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Abstract Electroencephalogram (EEG) activity from the brain is a promising biological marker that can serve as personal
identification. Despite substantial efforts, it remains an unsolved problem to quantify EEG feature distribution for brain
biometrics due to the complexity of the brain. In this study, we attempt to tackle EEG-based identification challenges by
exploiting a novel distribution model. The distribution dissimilarity is measured by Mallows distance, a cluster similarity
sensitive distance that is robust to signal noises. Specifically, EEG signals are decomposed through several statistical feature
extraction methods, autoregressive (AR) model, discrete wavelet transform (DWT), and fast Fourier transform (FFT). With
the dataset obtained from the real-world application, our proposed system achieves the f -score accuracy of 96.18% and half
total error rate of 2.223%, which demonstrates the feasibility and effectiveness of utilizing EEG biometrics for personal
identification applications.
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1 Introduction

Personal Identification has been a long-lasting problem around
the world. Due to the large population of humans, existing
methods often fail with a lack of identification accuracy in
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system design. Researchers are actively attempting to solve
this problem, yet, solutions often compromise quickly due to
the computational complexity and performance speed trade-
off. In wearable computing application scenarios, authen-
tication methods with high computational complexity re-
quire a longer time, while rapid authentications are often
quickly reverse-engineered. In the past decades, the tech-
nique of using biometrics for personal identification to se-
cure information has gained massive popularity (Jain et al.,
2008; Tian et al., 2018). Anthropocentric traits are now play-
ing pivotal roles in everyday user authentication for both
privacy and security purposes. From authenticating a user
through fingerprint, face or iris, banking service authentica-
tion using voice, medical analysis using gait, to governmen-
tal agency utilizing DNA toward citizen identification (Jain
et al., 1997; Beenau et al., 2006; Raja et al., 2015; Brum-
back et al., 2015), biometric applications cover a wide vari-
ety of scenarios. Moreover, innovative biometric modalities,
including palm vessel (Li et al., 2018; Wang et al., 2018),
heartbeat (Lin et al., 2017; Zhuang et al., 2016; Zhang et al.,
2020), eye movement (Song et al., 2016; Luo et al., 2019),
sonic fingerprint (Rathore et al., 2020), and pulse (Patil et al.,
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2018), are recently investigated with promising performance.
The advancement of biometrics provides tremendous secu-
rity and safety benefits to civilians.

Among existing anatomical and behavioral biometrics,
the EEG signal is one of the metrics related to individual-
specific human characteristics. It has newly emerged as a re-
source for biometric-based personal identification. The hu-
man brain is highly complex and dynamic as it operates in-
formation at high speed and quantity; this results in EEG
signals acquired from the brain also being highly complex
and dynamic. The complexity of comprehension adds a level
of security in terms of being less prone to spoofing and coun-
terfeiting attacks. Compare to other biometric techniques
such as DNA testing and gait analysis, the recording of EEG
signals is non-invasive and non-dispersal, which significantly
reduces user discomfort as well as prevents an attacker from
EEG response pilfering. Therefore, it is highly feasible to
replace currently existing biometric identification methods
based on DNA, fingerprint, voice, gait, and iris (Poulos et al.,
2002; Gui et al., 2015b, 2014a) with EEG in personal iden-
tification applications.

1.1 Related Work

Existing EEG biometric personal identification work mostly
focused on the classification of pathologically induced EEG
signals, which can have high uncertainty and abnormalities
with the occurrence of severe psychiatric disorders, such
as epilepsy or schizophrenia (Hazarika et al., 1997; Juel-
Nielsen and Harvald, 1958).

Nevertheless, the success in distinguishing pathological
EEG signals from a healthy subject using particular signal
analysis methods like discrete wavelet transform and fast
Fourier transform demonstrates that specific variations in
the EEG pattern can serve as a good resource for a non-
clinical personal identification (Hazarika et al., 1997; Ocak,
2009; Subasi, 2007). In addition, EEG signal from healthy
subjects has been validated by several studies in the past.
For instance, Poulos et al. presented the person identifica-
tion using EEG of healthy individuals by implementing a
set of non-linear model parameters as a feature of the EEG
signal. This model was then classified by an artificial neu-
ral network classifier. Although the classification accuracy
of the method was not high enough (76−88% for accuracy)
for the direct implementation of EEG identification, their re-
sults prove that the EEG can be successfully exploited for
subject identification (Poulos et al., 2002).

Similarly, Mohammadi et al. proposed a personal identi-
fication using the autoregressive model for EEG signals and
achieved the classification score in the range of 80− 100%
(Mohammadi et al., 2006). Gui et al. studied a set of event-
related potential patterns to identify users (Gui et al., 2015c,
2014b, 2015a). Recently, Lin et al. applied brain biometrics

in wearable and mobile applications for secure user authen-
tication (Lin et al., 2018).

1.2 This Work

In this work, we present a stimulus-response based EEG
personal identification mechanism using Mallows Distance
to compute EEG feature distribution distance. One of the
biggest problems of EEG biometric is the tiny signal-to-
noise ratio (SNR) of the signals coupled with a variety of
noise sources (Repovs, 2010). To address this noise prob-
lem in EEG, we utilize the EEG signal as a feature dis-
tribution and computing the dissimilarity measure of EEG
distributions with Mallows Distance (Mallows, 1972). To
the best of our knowledge, our work is the first to perform
stimulus-response based EEG biometric using Mallows Dis-
tance. Since Mallows Distance matches distributions in two
clusterings in a globally optimal manner and is known to
be robust to signal noises, utilizing Mallows Distance al-
lows the matching of the signal distributions in a very natu-
ral way. Therefore Mallows Distance provides better perfor-
mance than other measures (Zhou et al., 2005; Rubner et al.,
2000).

We summarize our contributions to three-fold:

– We investigate the feasibility of EEG biometric identi-
fication utilizing Mallows Distance in feature distribu-
tion’s dissimilarity measure.

– We implement Mallows Distance based EEG identifica-
tion system with a machine learning algorithm to ver-
ify the feasibility of a person identification system with
Mallows Distance.

– We evaluate the performance of the implemented identi-
fication system to demonstrate the capabilities of a per-
son identification system utilizing Mallows Distance.

This paper is structured as follows: Section 2 provides
the details of data acquisition and EEG recording proce-
dures. Section 3 describes the development of our EEG-
based personal identification system, which is divided into
the following subsections: feature extractions, Mallows Dis-
tance, and the classification with SVM. Then, Section 4 pro-
vides a description and discussion of the performance eval-
uation. Lastly, Section 5 concludes the paper.

2 Materials

We utilize the publicly available database from Swartz Cen-
ter for Computational Neuroscience Foundation (SCCN) to
perform EEG-based personal identification via Mallows dis-
tance(for Computational Neuroscience Foundation , SCCN).

Before EEG signal data is used toward classification, the
data must be labeled with the following information:
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– Participant number.

– Stimuli type (target stimuli or non-target stimuli).

– The series of stimuli used toward the participant.

Using Neuroscan software, the collection of multiple chan-
nel data are acquired from 10 healthy subjects (six males,
four females). Also, this public database has been pre-processed
through Neuroscan software to remove any idiosyncrasies
that resulted from the recording set-up.

Fig. 1 Standard electrode locations. O1 and O2 is selected as data
channel for our dataset.

2.1 Channel Selection

According to Altahat et al. (Altahat et al., 2015), O2 has
the highest channel stability value among 64 channels. Such
stability will allow high consistency in terms of repeating
signal characteristics over a long period, which is highly pre-
ferred. Also, the channel stability of O1 ranked fourth out of
64 channels. These results demonstrate that O1 and O2 are
highly recommended EEG channels to be used in biomet-
rics as an alternative to the complete EEG channel set. The
position of O1 and O2 is very close to the visual cortex of
the brain structure which is responsible for visual input pro-
cessing. This provides insight to the use of O1 and O2 along
with EEG response from the target and non-target stimuli.
Examples of target stimuli and non-target stimuli are shown
in Fig. 2, each target stimuli have a distinguishable target
object in the image, and each non-target stimuli image lacks
the main target for focus. Instead of using all-electric brain
potentials recorded from 64 electrodes, we selected O1 and
O2 (International 10-20 System) electrodes for better com-
putational efficiency and stability over time of our identi-
fication system. Moreover, electrode A1 is used as a refer-
ence, and Fp1 and Fp2 electrodes are used as grounds (See

Fig. 1). The data acquisition was made at a sampling rate of
1000 Hz, which corresponds to a sample bin of 1 ms, and
the impedance was kept below five kOhms. This recording
is processed through a SynAmps system coupled with a per-
sonal computer (Delorme et al., 2004).

2.2 Experimental Details

While we utilize EEG dataset from SSCN, it is worth to
mention that the experimental details from data acquisition
from each subject to data preparation for later classifica-
tion. Each participant performs a categorization task of pho-
tographs. Both target and non-target images were equally
likely presented in the experiment to eliminate biased from
image selection. There were 4 series with 100 images for
each series. During each series, participants were instructed
to press a touch-sensitive button, and as the eight-bit color
photograph flashes, they were told to show their responses
following the go and no-go paradigm. When the target im-
age flashes, the participants lift their finger from the but-
ton within 1000 ms indicates a go paradigm, and any delay
higher than this threshold is considered a no-go response.
The image was flashed for only 20 ms to avoid the use of
exploratory eye movement. If the image is not a target pic-
ture, participants continued to press the button for at least
1000 ms. The stimulus onset asynchrony is 2000 ms. As
mentioned above, we organize each task with a series of 100
images with no bias in terms of quantity (i.e., each series
consists of 50 target stimuli and 50 non-target stimuli). The
target stimuli included pictures of animals, such as mam-
mals, birds, fishes, arthropods, and reptiles as the focal ob-
ject, while non-target stimuli depicted the natural landscapes
or city scenes, pictures of food, fruits, vegetables, and trees
in large scale (Delorme et al., 2004). Our study aims to in-
vestigate the EEG pattern of individuals responding to the
target visual stimulus. Thus, our system selectively employs
target pictures as visual stimuli set and then provide a com-
parison against non-target visual stimuli in evaluation.

3 Methods

We illustrate our implemented system in this section to pro-
vide details of our feature extraction methods, distance com-
putation algorithm, and the classification of calculated dis-
tances using a linear support vector machine (SVM). The
overall identification system framework is shown in Fig. 3
to display the workflow of our identification process.

Foremost, we present our Identification Algorithm Illus-
tration to modulize our methodology:

– EEG Signal Acquisition: Signal ρ(t) is collected in the
temporal domain with t being time. The sampling rate is
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Table 1 Five statistical features at the primitive level (Zhang and Sawchuk, 2012)

Statistical features Definition
Mean The average value of the signal over the window
Standard Deviation Measure of dispersion of the signal over the window
Root Mean Square The quadratic mean of the signal over the window
Average Derivatives The average of the first order derivatives of the signal over the window
Level Crossing Rate The total rate of signal crossing the mean level of the signal with a positive slope

(a) Example of Target Stimuli

(b) Example of Non-Target Stimuli.

Fig. 2 Examples of both target and non-target stimuli used toward
EEG signal acquisition.

determined to be 1000 Hz and the impedance is kept be-
low 5kOhms. The recording is processed with a personal
computer through the SynAmps system.

– Signal Feature Extraction: Feature set φ(n) is extracted
from ρ(t) with n being total number of features. Mean,
standard deviation, root mean square, average deriva-
tives, and level crossing rate at the primitive level is ex-
tracted. The scalar values form an array describing the
EEG signal.

– Mallow Distance Calculation: Mallow distance M is
calculated based on the feature set φ(n).

– SVM Classification: Prediction result C from the SVM
model is generated using mallow distance M with C.

3.1 Feature Extraction

To capture the unique characteristics of each EEG signal as
well as to reduce the dimension of data, we extract feature
values from the EEG signal to perform classification.

As shown in Table 2, five statistical features are calcu-
lated at the primitive level. Furthermore, we have extracted
the EEG feature via an autoregressive (AR) model, discrete
wavelet transform, and Fast Fourier Transform (FFT). All
eight features of the individual piece are combined to form
a single feature distribution.

3.1.1 Autoregressive Model

Since AR models are known to limit the loss of spectral
problems and yield the improved frequency resolution com-
pared to the non-parametric approach (Al-Fahoum and Al-
Fraihat, 2014), we use AR to extract EEG features. We im-
plement the AR model by calculating the coefficients of the
linear system:

Xt =
p

∑
i=1

aixt−i + εt , (1)

where Xt is the signal at the sampled point t, p is the order
of the model, ai is the AR coefficient, and εt is an indepen-
dent and identically distributed white noise input (Jain and
Deshpande, 2004). In our system, the Yule-Walker method
was used for AR spectral estimation (Friedlander and Po-
rat, 1984). Before employing the AR model, an optimal or-
der was computed using the Levinson-Durbin method. This
method fits an AR model to the auto-correlation sequence of
interest and minimizes the model error.
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Fig. 3 EEG-based identification system framework, after the EEG signal is collected from subjects using target and non-target visual stimuli,
feature extraction is performed to reduce the data dimension. SVM model then performs feature distance computation with Mallows distance and
present identification result.

3.1.2 Discrete Wavelet Transform

The wavelet transform is a spectral estimation method in
which any function can be written as an infinite series of
wavelets. It condenses the time varying signals with many
data points into several small parameters that represent the
signal (Cvetkovic et al., 2008). Mathematically, the discrete
wavelet transform (DWT) of a signal, x(t), is the integral of
the signal multiplied by scaled and shifted wavelet function
ψ (Ocak, 2009). It is defined by:

DWT ( j,k) =
1√
|2 j|

∫
∞

−∞

x(t)ψ

(
t−2 jk

2 j

)
dt, (2)

where 2 j and k2 j are called the scaling and time location or
shifting parameters respectively (Ocak, 2009).

The discrete wavelet transform is particularly suitable
for the analysis of sudden and transient signal changes. Since
instantaneous visual stimuli elicit our signal, the discrete
wavelet transform is suitable for our dataset (Al-Fahoum
and Al-Fraihat, 2014).

3.1.3 Fast Fourier Transform

Fast Fourier transform (FFT) is widely used for many ap-
plications related to the EEG data analysis and signal pro-
cessing in general. It quickly computes the discrete Fourier
transform (DFT), which reduces the number of computa-
tions needed for N points from 2N2 to 2NlogN, where log
is the base-2 logarithm. Consider a complex series x(k) of
length N where x is a complex number xi = xreal +ximag. As-
sume that the series outside the range 0, N− 1 is extended
N-periodic, where xk = xk+N for all k (Bourke, 1993). Then,
this transform is defined as follows:

xk =
N−1

∑
n=0

xn · e−i2πkn/N . (3)

The advantages of implementing the fast Fourier transform
are the enhancement of speed over virtually all other avail-
able methods for real-time applications and improvement in
the performance for the narrow-band signal like our EEG
signals (Al-Fahoum and Al-Fraihat, 2014).

3.2 Mallows Distance

After combining the aforementioned features into a cluster
with respect to time, we compute the distance between the
current cluster and past EEG signal clusters using Mallows
distance. Our distance measure has its root in measuring
the difference between two multi-variable probability distri-
butions. In 1972, Mallows proposed a Mallows distance to
measure the difference between two probability distribution
P and Q in Rd with the random variables X and Y (Mallows,
1972). It is defined by a minimum of the expected difference
between X and Y overall joint probability distributions F for
(X ,Y ) such that the marginal distribution of X is P and the
marginal distribution of Y is Q (Levina and Bickel, 2001):

Mallowsp (P,Q) = minF {EF ‖X−Y‖p}1/p , (4)

subject to:∫
Y

dF(X ,Y ) = P(X),
∫

X
dF(X ,Y ) = Q(Y ), (5)

where p is some value greater or equal to 1. ‖.‖ indicates the
Euclidean length. In theory, Mallows distance can be com-
puted both for discrete or continuous distribution (Levina
and Bickel, 2001). Since we formulate the task of matching
as a transportation problem between two solid feature set,
our distributions are discrete. The discrete distributions:

P = {(x1, p1) · · ·(xm, pm)} ,1≤ i≤ m

and

Q = {(y1,q1) · · ·(yn,qn)} ,1≤ j ≤ n

(6)

with the weights add up to 1 (∑ pi = 1 and ∑q j = 1).

The task is to minimize the expectation under the joint
distribution F = ( fi j):

EF ‖X−Y‖p =
m

∑
i=1

n

∑
j=1

fi j
∥∥xi− y j

∥∥p
=

m

∑
i=1

n

∑
j=1

fi jdi j, (7)
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with subject to

fi j ≥ 0;1≤ i≤ m,1≤ j ≤ n, (8)

n

∑
j=1

fi j = pi;1≤ i≤ m, (9)

m

∑
i=1

fi j = q j;1≤ j ≤ n, (10)

m

∑
i=1

n

∑
j=1

fi j =
m

∑
i=1

pi =
n

∑
j=1

q j = 1. (11)

In terms of the Earth Mover’s Distance (EMD), a spe-
cial case of the mass transport problem (Rubner et al., 2000)
, constraint 1 shown in Eq. (8) allows the flow from P to Q
but not from Q to P. Since both P and Q are probability dis-
tributions with a total mass of 1, weight normalization is not
needed. Constraint 2 and 3 shown in Eq. (9) and 10 indicate
that the number of supplies that can be sent by the clusters
in P is equal to their weights, and the amount of cluster in
Q is equal to their weight, respectively. Constraint 4 shown
in Eq. (11) matches the clusters in two clusterings in a glob-
ally optimal manner. Therefore, it allows the tolerance in the
EEG signal noises (Levina and Bickel, 2001).

When Mallows distance is simplified with two samples
of the same size X = {x1, · · · ,xn} and Y = {y1, · · · ,yn}, the
Mallows distance between empirical distribution is:

Mallowsp (X ,Y ) =

(
1
n

min( j1,··· , jn)

n

∑
i=1

∥∥xi− y ji

∥∥p

) 1
p

, (12)

where the minimum is taken over every possible permuta-
tions of {1, · · · ,n} (Levina and Bickel, 2001). This gives ev-
ery point the weight of 1

n resulting equal weighting of every
feature. For rapid subject classification, mallows distance
have shown potential to execute real-time image annotation
in the past (Li and Wang (2008)), this shows the feasibility
of using mallows distance for subject classification in real
world scenarios under real-time.

3.3 Subject Classification

In order to perform subject classification, we implement a
linear SVM to execute multi-class classification.

Linear SVM is a particular linear discriminant classifier,
which is known as one of the best classification methods
with many computational advantages (Guyon et al., 2002).

With the linear SVM, the points in high dimension fea-
ture space are divided into separate categories by a clear gap
that is as wide as possible. Then, new sets are mapped to
predict which category it belongs to based on which side of
the gap they are located (Cortes and Vapnik, 1995).

To strictly test the SVM model and prevent overfitting
on existing data, we implement the k-fold cross-validation,
with k being 10.

The data set is randomly separated into 10 equal-sized
subsets, for each trial, one of 10 subsets is used as a test
set and other 9 subsets are used as a training set. Each sub-
set will be treated as a unique class in SVM to obtain the
prediction result that enables true positive (TP), true nega-
tive (TN), false positive (FP), false negative analysis (FN).
This cross-validation is repeated 10 times with each of 10
subsets used exactly once as the validation data. This pro-
cess occurred separately from channel to channel. Overall,
each cross-validation trial data will have 2 channels, and 10
subsets. The resulting model allows rapid subject prediction,
per subject prediction duration is determined to be 0.1 sec-
onds from 10 class prediction during each trial of 10-fold
cross-validation.

4 Performance Evaluation

4.1 Evaluation Metrics

To examine the effectiveness of utilizing Mallow distance in
EEG, we utilize multiple performance metrics for scoring.
The metrics include the average accuracy (ACC), balanced
accuracy (BAC), f -score ( f -1), receiver operating character-
istics (ROC), and the half total error rate (HTER). Utilizing
these metrics, we compare Mallows distance’s performance
against performance when using DWT and Euclidean dis-
tance, and we discuss the results in Sec. 4.4.

4.2 Evaluation Description

In order to perform a systematic performance evaluation, we
re-arrange EEG signals into different groups.

A single EEG signal is composed of brainwave responses
on 10 visual stimuli. Since each participant experimented
on 4 series of the task with 50 target stimuli each, there is
a total of 20 EEG samples per person per channel (O1 and
O2). Moreover, the performance of each channel is inves-
tigated, separately. Thus, with 10 subjects, there is a total
of 200 EEG distributions for O1 and 200 EEG distributions
for O2. Then, the dissimilarity computation is conducted on
EEG distributions of O1 and O2, separately. In other words,
one feature distribution from O1 of one subject is selected
as a target data, and the rest distributions are considered as
a training set. Then, the distance between each target and
training pair is computed via Mallows distance. This pro-
cess repeats for every other 199 distribution. Then, calcu-
lated distances undergo the SVM classification with 10-fold
cross-validation. This procedure is then repeated for the O2
EEG distributions.
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Further, the performance of Mallows distance is com-
pared with the performance of other distances, such as dy-
namic time warping (DTW) and Euclidean distance (ED).
Definition of dynamic time warping for clustering EEG wave-
form is described in(Huang and Jansen, 1985), and the defi-
nition for Euclidean distance on the signals is found in(Helen
and Virtanen, 2007).

4.3 Evaluation Results

4.3.1 Accuracy

To measure the system performance, the average accuracy,
balanced accuracy, and f -score accuracy are investigated.
First accuracy metric, (ACC), is defined as:

Accuracy(%) =
T P+T N

T P+FP+T N +FN
(13)

where TP is a true positive, TN is a true negative, FP is a
false positive, and FN is a false negative. Although the ACC
assesses the accuracy of the system in a straight forward
fashion, the number of negative classes 180, out-weights
the number of positive classes 20. This unbalanced number
classes can result in negative class heavy biase, which leads
to imperfection. Thus, we implement additional metrics for
classifier evaluation as follow.

Balanced accuracy metric (BAC) is adopted to handle
the class imbalance. By definition, BAC is the arithmetic
mean of sensitivity and specificity, and it is known for avoid-
ing inflated performance estimates on the imbalanced dataset.

BAC(%) =
T P

2(T P+FN)
+

T N
2(T N +FP)

. (14)

Further, we calculate an f -score accuracy measure ( f -1) to
avoid the class imbalance. It is known as a harmonic mean
of precision and recall because the recall and precision are
evenly weighted. Mathematically, the f -score is defined as:

F1(%) =
2T P

2T P+FP+FN
. (15)

The system performance on channel O1 and O2 are summa-
rized in Table. 2 and Fig. 4. The average precision and recall
of O1 are 95.90% and 95.50% with ACC of 99.10%, BAC of
97.50%, and f -score of 95.70%. The average precision and
recall of O2 are 96.80% and 96.50% with ACC of 99.30%,
BAC of 98.06%, and f -score of 96.65%. This implies that
using O1 and O2, our system can correctly identify people
with the average recall value of 96.00% and the average f-
score of 96.18%. As expected, there was a slight discrep-
ancy between ACC and the other two metrics in both O1
and O2 results. Despite the imbalance induced bias toward
higher percentage accuracy in terms of ACC for both O1 and

O2, the value alone shows a very similar relationship. In ad-
dition, we draw the conclusion that overall TN percentage is
higher than TP percentage based on the discrepancy.

The f -score of O2 is higher than that of O1 by 0.95%.
However, our system still employs both O1 and O2 because
their difference in the accuracy is negligible and several sub-
jects perform better in O1. For instance, subject 6 performs
better with O1 than O2 as he achieved higher accuracy for
O1 (see Fig. 4(a)) than O2 (see Fig. 4(b)).

Table 2 System performance

Distance Metrics ACC (%) BAC (%) F1 (%)
O1 99.10 97.50 95.70
O2 99.30 98.06 96.65

(a) Confusion matrix for O1.

(b) Confusion matrix for O2.

Fig. 4 Classification performance in confusion matrices from channel
O1 and O2. Correctly classified subjects are colored in blue, and in-
correctly classified subjects are colored in orange. The depth of color
signify the rate of occurrence. The rightmost column indicates the re-
call (%), and the top row presents the precision (%) of each subject.
The upper right corner shows the f-score (%).
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4.3.2 Receiver operating characteristic

For a comprehensive analysis of the system performance, a
receiver operating characteristic curve (ROC) is employed to
evaluate our system (see Fig. 5(a) and Fig. 5(b)). By defini-
tion, ROC visualizes the sensitivity against FPR (false posi-
tive rate) as the threshold is varied. If the ROC curve follows
the top-left corner of the graph, the system shows high sen-
sitivity and specificity.

Figure 5(a) and Figure 5(b) demonstrate the ROC curves
for channel O1 and O2. Two figures illustrate that the per-
formance of the majority of subjects is similar except for
subject 8. The curve of subject 8 is slightly lower for O1,
and this complies with the result shown in Fig. 4(a). Over-
all, most ROC curves follow the top-left corner of the graph,
signifying that our system is robust and feasible.

(a) The average ROC curves of 10 subjects on Channel O1.

(b) The average ROC curves of 10 subjects on Channel O2.

Fig. 5 Receiver operating characteristic curves with 10 subjects.
Close-up images are also shown.

4.3.3 Half total error rate

Half total error rate (HTER) is a way to measure the de-
tection performance, which is popularly used as accuracy
metrics for biometrics identification. HTER is defined in the
following formula:

HT ER =
FAR+FRR

2
[%], (16)

where FAR refers to the false accept rate, and FRR indicates
the false rejection rate.

Figure 6(a) illustrates the FRR, FAR, and HTER of 10
subjects on channel O1. The error bar represents the stan-
dard deviation of each metric, and the red line in the box in-
dicates the median value. The average FRR and FAR value
for O1 are 4.500% and 0.501% with the standard devia-
tion of 5.503% and 0.716%. When averaging two values,
we achieved the HTER value of 2.501% with the standard
deviation of 2.599%.

Figure 6(b) shows the FRR, FAR, and HTER for chan-
nel O2. The average FRR and FAR value for 10 subjects
on O2 are 3.500% and 0.390% with the standard deviation
of 4.743% and 0.590%, respectively. HTER value for O2
is 1.945% with its standard deviation of 2.295%. Therefore,
the overall performance of our system using both O1 and O2
achieves the FRR of 4.000%, FAR of 0.446%, and HTER of
2.223%. For both O1 and O2, FAR is much lower than FRR
because our negative class outnumbers the positive class.

Compared to the performance of O2, O1 provides higher
FRR, FAR, and HTER by 1.000%, 0.740%, and 0.556%.
This results suggests that using signal from O2 channel would
make classification less prone to error than O1. However, as
addressed above, both channels are used for the system be-
cause the performance of an individual varies from channel
to channel. In conclusion, this result shows that the FRR is
significantly higher than FAR in Figure 6, maximizing the
security of the system that adapts this method.

(a) Boxplot of FRR, FAR, and HTER for channel O1.

(b) Boxplot of FRR, FAR, and HTER for channel O2.

Fig. 6 Boxplot for channel O1 and O2. The red line indicates the me-
dian value among 10 subjects. The standard deviation is represented by
the error bars in black color.
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4.4 Comparison with other distance metrics

In order to illustrate performance gain in classification accu-
racy utilizing Mallows distance, we exhibit the classification
performance in different distance metrics.

Table 3 shows a summary of the performance measures
of Mallows distance, dynamic time warping (DTW), and
Euclidean distance. The testing performance of Mallows dis-
tance is found to be satisfactory compared to that of DTW
and Euclidean distance. Specifically, the f -score of Mallows
distance is higher than that of DTW and Euclidean distance
by 2.31% and 6.48%, respectively. This proves that there is
a significant performance advantage for adopting Mallows
distance over DTW and Euclidean distance.

Table 3 Performance Comparison

Distance Metrics ACC (%) BAC (%) F1 (%)
Mallows 99.20 97.78 96.18

DTW 97.60 94.23 93.87
Euclidean 94.82 90.88 89.70

Although Euclidean distance has the advantage of being
simple and fast in computation, it is unreliable when one of
the features has a relatively large quantity and overpowers
the other. The inevitable imbalance of feature weight weak-
ens the accuracy of using Euclidean distance. Due to this
weakness, Euclidean distance demonstrates the lowest per-
formance as shown in Table. 3. On the other hand, DTW
allows two-time series that are similar but locally out of
phase to align in a non-linear manner, thereby resolves the
problem of Euclidean distance(Ratanamahatana and Keogh,
2004). Still, DTW algorithm is inevitable from one critical
problem; it may not detect obvious alignments in two sig-
nal if a feature of one signal is slightly higher or lower than
its corresponding feature of the other signal(Ben Ali et al.,
2015; Keogh and Pazzani, 2001). Thus, DTW is vulnerable
to noises and provides less accuracy than Mallows distance.
Mallows distance, which uses a clustering comparison, is ro-
bust to the signal noises and shows a better performance than
two metrics in a statistical manner. Thus, Mallows distance
is suitable for EEG-based subject identification.

4.5 Impact of stimuli types

In this section, we investigate the performance of the EEG
responses generated by non-target stimuli with 10 partici-
pants. Table 4 summarizes the average performance (O1 and
O2) with FRR, FAR, and HTER for target and non-target

Table 4 Error rates for target and non-target stimulus

Type FRR (%) FAR (%) HTER (%)
Target 4.000 0.446 2.223

Non-target 6.250 0.695 3.473

stimuli. When the target stimuli are employed, the average
FRR and FAR value are 4.000% and 0.446% with the stan-
dard deviation of 5.026% and 0.641%, respectively. There-
fore, the EEG signals that are generated by target stimuli
provide the HTER of 2.223% with the standard deviation
of 2.4029%. When EEG signals are evoked by non-target
stimuli, our system achieves the FRR of 6.250%, FAR of
0.695% and HTER of 3.473% with the standard deviation
of 7.927%, 0.968% and 4.125%, correspondingly. For both
target and non-target, the horizontal line in the box plots
for FRR and FAR is absent because their median value for
FRR and FAR is 0. Performance comparison between target
and non-target stimuli are illustrated in Fig. 7. In general,
FRR, FAR and HTER of the target stimulation are lower
than FRR, FAR and HTER of the non-target stimulation by
2.250%, 0.249%, and 1.250%. Thus, the stimulation of tar-
get images provides better performance than the presenta-
tion of non-target images. This result suggests that the target
stimuli generate more distinguishable EEG responses than
the non-target stimuli during the categorization task.

Fig. 7 Boxplot of FRR, FAR, and HTER with target and non-target
stimuli. The horizontal line in the box indicates the median value, and
error bar represents the standard deviation.

5 Conclusion

In this paper, we presented a stimulus-response based EEG
biometric using Mallows distance. Unlike previously pub-
lished works, we utilize Mallows distance calculation for the
EEG signal cluster model in the personal identification pro-
cess. We first investigate and apply Mallow distance to EEG
signal from healthy participants in the existing database. We
then extract statistical features, perform autoregressive model,
discrete wavelet transform, and fast Fourier transform for
data dimension reduction. Then, we employ an SVM model
to perform EEG feature distribution classification that vali-
dates the reliability of using Mallows Distance in EEG based
personal identification. Furthermore, we perform an exten-
sive performance evaluation, which presents a classification
accuracy of 96.18%. As a result, EEG biometric with Mal-
lows distance to compute feature distance shows promising
results and is highly feasible for future applications.
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