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ABSTRACT 
With the increasing deployment of voice-controlled devices in 
homes and enterprises, there is an urgent demand for voice iden-
tifcation to prevent unauthorized access to sensitive information 
and property loss. However, due to the broadcast nature of sound 
wave, a voice-only system is vulnerable to adverse conditions and 
malicious attacks. We observe that the cooperation of millimeter 
waves (mmWave) and voice signals can signifcantly improve the 
efectiveness and security of user identifcation. Based on the prop-
erties, we propose a multi-modal user identifcation system (named 
WavoID) by fusing the uniqueness of mmWave-sensed vocal vi-
bration and mic-recorded voice of users. To estimate fne-grained 
waveforms, WavoID splits signals and adaptively combines use-
ful decomposed signals according to correlative contents in both 
mmWave and voice. An elaborated anti-spoofng module in WavoID 
comprising biometric bimodal information defend against attacks. 
WavoID produces and fuses the response maps of mmWave and 
voice to improve the representation power of fused features, ben-
efting accurate identifcation, even facing adverse circumstances. 
We evaluate WavoID using commercial sensors on extensive exper-
iments. WavoID has signifcant performance on user identifcation 
with over 98% accuracy on 100 user datasets. 

CCS CONCEPTS 
• Human-centered computing → Interactive systems and tools. 
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1 INTRODUCTION 
Recently, voice identifcation has become a boosted topic as a more 
"natural" means for recognizing users [10, 65]. Voice identifcation 
liberates users from remembering passwords and auxiliary gestur-
ing due to the unity of command and verifcation once receiving 
utterances. With its great convenience, voice identifcation is ex-
panding throughout social and individual applications, including 
smart speakers, fnancial systems [57], and entrance guards [20]. 

Whereas voice-controlled systems are rapidly expanding into 
companies and public facilities, a voice system is desired to achieve 
goals of robustness and security. However, due to the inherent 
broadcast nature of sound waves, voice-only identifcation is sus-
ceptible to malicious attacks. Except for replay attacks [76, 77] and 
mimicry attacks [76], nowadays, attackers can launch adversarial 
attacks [11, 12] to make voice-identifcation systems misclassify 
an adversarial token as an enrolled speaker. Additionally, such 
unimodal systems, i.e., voice-only systems, sufer from accuracy 
degradation when exposed to noise and reverberation. 

To alleviate those risks and defciencies, researchers have pro-
posed multi-modal systems. Multi-modal identifcation integrates 
complementary modalities, e.g., gesture [44, 47], WIFI [43, 48], im-
age [1, 30], and ECG [9], to discriminate multiple traits unique to 
users. These approaches only take into account defending against 
unimodal attacks targeting voice, overlooking multi-modal attacks 
aiming at both voice and additional modalities. Furthermore, these 
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Figure 1: An illustration of WavoID to identify a user and 
reject malicious signals in noisy scenes, by fusing mmWave 
signals and voice signals. 

combined modalities, like WIFI and image, are independently ex-
ploited, leading to insufcient discriminative capabilities when 
faced with interference like motion interference or light changes. 
Some multi-modal methods, like ECG-voice and gesture-voice, re-
quire users to execute specifc actions, which constrains the user 
experience of voice-controlled systems. 

After thoroughly understanding the need and challenge of iden-
tifcation systems in voice-controlled devices, the system should 
satisfy the following requirements: (i) no auxiliary operation: it car-
ries on identifcation tasks once a user speaks commands without 
any extra operations. (ii) resilient to adverse conditions: it should 
be robust to the adverse conditions such as noise, user motion inter-
ference, and environmental changes, out of the need of deployed in 
open areas. (iii) resistant to multiple attacks: it should guarantee the 
security and privacy of users no matter what multi-modal attacks 
or unimodal attacks. 

We focus on millimeter waves(mmWaves), referring to radio-
frequency signals whose frequencies start at 24GHz and above. As 
its high resolution in tiny vibration measurement [28], mmWave 
signals have huge potential in applications such as wireless sens-
ing [33], imaging [4], and communications [45]. Prior work [36] 
leverages the vocal displacement uniqueness captured by mmWave 
signals to achieve noise-resistant user identifcation. Despite the 
advantage of noise resistance and user-friendliness, mmWave-only 
identifcation is vulnerable to motion interference of users. In con-
trast, voice signals are robust to motion interference, which can 
compensate for the demerit of mmWave signals to some extent. 
Therefore, we consider a multi-modal identifcation system fus-
ing mmWave and voice modality, as shown in Figure 1, exploring 
their strengths to enhance the identifcation capability of the sys-
tem. With the aid of their correlative cooperation, the multi-modal 
system promises user identifcation in spite of interference and 
malicious attacks. 

To realize a practical and secure mmWave-voice identifcation 
system, we need to cope with the following challenges. (i) How 
to fuse two intrinsic features from diferent modalities to maxi-
mize the system’s efectiveness. (ii) How to estimate fne-grained 
mmWave and voice signals for subsequent identifcation in spite of 
interference on both signals. (iii) How to distinguish genuine users 
from adversaries when facing multiple attacks against mmWave 
and voice modality. 

In this paper, we introduce the inherent correlation between the 
mmWave modality and voice modality. Based on their correlation, 

we propose WavoID, a multi-modal identifcation system fusing 
mmWave signals and voice signals for user identifcation. The pro-
posed WavoID frstly extracts the fne-grained signals based on the 
inherent correlation between mmWave and voice modality. Then, 
WavoID introduces a bimodal liveness detection by using biomet-
ric information from these two modalities to resist multi-modal 
attacks. To enable the fusion of two diferent modalities, WavoID 
generates response maps like thermodynamic diagrams weighing 
the importance of elements in mmWave or voice domain. Using the 
sectioned convolution [59] among these produced response maps 
can enhance bimodal characteristics and still preserve individual 
features. Finally, the fused feature is fed into the identifcation net-
work to identify users. To prove the built-in superiority of WavoID, 
this paper gives a theoretical analysis from a statistical perspective. 

In conclusion, the contributions of our work are as follows. 
• We design a multi-modal identifcation called WavoID, lever-
aging the uniqueness of vocal vibrations and voice biomet-
rics sensed by mmWave radars and microphones. We also 
theoretically analyze its superiority on identifcation from 
statistics. 

• We utilize cross-modal knowledges between mmWave and 
voice domain to refne the fne-grained signals and then 
selectively fuse features for robust identifcation. The cross-
modal mechanism can boost the discrimination ability of the 
system under adverse conditions. 

• We evaluate the security of WavoID in resisting comprehen-
sive attacks, including counterfeit, jamming, replay, mimicry, 
and adversarial attacks. WavoID can reject above 99% mali-
cious samples through the designed bimodal liveness detec-
tion. 

• We demonstrate the efectiveness and robustness of WavoID 
among the 100 user dataset. Experimental results show that 
WavoID maintains a balanced accuracy over 98% and an 
average equal error rate of 1.24%. 

2 RELATED WORK 
This work builds and extends on prior work mainly in three felds: 
voice identifcation, mmWave-based identifcation, and multi-modal 
identifcation. We clarify the position of our study after summariz-
ing these felds. 

2.1 Voice identifcation. 
Voice identifcation, as a non-intrusive biometric identifcation [7], 
uses innate biometric characteristics of users’ voices to distinguish 
the identity of input voices and protect voice-controlled devices 
from non-user voices like Siri and Alexa. Prior research on voice 
identifcation focuses more on exploiting acoustic features unique 
to users, such as linear predictive cepstral coefcients and the mel-
frequency cepstral coefcients, which will be fed into machine 
learning models to identify persons. Recently, motivated by the ad-
vanced deep learning networks (DNNs), mainstream voice identif-
cation applies the encoder-decoder framework for feature modeling 
and speaker matching. However, studies have demonstrated that 
voice identifcation is vulnerable to spoofng attacks, i.e., replay 
attacks, mimicry attacks, and adversarial attacks. Kinnunen et al. 
[32] have shown that replaying recorded user samples can deceive 
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voice identifcation systems into permitting unauthenticated audio. 
Nowadays, researchers consider adding a third phase which aims to 
detect malicious voice input. A few studies [3, 71, 80] characterize 
spectro-temporal distortions between genuine and spoofng voices 
to defend against attacks and identify users. Rajaratnam et al. [50] 
propose to detect adversarial examples by fooding particular fre-
quency bands of audio signals with random noise. Except for the 
utilization of unimodal voice modality, there is a visible trend that 
auxiliary modalities are also used in voice identifcation systems. 
VoiceGesture [85] uses built-in loudspeaker-microphone pairs of 
smartphones to emit ultrasound to sense articulatory gestures for 
liveness detection during voice authentication. Pradhan et al. [49] 
propose combining acoustic and WiFi channels to detect spoofng 
attacks by exploiting the synchronized changes in voice features 
and breathing sensed by WiFi. 

2.2 mmWave-based sensing. 
The mmWave sensing technology has aroused enthusiasm among 
diferent domains ranging from human activity recognition, vital 
signs monitoring, and wireless communication, owing to its high 
resolution and short wavelength[37, 39, 69, 70]. Towards privacy-
preserving tracking manner, Kong et al. [33] extract shape features 
from mmWave sensing signals and reconstruct 3D human posture 
through a designed deep learning model. Xu et al. [78] present 
CardiacWave to achieve non-contact heart monitoring based on 
the frequency response of the cardiac electromagnetic feld under 
mmWave interrogation. Previous studies have demonstrated the 
feasibility of mmWave in user identifcation due to its exceptional 
ability to sense the slightest vibrations. Yang et al. [82] designed a 
multi-person detection and identifcation system by using mmWave 
to sense multi-person’s distinct gait patterns. Together with the 
increasing popularity of voice user interfaces, there is an emerging 
trend in the development of speech recovery for millimeter wave 
radar. Recent works have proven that the phase and amplitude of 
mmWave can be modulated by sensed vibrations of human vocal 
activities, which can be exploited to extract speech information. Xu 
et al. [79] collect refected mmWave signals from users’ throats and 
transform their spectrum into speech spectrum through a deep neu-
ral network. Hu et al. [26] use the generative adversary network to 
reconstruct audio directly from the captured mmWave spectrogram 
without prior knowledge. Despite the advantage of noise resistance 
and user-friendliness, mmWave-only sensing is vulnerable to the 
motion interference of users. Fortunately, voice signals are robust 
to motion interference, which can compensate for the demerit of 
mmWave signals. Therefore, we consider a multi-modal identifca-
tion system fusing mmWave and voice modality, exploring their 
strengths to enhance the identifcation capability of the system. 
With the aid of their correlative cooperation, the multi-modal sys-
tem promises user identifcation despite interference and malicious 
attacks. 

2.3 Multi-modal identifcation. 
Multi-modal identifcation fuses multiple information sources from 
diferent sensors for identifcation, outperforming unimodal identi-
fcation in stability and security [48, 86]. SpeechXRays, devised by 

Adami et al. [2], is an audio-visual identifcation system that pro-
vides anti-spoofng capabilities to enable secure access to eHealth. 
Moreover, Gupta et al. [21] utilize three biometric modalities, i.e., 
swipe, voice, and face, to construct multi-modal identifcation to 
guarantee riders’ security. Recently, deploying multi-modal identif-
cation has become a trend on mobile devices. Khan et al. [29] design 
Itus as a framework for implicit smartphone identifcation. Itus al-
lows researchers to incorporate multiple sensor data or other iden-
tifcation mechanisms into the platform. Similarly, CORMORANT 
proposed by Hintze et al. [25], is a multi-modal identifcation system 
that can deploy continuous cross-sensor identifcation. However, 
these multi-modal methods overlook the importance of defense 
against multi-modal attacks and independently exploit each modal-
ity, which cannot promise systems’ signifcant efectiveness and 
security at the utmost. Unlike all existing works, WavoID com-
pletely fuses multiple modalities based on their intrinsic correlation 
to defend against multi-modal attacks signifcantly and accurately 
identify users in complex scenes. 

2.4 Position of our study 
To the best of our knowledge, WavoID is the frst to integrate 
mmWave and voice modality as a security guard of voice interac-
tion. The mmWave-based sensing captures throat vibration caused 
by users’ voice activity to identify users, which does not require 
extra actions and passwords. Despite its advantages, mmWave sens-
ing is sensitive to multipath noise, especially when users move 
or when environmental conditions change. Inversely, voice-only 
identifcation is resistant to multipath interference but is easily 
impaired by ambient noise. In this study, we overcome their defects 
to elaborate an identifcation framework named WavoID by fusing 
these seemingly diferent modalities according to their correlation 
content, benefting stable and secure voice interactions. Facing tra-
ditional problems in voice identifcation, such as noise reduction 
and feature fusion, WavoID has the key insight of using information 
from one modality to guide the system to search and enhance rele-
vant information from another. Regarding resilient security against 
various attacks, WavoID extracts biometrics characteristics from 
mmWave-voice modalities and reconstructs bimodal feature maps 
to reject agressire signal inputs. 

WavoID allows users to undergo secure identifcation procedures 
without the need to wear or carry any specialized equipment while 
interacting with voice intelligence products. This user-friendly 
approach provides a convenient and efcient way for users to access 
WavoID’s identifcation services. 

3 ANALYSIS ON MMWAVE AND VOICE 

3.1 Apparatus 
Figure 2 shows the setup of the mmWave-microphone combination 
that captures mmWave signals and voice signals synchronously 
when participants speak commands. We achieve the deployment of 
WavoID by using a COTS microphone and a COTS mmWave radar: 
a IWR1642BOOST radar [63] paired with a data collection board 
DCA1000EVM [62]. The radar has a sensing feld of view of 120° in 
the azimuth and 30° in the elevation. The confguration of the radar 
is set as follows: the frequency slope is 15MHz/µs; the frequency 
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band ranges from 77GHz to 81GHz; the cycle of chirps is 260µs con-
taining 190 data samples, the cycle of frames is 50µs; and the ADC 
sampling rate is 5000k samples per second. The above confguration 
guarantees that the radar has a 15m maximum detectable range 
with 310µm resolution. The radar and microphone are connected 
and controlled by a laptop, actuated by mmWaveStudio GUI [64] 
and MATLAB. The laptop synchronously collects mmWave data 
with above confgurations and microphone data with 48k sampling 
rate. The default experiments are measured in a laboratory with a 
background noise of 40-60dB. During the data collection and pro-
cessing, all participants are relaxed and speak at a natural volume. 

User

Laptop

mmWave radar

Microphone

mmWaveStudio GUI 

Figure 2: The evaluation setup. A microphone and a mmWave 
radar collect samples at a distance of 50cm away from the 
subject. 

3.2 Correlation between mmWave and voice 
This subsection begins with the mathematical model of voice pro-
duction and mmWave-sensed vocal vibration. Afterward, we intro-
duce the correlation between voice and mmWave signals based on 
their models. 

Voice production. The production of voice signals is a fuid-
structure-acoustic interaction process that depends on the geometry 
and material properties of the larynx, the vocal tract, and the vocal 
fold [56, 87]. The airfow induced by the lung propagates through 
the vocal tract and collides the vocal fold. The fuctuation of the 
vocal folds modulates the airfow to generate voice phonemes. For 
unvoiced phonemes, the vocal fold releases or blocks the airfow 
without constrictions. The vocal fold vibration can be mathemati-
cally formulated as a one-degree-of-freedom damping system. The 
human voice is the cause-efect production when the airfow is 
modulated by the vocal fold that acts as a flter and modulator. The 
relationship [15] between the vocal fold vibration and voice can be 
simplifed as: 

��¥(�) + ��¤ (�) + �� (�) = � � (2� �� �+�� ) , (1) 
� (�) = H(�¤ (�)), (2) 

where �, � , and � are the parameters depending on physiological 
properties of the vocal fold. The �¤ (�) is the displacement change of 
vocal fold and �¥(� ) is the second derivative of vocal fold displace-
ment � . The mathematical model of vocal fold vibration � (�) is a 
one-degree-of-freedom damping system. The � � (2� �� � +�� ) is the 
negative Coulomb force with the frequency �� and the initial phase 
�� , which would vary on the degree of vocal fold tightness. The 
H (·) is the transfer function from the vocal fold vibration velocity 
�¤ (�) to the human voice. That is, human voice � (�) is determined 
by the vocal fold vibration. 

mmWave sensing vocal vibration. We leverage a frequency 
modulated continuous wave (FMCW) radar to measure the vocal 
vibration. The radar emits electromagnetic chirp signals and then 

receives the echoes refected by the subject’s throat [28]. The trans-
mitted signal �� (�) and received signal �� (�) are given by [60]: � ∫ � � 

� 
�� (�) = �� ���2� ��� + ��� , (3)

0 �� � ∫ � � 
� 

�� (�) = �����2� �� (� − Δ�) + (� − Δ�)�� , (4)
0 �� 

where �� and �� are the amplitude of the transmitted signal and 
the received signal, respectively, �� is the chirp start frequency, B 
denotes the bandwidth, �� denotes the duration, and Δ� represents 
the two round time delay between the radar and the target. Once 
the radar receives the echo, it immediately uses an integrated mixer 
and a low-pass flter to produce an intermediate frequency (IF) 
signal. The IF signal �� � (�) can be mathematically represented as:� �

1 � 
�� � (�) = 

2
�� �����2� �� + � Δ� . (5)

�� � � 
Thus, we can obtain the phase � (�) = 2� �� + � � Δ� . Prior re-

�� 

search has already revealed that the phase diference contains the 
displacement of the vocal organ. By difering the phase, we have:� �

4� � 
Δ� (�) = �� + � Δ� (�), (6)

� �� 

where � denotes the speed of light. 
The underlying correlation between mmWave and voice. 

Based on the Eq.6 and Eq.2, it is observed that both phase changes 
of mmWave signals and voice signals basically rely on the vocal fold 
displacement, i.e., � . To prove it, we ask a participant to speak to a 
mmWave radar and microphone while collecting corresponding sig-
nal pairs. We calculate the average Pearson correlation coefcient 
from ten pairs of voice signals and phase diference of mmWave sig-
nals. The average Pearson correlation coefcient is 0.4906, which in-
dicates a fairly correlation between the human voice and mmWave 
signals when sensing human throats. The interrelated content exist-
ing in both modalities can beneft the performance improvement of 
a mmWave-voice system, even when one modality sufers from in-
formation loss caused by any interference and attack. With the aid 
of exchanging each characteristic belonging to mmWave or voice, 
the signal pattern related to voice activity tends to be enhanced, 
enabling the signal denoising and fusion. 

4 SYSTEM DESIGN 
In this section, we describe the workfow of WavoID. Figure 3 
provides an overall design of the system to recognize the user’s 
identity by exploiting a mmWave radar and a microphone. 

WavoID employs a mmWave radar to sense the vocal vibra-
tion when the enrolled user utters a word, and the microphone 
receives the corresponding voice signal at the same time. The sys-
tem estimates the fne-grained waveform by decomposing a pair 
of collected signals and selecting useful decomposed signals in 
Fine-grained Waveform Estimation. After that, WavoID aggregates 
biometric information from mmWave and voice modality to judge 
whether the input samples are derived from malicious adversaries. 
Afterward, in Cross-modality Fusion, WavoID fuses two diferent 
types of features by utilizing discriminative correlative flters (DCF) 
to boost the representation of the fused features. The fused features 
are fed into the pre-trained Identifcation Network to identify the 
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Figure 3: The system overview of WavoID that integrates a mmWave radar and a microphone to achieve user identifcation 
against attacks and interference. 

legitimate user. We discuss the details for each module of WavoID 
as follows. 
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(c) Raw mmWave waveform under mo- (d) Estimated mmWave waveform. 
tion. 

Figure 4: Compared with raw noisy signals, the estimated 
signals including mmWave signals and voice signals via Fine-
grained Waveform Estimation preserve informative charac-
teristics regardless of interference. 

4.1 Fine-grained Waveform Estimation 
When users face sensors of system and speak voice commands, the 
radar will receive echo signals modulated by vocal vibration and 
the microphone will synchronously record audio signals. The input 
mmWave signal of WavoID is the phase diference determined by 
vocal vibration. In realistic scenes, the obtained audio signals and 
mmWave signals are prone to be contaminated by ambient noise 
and motion artifacts, respectively. Given the requirement of conve-
nient identifcation in various complex applications, it is necessary 
for the system to estimate the fne-grained waveform. A straightfor-
ward approach is to design a band-pass flter to remove the artifacts 
in frequency domain. However, the flter-based methods rely heav-
ily on abundant reference signals responsible for flter parameters, 
which is undesirable due to the unpredictable ambient noise and 
users’ body waggling. Therefore, we develop cross-modality wave-
form estimation to extract fne-grained mmWave and audio signals, 
described as Algorithm 1. 

The workfow of the algorithm is summarized as follows. First, 
the system performs decomposition methods on the input mmWave 
and audio signal by using fast independent component analysis 
(FastICA) [27] and dual-tree complex wavelet transform (DTCWT) 
[54], respectively. We can obtain a series of decomposed mmWave 

sub-signals and audio sub-signals. Then, a correlation matrix is 
constructed by computing Pearson correlation coefcients [53] 
between a pair of mmWave and audio sub-signals. Hence, the cor-
relation matrix contains the cross-modality information where a 
higher coefcient indicates a stronger correlation between the cor-
responding pair of sub-signals. The stronger correlation means 
that the mmWave sub-signal contains the vocal vibration while the 
audio sub-signal records voice activity rather than irrelevant noise. 
Herein, the irrelevant interference such as ambient noise and body 
motion could be adaptively removed since their coefcients are 
relatively low and steady, as line (6)~(13) indicate. In (6)~(13), we 
choose the sub-signal satisfying that the average energy exceeds 
the average variance by a predetermined ratio. The ratio is em-
pirically set as 5 in our 100 user datasets. Afterwards, the system 
applies FastICA to each sub-signals and sums up all sub-signals 
after principal component analysis (PCA). Finally, we can obtain 
the reconstructed mmWave and audio signal, in which the cov-
ering interference is basically removed. The throat vibration and 
lip movements belong to vocal vibration, which benefts semantic 
information of mmWave modality. The throat vibration is more 
informative than lip movements due to its complex high-frequency 
motion. In fusion processing, the rich motion will be applied more 
weights since it is more relevant to voice modality. Thus, the throat 
vibration will receive more attention and utilization in multi-modal 
fusion and fnal identifcation. To verify the algorithm’s efective-
ness, we compare the waveform processed by the algorithm with 
the raw waveform. The data, in comparison, is collected from a 
mmWave radar and a microphone when a user speaks voice com-
mands. The comparison result in Figure 4 shows that the processed 
voice signal perfectly preserves fne-grained waveform patterns 
regardless of ambient noise. The mmWave waveform containing 
the displacement of vocal vibration appears explicitly, which is 
previously covered by massive noise. 

4.2 Bimodal Liveness Detection 
Such an identifcation system based on biometric traits may suf-
fer from artifcial attacks such as replay attack, jamming attack, 
and adversarial attack via some well-designed sensors. Existing de-
fense mechanisms aim to defend against arbitrary attack either on 
voice modality or mmWave modality. Nevertheless, an attacker can 
bypass the multi-modal system by simultaneously launching coun-
terfeit voice signals and mmWave signals. To cope with such attacks 
especially multi-modal attack, we propose a bimodal liveness detec-
tion mechanism that can continuously distinguish a genuine one 
and a malicious one. The key insight of the anti-spoofng method 
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Algorithm 1 Cross-modality Waveform Estimation 
Input: 

The sample of mmWave signals � , The sample of audio signals 
� ; 

Output: 
The fne-grained mmWave signals �̃ , The fne-grained audio 
signals �̃ , 

1: Extract the set of decomposed mmWave samples �� , � = 
1, 2, 3, · · · , � from � by usng FastICA; 

2: Extract the set of decomposed audio samples � � , � = 
1, 2, 3, · · · , � from � by running DTCWT; 

3: Compute the correlation matrix: ��� � � (�, �) = 
�������(�� , � � ); 

4: Calculate the mean and variance of the correlation matrix 
in column and row: ���� ( �) = ����(��� � � (:, �)), ���� ( �) = 
��� (��� � � (:, �)), ���� (�) = ����(��� � � (�, :)), ���� (�) = 
��� (��� � � (�, :)); 

5: // Remove the interference signal 
6: for � ≤ � ∨ � ≤ � do� 

1 Í� 
� 

7: if ���� (�) < 
�=1 ���� (�) × ���� (�) × 5 then� 

8: Remove �� ; 
9: end if � � 

1 Í� 
10: if ���� ( �) < 

�=1 ���� (�) × ���� ( �) × 5 then� 
11: Remove � � ; 
12: end if 
13: end for 
14: �̃ = 

Í 
� PCA(FastICA(�� )),�̃= 

Í 
� PCA(FastICA(sj)); 

15: return �,˜ �̃ ; 

is to extract inherent liveness traits subject to voice and mmWave 
separately, and then aggregate similarity comparison results. 

mmWave modality. The refected mmWave signal can sim-
ply be seen as a lossy version of the transmitted signal. When the 
mmWave signal reaches the human body, the absorption of elec-
tromagnetic radiation is mostly restricted to the skin because of 
the submillimeter depth of penetration [5, 67, 75]. The amplitude 
of the signal sufers from attenuation because of heterogeneous 
permittivity determined by the biological tissue of the human skin. 
Recalling the modal of mmWave signals as shown in Eq.3 and Eq.4,√ 

��−2���� ,we have the relationship between �� and �� as: �� = 
where � is the refective coefcient [6] depending on biomateri-
als (e.g., muscle, fat, skin) and � denotes the attenuation constant 
caused by the distance � between the human body and the radar. 
We replace the Eq.5 into the Eq.4. Herein, the received signal can 
also be formulated as: � �

1 √ � 
�� � (�) = ��−2���2 ���2� �� + � Δ� . (7)� 2 �� 

The refective coefcient � is determined by the permittivity of the 
human skin [6] while other parameters are constant. The amplitude 
of the IF signal preserves biomaterial properties. To obtain the 
amplitude containing biomaterial properties to detect liveness, we 
square the IF signal: � � � � 

� � 
�2 = 

8 
�−4���4 1 + ���4� �� + � Δ� . (8)�� � �� 

8 �
−4���4Then, we extract the DC component � from �2 as live-

� �� 
ness traits from the mmWave modality. 

Voice modality. As for the voice modality, we also extract the 
liveness trait that is unique to the individual. Due to the inherent 
nonlinearity of loudspeakers and microphones, the record-and-play 
attack is prone to induce nonlinear distortion into the spectral of 
victim signals. Likewise, the synthetic signals produces unnatural 
distortion compared to the human voice. It is reasonable to ob-
tain the frequency characteristic to diferentiate the original voices 
and artifcial ones. Furthermore, prior research demonstrates that 
characteristics stemming from acoustic organs are distributed over 
the frequency band of voice signals. To obtain liveness traits, we 
frst perform the short-time Fourier transform on voice input to 
acquire a voice spectrum. Then, we segment the low-frequency and 
high-frequency components of the spectrum rather than choose the 
audible frequency range. The low-frequency and high-frequency 
spectrum are rarely afected by the content and are more likely to 
be observed natural energy peaks difering from loudspeakers and 
microphones [35]. It costs less time and energy compared with pro-
cessing on the complete spectrum. The system refnes the constant 
Q cepstral coefcients (CQCC) [66] from the segmented spectrum as 
voice liveness traits. It has been demonstrated that CQCCs preserve 
the trait of voice biometrics. 
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Figure 5: The comparison result between genuine users and 
artifcial ones. 

Bimodal Feature. The system combines the above liveness 
traits sourced from mmWave and voice modality to defend against 
adversaries regardless of the mode of attacks. Once the system esti-
mates mmWave and voice signals, these two signals are processed 
by the two mechanisms above to acquire mmWave and voice live-
ness features. We assume that � and � individually represent the 
mmWave and voice features. The system performs normalization 
on both features with a min-max feature scaling. Next, we match 
each feature with the corresponding template from the user pro-
fle. The system calculates the mmWave similarity sequence �� 
between the input mmWave feature and the template �� using the 
equation: 

� × �� 
�� = √ . (9) 

�2 × �2 
� 

Similarly, for the voice feature, we compute the voice similarity 
sequence �� . The system aggregates these two similarity coef-
cients to obtain a comprehensive criterion � for assessing the input 
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source, defned as: 
�� �� 

� = min( | log √ |, | log √ |). (10)
�� �� 

To show the diference between genuine user and artifcial signals, 
we calculate the criterion � when a user speaks commands, or the 
malicious radar and loudspeaker concurrently transmit artifcial 
signals, respectively. Figure 5(a) displays that the criterion � of 
a genuine user is relatively higher than artifcial ones, since the 
pair of genuine mmWave and voice signals has higher similarity 
indexes, leading to the criterion � rising. The obtained criterion 
from pre-collected samples, also called registration data, is input 
to the support vector data description (SVDD) [61] to train hyper-
sphere, which can accept genuine samples from users and then 
reject anomalies. The needed number of registration data is no less 
than 100 pieces (50 samples per piece), which is no longer than 10 
seconds. The visualized detection results of refned hyper-sphere is 
shown in Figure 5(b). 

4.3 Cross-modality Fusion 
Following the selection of genuine mmWave and voice signals via 
liveness detection, it is necessary to extract user-specifc features 
for the subsequent identifcation network. However, due to hetero-
geneity between the mmWave and voice modality, conventional 
deep learning methods disregard their intra-correlation and waste 
much time on invalid information, resulting in feature fusion and 
enhancement failures. To address it, the system fuses knowledge 
across the mmWave and voice modality based on discriminative 
correlation flter (DCF) [40, 41]. 

The DCF plays an essential role in visual object tracking. It 
tracks and learns a valid appearance model of the target over frame 
fow with the advantage of fast processing. The DCF models the 
region-of-interest (ROI), e.g., people in pictures or even energy 
trace in spectra, and produces a response map to search for targets 
considering the temporal and spatial variation in tracking process. 
An important factor in DCF is the response map, where useful 
information in ROI is adaptively emphasized with more weights 
while less informative ones are suppressed. Based on DCFs, WavoID 
can optimize two response maps individually from the mmWave 
and voice modality and then signifcantly fuse them. 

For ease of illustration, we only take the mmWave signal as 
an example to explain how to get the response map. Firstly, the 
system calculates the spectrum fow of mmWave by using Fast 
Fourier transform (FFT) on successive 20ms frames of mmWave 
signals. We assume that � ∈ �2 is the location of the valuable energy 
trace. The problem of tracking characteristic traces is formulated 
by computing a response map r that measures the target location 
likelihood: 

r (�) = � (� |Θ)∑ 
= � (�, r (�) |Θ)

� ∈Ω� (11)∑ 
= � (� |r (�), Θ)� (� (�) |Θ),

� ∈Ω� 

where Θ denotes that targets, i.e., energy traces, present in the 
frame and Ω� is defned as the neighborhood of the location � . The 
conditional probability � (� |r (�), Θ) models the spatial relation-
ship between the target and its ambient information. It helps more 

accurate estimation by utilizing surrounding texture information, 
even if the � sufers ambiguities under obstructions. According 
to the spatial context model [84], � (� |r (�), Θ) can be modeled as 

� −� 
F (�� −| � )F −1 ( F (� (� )� (� −

|� 

� ) ) ), where � is a normalization constant, � is a 

scale parameter, � is a hyper-parameter, � (�) is the energy power 
at the location � in the spectrum, F −1 denotes the inverse FFT 
function, and F denotes the FFT function. The � (·) is a weighted 

− |� |2 

function defned by: � (�) = �� � 2 , where � is a normalization 
constant and � is a scale parameter. Theoretically, � (� (�) |Θ) is 
modeled by � (�)� (� −�). These models take into account diferent 
spatial relationships between the target and its ambient textures. 
It tracks the target like human eyes to focus more on the center 
of delicate regions requiring more detailed analysis. To obtain the 
response map and the target location, we optimize the following 
function: 

�̃ = argmax� −1 (� (� (� |r (�), Θ)) ∗ � (� (� |r (�), Θ))) . (12) 

We use augmented lagrange method (ALM) [8] to update locations 
and parameters for mmWave response maps. We initially set the 
trace location � coarsely by using Canny edge detection [52]. Then, 
the response map is generated when refned locations are tracked. 
The system can acquire a voice response map from voice spectrum 
in the same way. The system then performs sectioned convolu-
tion between the voice response map and the mmWave response 
map to fulfll the cross-modality fusion. The sectioned convolution 
weighted measures and overlays the related response value with 
fast processing speed, meanwhile weakening the unrelated values 
corresponding to interferences. 

Insight. According to the fusion results in Figure 6, the en-
ergy peaks in low-frequency response maps unique to vocal vi-
bration tend to be enhanced, while the characteristic feature indi-
vidually sourced from medium-frequency mmWave modality and 
high-frequency voice modality is still retained in the fnal fusion. 
Compared with unimodal systems, i.e, mmWave-only or voice-only 
systems [36, 83], multi-modal systems provide a more comprehen-
sive and vigorous feature representation that can combat arbitrary 
interference. Specifcally, the system can absorb supplementary 
voice signals from microphones to compensate for damaged vi-
bration information when the radar sensing users in motion. As 
for the sensing orientation, the multi-modal system integrating a 
omnidirectional-sensing microphone and a limited-feld but long-
distance sensing radar will expand his feld of perception, outper-
forming traditional unimodal systems to some extent. On the other 
hand, vocal vibration features sourced from radar can mitigate the 
efect of acoustic noise on the recorded voice signals. 

4.4 Identifcation Network 
The system adopts CBANet [73] to absorb the fused feature through 
cross-modality fusion for identifcation. The CBANet utilizes a 
residual neural network (ResNet) [24] as the backbone model and 
recruits two attention-based modules, including channel and spa-
tial attention modules. The insight of the CBANet is channel and 
spatial attention modules. The nature of attention modules has 
been extensively validated to learn "what " and "where" to attend in 
the channel and spatial of feature maps. Specifcally, channel and 



UIST ’23, October 29–November 01, 2023, San Francisco, CA, USA T. Liu et al. 

0.2
0.4
0.6

0.8

1.0

0
8000

6000
4000

2000 100 200 300
400

0

0.2
0.4
0.6

0.8

1.0

0
8000

6000
4000

2000 100 200 300
400

0

0.2
0.4
0.6

0.8

1.0

0
8000

6000
4000

2000 100 200 300
400

0

(a) mmWave. (b) Voice. (c) Fusion. 

Figure 6: The produced response maps through Cross-
modality Fusion: (a) mmWave: a mmWave response map; 
(b) Voice: a voice response map; (c) Fusion: fusion production 
of (a) and (b). 

spatial attention modules guide the ResNet to select and enhance 
meaningful knowledge in mixed feature maps. In channel module 
in CBANet, given the input feature map as F ∈ R� ×� ×� with the 
height � , width � , and � channels, the channel module aggregates 
the channel-wise spatial information of the feature map by using 
average-pooling PoolAvg and max-pooling PoolMax operations as 
the following function: 

Fc = � (Conv(PoolAvg (F)) + Conv(PoolMax (F))), (13) 

where � (·) denotes a ReLu function, Conv is one dimension convo-
lution with 1 × 1 kernel size, and Fc is the channel attention map. 
Diferent from the channel module, the spatial module generates 
a spatial attention map Fs that encodes where to emphasize or 
suppress as described below: 

Fs = � (Conv3×3 ( [PoolAvg (F); PoolMax (F)])) . (14) 

The average-pooled and max-pooled features across channels are 
concatenated and convolved by convolution layers, producing a 2D 
spatial attention map. 

The channel and spatial modules are placed behind each residual 
block in a sequential manner. The CBANet is formed of such four 
residual blocks that are embedded with one channel module and 
one spatial module. Besides, the network confguration of residual 
blocks is consistent with the ofcial article [24]. Specifcally,as a 
user-specifc identifcation network, the last layer of the network 
is a linear layer with two output units, connected after an average 
pooling layer with a kernel size of 7 and 512 channels. The network 
is optimized by Adam [31] with an initial learning rate of 0.01. 

5 THEORETICAL ANALYSIS 
Section 2 clarifes the underlying correlation between the human 
voice and mmWave signal. Based on their correlation, we design 
a multi-modal identifcation system named WavoID to carry on 
identifcation tasks in Section 4. In the following, we explain why 
the multi-modal system outperforms unimodal systems from a 
statistical point of view [16, 74]. 

The general biometric identifcation problem can be simplifed 
to predict the probability of the user’s identity based on intrin-
sic characteristics [34]. For example, the audio-only identifcation 
system extracts the feature from the unlabeled utterance token. It 
then predicts the probability of the unlabeled utterance belonging 
to one of the registered identifcations. Multi-modal identifcation 

systems also have the same idea but upon multiple features. We 
assume that �� and � � are voice feature vector and mmWave 
feature vector, respectively. An identifcation system is designed 
to recognize enrolled users ��, � = 1, 2, · · · , � . The system would 
partition the input feature space into � disjoint decision regions 
��, � = 1, 2, · · · , � . The probability of correct identifcation P for 
the joint feature vector �� and � � is defned as: 

�∑ 
∈ �� 

�=1 (15)
� ∬ 

P = � (�� 
� , � � ∈ ��

� , �� ) 

∑ 
= � (�� |��, � � )� (��� |�� )������� (�� ), 

�=1 

where �� and �� are the partitioned decision rejoins in the voice 
� � 

feature space and mmWave feature space, respectively. They de-
termine that the input data belongs to the �-th person index. The 
� (�� ∈ ��� , � � ∈ �� |�� ) is the conditional probability of correct � 
recognition for the �-th class and � (�� ) is the prior probability of 
the �-th enrolled user. Since the conditional probability must not be 
less than the probability without conditional knowledge, we have 
the lower bound: 

� ∫ ∫∑ 
P ≥ � (�� |�� )��� � (��� |�� )��� � (�� )

�� �� 
�=1 � � 

(16)
�∑ 

= ��� �� � � (�� )
� � 

�=1 

where ��� and �� � individually denote the correct recognition 
� �

probabilities of the voice input and the mmWave input for �-th 
person identity index. Since any probability is upper bounded by 
one, we calculate the corresponding upper bound of � : 

�∑ 
P ≤ max[� ∗ , � ∗ ]� (�� ) . (17)

�� � � 
� � 

�=1 

The superscript ∗ means the maximum probability. The maximum 
probability will increase when prior correlated knowledge from a 
correlated mmWave or voice domain is ofered into another domain. 

Summary. Based on the above statistical analysis, the lower 
bound can be reached if the multiple modalities are completely in-
dependent. when the information in multi-modal modalities has a 
strong correlation, the multi-modal identifcation system performs 
at its upper bound. Accordingly, the multi-modal system compris-
ing mmWave and voice features is not destined to reach the lower 
bound whereby the inherent correlation between the mmWave and 
voice. As for the upper bound, a mmWave-voice system correlated 
to vocal vibration tends to keep user identifcation ability at ut-
most probability. This property guarantees that the mmWave-voice 
system has higher accuracy in adverse scenes, or even in larger 
user data libraries than unimodal systems. Moreover, each feature 
space has an enhanced prediction ability for identifcation when 
integrating supplements from complementary modalities. 

6 EVALUATION 
Dataset. In the experiment, we recruit 100 participants (67 males 

and 33 females) aging from 16 to 47 (mean=31, sd=7.95) to speak 
commands in natural speech speed and volume. The command 
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corpus includes ok-google.io [19] and Google speech commands 
[72] which are commonly used to interact with voice-controlled 
machines. Figure 2 shows the experimental setup. All participants 
are asked to utter 40 speech commands in a laboratory environment 
when facing the setup of WavoID. Each command is required to be 
said 40 times, each time about 0.8 seconds long. Thus, we collect the 
corresponding 160,000 pairs of mmWave and voice signals. Each 
pair of signals are framed into 4000 sampled points per segment, 
equivalent to 0.08 seconds per piece of data. In total, there are about 
1500,000 pieces of samples in evaluation after removing invalid data. 
In evaluation, we will divide all the collected data into two parts 
based on the specifc time node. One part before the time node is 
regarded as training data, and the other part after the time node is 
regarded as test data. The order of the data in the training set and 
test set will be disordered, respectively, but the time of the train-
ing set will not be earlier than the time of the test set. During the 
procedure of data collection, the radar and microphone are placed 
at a distance of 50cm from the participant, directly facing the user. 
For each user identifcation, we divide 300 pieces of samples into 
the enrollment dataset and the rest into the verifcation dataset. 
The experiment conditions involve noise, motion, location, cloth-
ing, and realistic scenes. Note that all participants are informed 
and approved of the purpose of our experiments. Our research is 
approved by the IRB: anonymous university. 

Metrics. We adopt following metrics to evaluate WavoID’s per-
formance: False positive rate (FPR): it is the probability where the 
system fallaciously accepts the spoofer. False rejection rate (FRR): 
it is the probability where the system refuses access to the user. 
True positive rate (TPR): it is the probability in where the system 
correctly identifes the user. True negative rate (TNR): it is the prob-
ability in where the system correctly rejects the spoofer. Receiver 
operating characteristic (ROC) curve: it represents the relation-
ship between FPR and TPR under diferent identifcation threshold. 
Equal error rate (EER): the rate in which FPR equals FRR. Balanced 
accuracy (BAC): BAC is a better metric to use with imbalanced data, 
which can be calculated from ��� = (� �� + � � �)/2. F1-score: it 
is defned as the mean of positive predictive value and TPR. 

6.1 Performance Analysis 
Performance on large-scale dataset. We frst evaluate the 

overall performance of WavoID across all 100 subjects. For user 
identifcation, we train the user modal based on the enrollment 
dataset (i.e., 80% of the collected dataset), and the rest samples are 
considered as positive samples in the verifcation. Meanwhile, oth-
ers act as imposters to log into the trained user model. With the 
increasing number of enrolled users, WavoID shows solid perfor-
mance on user identifcation with high accuracy above 98% and 
averaging EERs of 1.24%, as shown in Figure 7. It means that WavoID 
has a signifcant identifcation ability by fusing information from 
diferent modalities, as proved in Section 5. We show the averag-
ing ROC curve and confusion matrix from ten random users in 
datasets. The results reveal that the system is highly efective in 
distinguishing users regardless of the size of datasets. We also study 
how many required enrolled samples are needed in a large-scale 
dataset. According to Figure 7(a), WavoID achieves BAC larger than 
99% with only 300 training samples, corresponding to 25 seconds of 

collecting data. The data collection is equivalent to the fngerprint 
registration time, meaning the high user-friendliness. 

Performance on ambient noise. Since the identifcation sys-
tem has to face noisy scenes, it is required to evaluate its robustness 
to noise. We place two loudspeakers at a distance of 70 cm away 
from the microphone. Two loudspeakers play common noise with 
70 dB sound pressure level (SPL), e.g., speech, trafc, music, and 
white noise. Forty of the 100 participants are required to speak ten 
commands ten times under four kinds of ambient noise, respectively. 
The corresponding collected data is input to test WavoID. Note that 
the system is pre-trained with 300 pieces of the dataset in Section 
6.1. The results shown in Figure 8 represent the performance of 
WavoID under noise interference. The average BACs under these 
four noise conditions are 97.9%, 98.3%, 98.0%, and 99.0%, respectively. 
Compared with baseline in a relatively quiet environment, the per-
formance of WavoID seems to be unafected by ambient noise. It 
is speculated that valid fusions of bimodal modality contributes to 
the identifcation ability of the system. 

Performance under motion interference. Users’ body mo-
tion could bring multipath interference to the radar, and further 
impact the performance of WavoID. To quantify the impact, we 
request 20 participants to speak ten commands ten times under 
diferent body movements, i.e., sitting down, standing up, walking, 
and telephoning, respectively. The testing data is fed into the system 
pre-trained 300 pieces of the dataset in Section 6.1. As depicted in 
Figure 9, WavoID steadily maintains high signifcant identifcation 
with BACs above 97% regardless of the user’s actions. Though the 
motion will cause interference in the collected mmWave signal, 
acoustic information from the voice modality can compensate for 
missing features in mmWave. 

Performance comparison. To further prove the superiority of 
the proposed system, we carry out a comparison study to quantify 
the role of each component in the proposed system. Moreover, we 
introduce a voice-only method and a mmWave-only method as 
baselines for comparison: 
• VGGVox (voice-only) [14], is one of the mainstream speaker 
recognition systems, commonly applied in academic and indus-
trial areas. 

• VoicePop (voice-only) [71], a voice-only identifcation system, 
captures spectrographic features of frequency components in 
voice signals. 

• VocalPrint (mmWave-only) [36], a mmWave-only identifca-
tion system, extracts vocal fold features when mmWave perceives 
voice activity. 

• W/O Fine-grained Waveform Estimation, where no proposed 
fne-grained waveform estimation module is performed. The sig-
nals of two modalities are directly fed into subsequent operations 
for identifcation. 

• W/O Cross-modality Fusion, where no proposed cross-modality 
fusion module is performed. The spectrum of two modalities are 
concatenated and fed into the network for identifcation. 

All of the above models are fairly and fully pre-trained on identical 
datasets, and then verifed on the same testing samples. Specif-
ically, we choose two dataset collected from 100 people under 
the same noise conditions and motion interference. The perfor-
mance results of the above diferent methods are shown in Ta-
ble 1. In Noise+Motion Condition, 40 participants speak and sit 

https://ok-google.io
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Figure 7: Performance on large scale datasets. 
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down/stand up/walk/ in noisy environments where two loudspeak-
ers play speech noise. The number of training sets and testing sets 
are 500 and 10,000, respectively. 

Table 1: Performance comparison among identifcation meth-
ods under diferent conditions. (No.+Mo.: Noise+Motion; 
FWE: Fine-grained Waveform Estimation; CF: Cross-
modality Fusion; W/O: Without) 

Method 
Noise(%) Motion(%) No.+Mo.(%) 

BAC F1 BAC F1 BAC F1 
VGGVox [14] 64.1 59.0 76.5 72.9 53.6 55.2 
VoicePop [71] 66.7 77.5 87.7 93.1 58.7 59.7 
VocalPrint [36] 96.9 98.3 63.3 76.3 70.2 71.8 
W/O FWE 73.5 82.7 68.7 78.1 61.4 62.1 
W/O CF 83.4 89.9 76.0 84.6 66.8 73.8 
WavoID 99.0 99.4 99.2 99.5 99.3 99.0 

According to Table 1, the voice-only method is worse than the 
mmWave-only and mmWave-voice methods with low accuracy in 
terms of distinguishing noise-polluted samples. Concerning the 
performance under motion interference, WavoID outperforms uni-
modal system with 99.21% BAC and 99.57% F1-score, which exceeds 
VGGVox by 22.65 %in BAC, VoicePop by 11.47% in BAC and Vocal-
Print by 23.26% in F1-score. This experimental comparison reveals 
that unimodal methods like VocalPrint will sufer from performance 
degradation when facing strong motion disturbances or complex 
conditions, especially combinations of noise and motion interfer-
ence. Note VocalPrint, VoicePop, and VGGVox trained with 300 
samples, the same as WavoID, we speculate that WavoID as a multi-
modal system owns a notable feature presentation and extraction 
capability within limited training samples. This phenomenon fur-
ther confrms that a unimodal feature is less distinguishable than 
a multi-modal feature regarding identifying people, particularly 
in complex conditions. By comparing W/O FWE, W/O CF, and 
WavoID, we can fnd signifcant improvement on both noisy and 
motion datasets. This is because that noise and motion interference 
can be regarded as additive noise, while our waveform estimation 
and correlation flter-based fusion rely on correlation algorithms 
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to calculate and select sub-signals among diverse signals that own 
maximum relevance between mmWave and voice modality, i.e., 
voice activity. Thus, these non-relevant additive noises will decay 
with iteration optimization. Moreover, these information losses 
rarely happen in both two modalities at the same time. In most 
cases, the system can compensate for the loss in one modality by 
using relevant features in another modality through cross-modality 
fusion algorithms. 

7 ROBUSTNESS ANALYSIS 
In this section, we further analyze the robustness of WavoID under 
the impact of wearable accessories, people around, distance and 
orientation. Ten of the 100 participants are asked to repeat ten 
commands ten times under diferent conditions. Such collected data 
is fed into the user-specifc system pre-trained by 300 pieces of 
datasets in Section 6.1, to test the performance. 

Impact of wearable accessories. Since wearable accessories 
in users infuence the radar’s perception, we further evaluate the 
performance of WavoID when users in diferent wearable acces-
sories like t-shirts, scarfs, sweaters, and down coats. We require 
users to wear diferent clothing and speak commands at the same 
time. As shown in Figure 10, WavoID achieves an averaging 98.2% 
BAC, while BACs in down coats are slightly low but are mostly 
larger than 97%. We speculate that in the proposed fusion method, 
the characteristic of voice modality can make up for the mmWave 
information loss caused by clothes-covering. Generally, wearable 
accessories have a minimal impact on the capability of the system. 
The results prove that WavoID can execute identifcation tasks in 
spite of wearings. 

Impact of people around. It is common to see that the user is 
surrounded by several passersby who utter a word and move arbi-
trarily. However, as WavoID exploits correlated features unique to 
the user, WavoID ought to identify the enrolled user adequately. To 
investigate it, we ask diferent numbers of volunteers to walk and 
talk freely around the target user during the identifcation. Identif-
cation results in Figure 11 show that all BACs fuctuate between 97% 
and 99%, even when the number of people around increases to 5. 
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We envision that the proposed cross-modality mechanism enables 
the system to obtain the informative feature and distinguish the 
genuine user. 

Impact of distance and orientation. We study the efect of 
distance and orientation between the user and sensors, i.e., the 
radar and microphone. We place sensors 0.5 to 4.5 m with a 0.5 m 
step away from the user and 10 to 40° with a 10° step to the user. 
Figure 12 displays the distribution of BACs for sensors placement. It 
is observed that BACs still reach over 97% when the distance is less 
than 3 m. As the distance reaches 4.5 m, the identifcation ability 
of WavoID is slightly reduced by approximately 2%. In particular, 
within 30°, WavoID can still achieve approximately 99% as sensing 
distance expands to 3 m. The identifcation performance illustrates 
that the fusion of these two modalities guarantees the system in a 
large feld to identify users accurately. 
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Figure 12: The performance of WavoID at diferent orienta-
tions and distances. 

8 SECURITY ANALYSIS 
In this section, we conduct a security analysis to explore the anti-
attacking ability of WavoID. Although a onefold attack targeting 
voice or mmWave modality is likely to fail on multi-modal systems, 
due to its missing information from other modality, it is unsure what 
efects they cause on WavoID when they simultaneously attack 
WavoID. Malicious attacks for voice identifcation can be classifed 
into three categories: mimicry attack, replay attack, and adversarial 
attack. Likewise, attacks for mmWave identifcation are mainly 
classifed into two types: counterfeit attack and jamming attack. 
• Replay Attack. The adversary pre-records the utterance from 
the target and then replays the recorded utterance through loud-
speakers to speaker recognition systems. Numerous research 
has pointed out that the replay attack can efectively spoof most 
speaker recognition system [77]. 

• Mimicry Attack. The adversary imitates the target’s pronuncia-
tion to utter passphrases without helps of any devices. Existing 
study indicates that mimicry attacks are less efective in spoofng 
modern speaker recognition systems compared to replay and 
adversarial attacks [76]. Nevertheless, it is necessary to conduct 
impersonation trials with the aim of comprehensive security 
evaluation. 

• Adversarial Attack. The latest research results manifest that the 
adversarial attack has become the inherent threat to the security 
of state-of-the-art speaker recognition systems. The computation 
core of speaker recognition systems is machine learning models, 
including state-of-the-art neural networks. Consequently, the ad-
versary utilizes adversarial training to craft adversarial samples 

that are embedded with imperceptible perturbation. The adver-
sary launches the generated adversarial sample over-the-air to 
deceive the trained model in spite of the black-box setting. 

• Counterfeit Attack. The adversary knows that the characteris-
tics of vocal vibration are fused into the feature template in the 
system. Hence, the adversary detailedly observes and stimulates 
the vocal vibration from the target through professional audio 
transducers and throat bionic models, thus, deceiving the radar 
in WavoID. 

• Jamming Attack. The adversary continuously transmits jamming 
signals with high power by utilizing a mmWave radar, bringing 
about the radar failing to receive legitimate refective signals. 

To investigate the security of the proposed system against multi-
modal attacks, we set up several combinations of attack modes 
mentioned above to compare the attack detection rate and identif-
cation results. Those multi-modal attack combinations are shown 
in Table 2. 

Table 2: The combinations of attacks. (Rep: Replay Attack; 
Mim: Mimicry Attack; Adv: Adversarial Attack; Cou: Coun-
terfeit Attack; Jam: Jamming Attack.) 

Multi-modal Attack Multi-modal Attack 
Cou + Rep Jam + Rep 
Cou + Mim Jam + Mim 
Cou + Adv Jam + Adv 

8.1 Attack Setup 
We analyze the resilience of our system to six types of multi-modal 
attacks listed in Table 2. The experimental setup for each attack 
is the same in each combination. For ease of illustration, we de-
scribe the experimental setup for each attack rather than attack 
combinations. The setup for each attack is shown as follows (Figure 
13). The data of fve participants with three males and two females 
(mean=24.4, sd=2.07) as identifcation users is to pre-train user-
specifc models that will be attacked by the following attacks. The 
training number of identifcation is still 300 pieces. Once combina-
tions of mmWave and acoustic attacks transmit malicious signals 
to the setup of WavoID, the system will receive corresponding ma-
licious mmWave-voice signals that will be processed and examined 
by the algorithm of WavoID. 

Replay Attack Setup. It is easy to deploy replay attacks only by 
using a loudspeaker and microphone. The adversary frstly employs 
a professional recorder to pre-record fve utterances from users. 
Then, the adversary replays the corresponding recording 20 trials 
for each command through a professional loudspeaker. 

Mimicry Attack Setup. The adversary imitates the legitimate 
user’s voice and pronunciation habits, after completely watching 
and listening to the speaking process of users. To execute the 
mimicry attack, we recruit 10 participants (mean= 25.3, sd=2.26, 
female=4, male=6) to observe the users’ corresponding recordings 
and then imitate fve users for 20 trials for each fve command. 
During the attack, all participants are facing the system in the same 
posture as the user. 
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Figure 13: The setup of diferent attack scenes. The counterfeited throat, a mmWave radar, a professional microphone, and 
subjects are put to attack WavoID. The microphone records the genuine voice of users in replay attacks and then is connected 
with a loudspeaker to replay. Note that replay attack and adversarial attack share the same device but have diferent malicious 
acoustic sources. 

Adversarial Attack Setup. The adversary crafts adversarial 
samples, resorting to state-of-art adversarial algorithms, i.e., FAKE-
BOB [12], Carlini-Wagner [11], FGSM [18], and PGD [42]. Assum-
ing that the adversary has complete knowledge of the network 
of WavoID, the adversary performs white-box attacks to force the 
model to classify adversarial samples as a arbitrary enrolled speaker. 
For the sake of clarity, we only illustrated the training and attack 
process of FAKEBOB, whereby other three attack methods have the 
same attacking preparation. One widely used dataset: LibriSpeech 
[46], is regarded as training sets and testing sets. Concretely, the 
train-clean-100 in LibriSpeech containing 28539 utterances from 
251 speakers (female=125, male=126) is used to train the speaker 
recognition model, i.e., the recognition network in WavoID. The 
dev-clean containing 2703 utterances from 40 speakers (female=20, 
male=20) is chosen as original waves that will be added with per-
turbation during the iterations of adversarial optimizations. For 
every attack trial, the adversary will replay 20 pieces of crafted 
audio samples at a distance of 30cm away from the victim. In all, 
the adversary carries on fve trials with the sum of 100 attacks per 
adversarial algorithms. 

Counterfeit Attack Setup. The adversary has known that 
the system also leverages vocal vibration features modulated on 
mmWave signals. Thus, the adversary elaborates a bionic throat 
model and then puts an audio transducer into the throat. The eaves-
dropped voice stimulates the transducer so that the transducer 
vibrates the throat to counterfeit trails of vocal organs. The internal 
structure of throat model is shown in Figure 15(b). The throat model 
is placed at a distance of 30cm away from the system to attack the 
radar. 

Jamming Attack Setup. Given that the adversary has access 
to the confguration of the victim radar, the adversary could use 
a similar mmWave radar to transmit high-energy FMCW signals 
with the same parameters as the victim. Moreover, The adversary’s 
mmWave radar is directly placed 50 cm away from the victim. 
The victim’s radar transmission power is 12.5dBm. Meanwhile, the 
attack radar transmission power is set as 15dBm. 

8.2 Detection Results 
The defense results of our proposed mmWave-voice method, i.e., 
bimodal liveness detection, are reported in Table 3. The detection 

accuracy is close to 100% for all multi-modal attacks, which means 
that our bimodal liveness detection method is reliable against multi-
farious attacks. Comparing the detection result of jamming attacks 
and counterfeit attacks, we can observe that detecting jamming 
attacks is slightly more difcult than detecting counterfeit attacks, 
but still keeps 99% rejection rates. We can further speculate that the 
injected mmWave signals through jamming attacks tend to provoke 
abnormal outliers, interpreting the detection performance. To better 
defend against jamming attacks, WavoID is encouraged to randomly 
alter chirp periods and frequency bandwidths by using frequency 
hopping. Overall detection results present that all kinds of multi-
modal attacks almost can not bypass our bimodal liveness detection. 
This is expected given that our proposed mmWave-voice approach 
can capture biometric information diferent from machine-caused 
or non-user imitated signals. 

Table 3: The detection result of WavoID under various multi-
modal attacks. (Rep: Replay Attack; Mim: Mimicry Attack; 
Adv: Adversarial Attack; Cou: Counterfeit Attack; Jam: Jam-
ming Attack.) 

Attack Accuracy(%) EER(%) FPR(%) 
Cou+Rep 99.11 0.74 0.72 
Cou+Mim 99.21 0.83 0.79 
Cou+Adv 99.25 0.79 0.76 
Jam+Rep 99.09 0.91 0.85 
Jam+Mim 99.19 0.81 0.78 
Jam+Adv 99.32 0.89 0.81 

We also add an experiment to evaluate the impact of the uni-
modal attack on the identifcation accuracy of the system. In this 
case, we consider a situation where attackers bypass the liveness 
detection to directly inject their malicious signals into our identi-
fcation framework. Thus, we feed malicious signals produced by 
the attacks mentioned earlier into our proposed system without a 
liveness detection module. Figure 14 illustrates the BAC and TPR of 
WavoID on each attack in this case. It is observed that the overall 
BAC is above 98.5%, with no degradation. In summary, WavoID is 
robust to various spoofng attacks. 
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Insight. With the trend of multi-modal authentication, multi-
modal attacks emerge as new threats. For example, a presentation 
attack can be easily deployed to hinder audio-visual identifcation 
by using a low-cost electronic display device[51]. Some multi-modal 
defenses experience a degradation in performance when they are 
exposed to multi-modal attacks [13]. It is critical to design a de-
fensive system to defend against these multi-modal attacks [38]. 
Those acoustic motion-based identifcation has limited sensing 
distance, low range measurement, and hardly penetrate barrier, 
because the utilized ultrasound has high attenuation, low band-
width, and low penetration. Motion-based methods cannot sup-
port fne-grained voice activity detection, especially under adverse 
conditions. WavoID can detect millimeter-scale mouth and throat 
vibrations regardless of long distance and wearable accessories, 
which can compensate for defects in speech modality and achieve 
robust identifcation. 
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Figure 14: The performance of WavoID under unimodal at-
tack. 

9 SYSTEM EFFICIENCY 
As a biometric system, it is necessary to examine the system efency 
of WavoID. In the last experiment, we investigate the runtime la-
tency of WavoID on Linux servers equipped with an NVIDIA 2080 
RTX. The deep learning-based system is implemented on Pytorch. 
The runtime latency is defned as the interval from the beginning 
time when the system collects signals to the ending time when the 
system outputs the result. The overall latency includes the time 
for signals collection, signals processing, liveness detection, and 
identifcation. We execute the entire workfow 20 times to calculate 
the runtime. The average runtime is 2.175s. Considering the signif-
icant computing ability of cloud servers, such a time overhead is 
acceptable for human-machine interactions. 

10 DISCUSSION 
Software Overhead. Considering the practicability of migrating 

WavoID to mobile devices, e.g., smart speaker, the occupied size 
of the system software should be as small as possible. The system 
software of WavoID is merely 43MB, which is suitable for edge 
devices and cloud platforms. Furthermore, we can use pruning and 
quantization techniques [22, 88] to compress the model size. The 
proposed system has the potential to be applied to diferent edge 
devices for ubiquitous real-time identifcation through online or 
ofine pipelines, relying on the technology of edge computing [55] 
and distributed computation [81]. 

Hardware Support. To enable the deployment of WavoID, we 
need a commercial mmWave radar and a microphone, which sum-
ming cost is less than 40 dollars. This cost overhead is acceptable for 
security and assurance systems that focus more on precision and 
security, concerning its properties of anti-spoofng and high accu-
racy under complex circumstances. In terms of power consumption, 
the sum of energy power is below 20mW, relatively lower than 
WIFI [17]. The radar of system has a range coverage of 15 meters 
with 120° feld-of-view. It can cope with most practical applications 
where users face sensors within permissible deviation. Besides, 
it is possible to employ three mmWave radars into WavoID for 
fully open space with 360°coverage. Although it is hard to deploy 
mmWave radar into mobile devices due to its cost and complex-
ity, considering the fact that indoor mmWave-based fall detection 
devices[23, 68] exist in homes, hospitals, frms, etc., it is feasible 
to combine the audio collection of smart speakers and mmWave 
sensing of detection devices for user identifcation in the future 
deployment. In many cases, the fall detector is mounted on top 
of the ceiling to get the widest view of the detection, which also 
facilitates cooperation with smart speakers for real-time indoor 
authentication. 

Application Scenarios. The frst application scenario of WavoID 
is to protect voice-controlled devices from malicious injection at-
tacks, which aims to verify the legitimate identity of received voice 
commands. For example, when a user speaks voice commands to 
his smartphones or smart speakers, the microphone and radar of 
devices simultaneously receive the signal related to voice activities. 
The built-in system frst determines whether the signal source is 
from genuine users, and then recognizes and executes commands. 
Another interesting application scenario we envision is to inte-
grate the vehicle-borne radar [58] and microphone to enable car 
authentication and straightforward manipulation, which requires 
long-distance sensing from mmWave modality and complementary 
acoustic information from voice modality to resist user motion 
interference. 

11 CONCLUSION 
In this paper, we propose a mmWave-voice identifcation system 
called WavoID for efciently identifying users in a robust and se-
cure way. This paper provides a theoretical analysis of correlated 
multi-modal identifcation systems benefcial to accurately predict-
ing users’ identities. WavoID aggregates biometric information 
derived from mmWave and voice modality to guarantee the se-
curity of identifcation systems. To thoroughly characterize the 
unique feature and efciently fuse individual modalities, WavoID 
utilizes response maps to measure the quality of each extracted 
component. We evaluate WavoID among 100 users and thoroughly 
test its defense against multi-modal attacks. The result shows that 
WavoID maintains over 98% identifcation accuracy and prevents 
about 99% of malicious attacks. 
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