical
activity: A machine learning approach,” IEEE Trans. Pattern Anal.
Mach. Intell., vol. 29, no. 4, pp. 738–742, 2007.

[8] S. Marcel and J. D. R. Millan, “Person authentication using brainwaves
(EEG) and maximum a posteriori model adaptation,” IEEE Trans Pattern
Anal. Mach. Intell., vol. 29, no. 4, pp. 743–752, April 2007.

[9] D. J. A. Smit, D. Posthuma, D. I. Boomsma, and E. J. C. Geus,
“Heritability of background EEG across the power spectrum,” Psy-
chophysiology, vol. 42, no. 6, pp. 691 – 697, 2005.
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